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Abstract— The reliability of the electric power grid is in-
creasingly linked to the reliability of measured data which is
used to understand the current state of the system. Determining
the current state of the electric grid is the basis for decision-
making related to the normal operation of the grid as well as
operations in the case of an emergency scenario. When some
of this data is corrupted in the case of a cyberattack, it is
important that we can recover the true state of the system via
state estimation (SE). Inspired by the work in [1] and [2], we
propose a novel method using a notion in machine learning to
optimize the choice of measurements in a given power network,
formulating the problem as a mixed-integer linear program
(MILP). Using this MILP, we study some test cases and show
that it is impossible to certify that the network is fully robust
in the case of bad data. However, we propose a method to
optimally place the sensors in order to make the network more
robust in the case of cyberattacks.

I. INTRODUCTION

Power system state estimation (PSSE) is a critical problem
for the reliability of the electric grid. PSSE uses data from
sensors throughout a transmission or distribution network to
monitor the state of the network [3]. The estimated state is in
turn used to make decisions about real-time power dispatch,
implement voltage control, and take action in the case of a
contingency, such as a line or generator outage [4]. During
the Northeast power blackout of 2003, which affected over
50 million people in the U.S. and Canada, the propagation
of cascading failures could have been mitigated had the
operators been able to recover the true state of the network
[5]. Because sensor measurements may be subject to both
random noise and intentional cyberattacks, it is important to
consider a robust version of the SE problem [6]. Furthermore,
as cyberattacks increase in frequency, robust PSSE will
become more important in the design of algorithms for the
future smart grid [7]–[9].

A special case of graph-structured quadratic sensing, PSSE
is formulated as the minimization of a loss function repre-
senting the difference between the actual set of measure-
ments and the measurements that would be observed for
the estimated state. The state of a power network is defined
by a complex voltage at each bus in the network. Due to
the nonlinearity of alternating-current (AC) power flow, the
classical PSSE problem is nonlinear, making the problem
NP-hard. In practice, nonlinear SE is solved with local search
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algorithms such as Newton’s method [10]. However, local
methods may yield spurious local minima with no physical
meaning since PSSE does not satisfy the restricted isometry
property (RIP) from quadratic sensing that can be used to
certify a lack of spurious local minima [11]. Because of
this, there is growing interest in methods that can yield global
solutions to the PSSE problem such as stochastic and convex
methods [12]–[15]. The paper [1] proposes a two-step PSSE
method which allows for the recovery of the true state of the
system in the case without noise or bad data. Because this
method involves solving a linear SE problem, it is convex and
can be solved to global optimality efficiently with existing
local search methods. Additionally, [1] introduces a sufficient
condition to verify the robustness of PSSE that explicitly
depends on the support of the bad data, and [2] extends this
work to propose a method which certifies that a network is
locally robust to bad data without any dependence on the
bad data support.

A. Contributions

By leveraging the results of [2], this work proposes a novel
MILP to optimize the placement of sensors in a network
in order to satisfy a machine learning condition for PSSE
robustness.

B. Notations

The symbol R denotes the set of real numbers, and RN

denotes the space of N -dimensional real vectors. The symbol
(·)T denotes the transpose of a vector or matrix. The symbol
| · | is the absolute value operator if the argument is a
scalar, vector, or matrix; otherwise, it is the cardinality of a
measurable set. The imaginary unit is denoted by j =

√
−1.

The elementwise multiplication of two matrices A ∈ Rm×n

and B ∈ Rm×n is denoted as A ⊙ B. The symbol †
denotes the left pseudoinverse of a matrix given as A† ≜
(ATA)−1AT . The notation ||A||∞ corresponds to the matrix
infinity norm, e.g. the maximum absolute column sum of
matrix A. The expression 1n is a vector of ones of dimension
n, and the expression 1{ζ} is the indicator function which
is 1 if ζ is true and 0 otherwise. The notation A[B, C] or
AB,C represents a submatrix of matrix A formed by taking
the rows and columns corresponding respectively to the sets
B and C. The notation A \ B denotes the subtraction of set
B from set A, and A ∪ B denotes the union of sets A and
B. The notation [n] denotes the index set {1, . . . , n}.



II. BACKGROUND

A. Power System State Estimation (PSSE)

Let a power network be defined as the graph G = (N ,L),
where N is the set of buses and L is the set of lines. The
goal of PSSE is to recover the true state of the network,
given as the complex voltage vi ≜ |vi|ejθi at each bus i ∈
N . We are given some set of measurements M, which can
include measurements of the real or reactive power flows
pij , qij on line (i, j) ∈ L, the real or reactive power injected
pi, qi at bus i ∈ N , or the voltage magnitude |vi| at bus
i ∈ N . We can also extend this method to include phase
angle measurements θi for i ∈ N from phasor measurement
units (PMUs). We will use the PSSE method from [1], which
introduces a linear basis using the unknown state variables
xmg
i ≜ |vi|2 for all i ∈ N , xre

ij ≜ |vi||vj | cos(θij) for all
(i, j) ∈ L, xim

ij ≜ |vi||vj | sin(θij) for all (i, j) ∈ L, where
θij ≜ θi − θj for all (i, j) ∈ L. We will take the set X ={
{xmg

i }∀∈N , {xre
ij}∀(i,j)∈L, {xim

ij }∀(i,j)∈L
}

to be the set of
all states for the network, which is fixed given the network
topology.

Given this linear basis, the equations which relate the
measurements to the state can be formulated as m = Ax,
where A ∈ Rm×n is the sensing matrix that relates the
unknown state x ∈ Rn to the vector of measurements m ∈
Rm. We have that n ≜ |X | = |N |+2|L| and m ≜ |M|. Note
that A is sparse due to the sparse nature of power networks
(see [1] for the formulation of A). When m > n, the
equation m = Ax represents an over-determined power flow
problem. We will assume that we always have m ≥ n. In
a realistic scenario, the measurements m are corrupted with
random noise and potentially other bad data, and therefore
we cannot just solve this over-determined power flow to
determine the true state. We can model the noisy and/or
corrupted measurements y ∈ Rm as:

y = Ax + w + b (1)

where w ∈ Rm represents random noise and b ∈ Rm

represents the bad data vector. Typical assumptions on these
vectors are that w follows a Gaussian distribution and that b
is a sparse vector [16]. Note that the local recovery method
in [2] is one of the most general methods as it does not make
assumptions on the sparsity of b.

The PSSE methods of [1] and [2] use a two-step process:
1) Solve SE problem defined by (1) to get an estimate x̂.
2) Recover an estimate of the complex voltages using the

relations |v̂i| =
√
x̂mg
i , θ̂ij = arc tan

(
x̂im
ij /x̂

re
ij

)
, and

θ̂ = argminθ∈R|N|
∑

(i,j)∈L(θi − θj − θ̂ij)
2.

If step 1 is able to recover the true state, then step 2
will recover the true complex voltage vector [1]. In the
case of corrupted and/or noisy data, it will be impossible
to recover the true state in step 1, but it is stated in [1] that
the propagation of error is not too great in step 2. Thus, the
focus of this paper for robust SE is on step 1, which we will
call ℓ-PSSE (linearized PSSE) from this point forward.

In the case when both random Gaussian noise and sparse
corruption are present, one version of ℓ-PSSE problem would

be to solve the LASSO problem given in [1]:

x̂ = min
x,b

1

2|M|
||y−Ax− b||22 + λ||b||1 (2)

for some regularization parameter λ > 0 that promotes
the sparsity of b. As an alternative, the paper [2] proposes
minimizing a Huber loss which is more robust to outliers.

B. Mutual Incoherence

Mutual coherence is a measure of the cross-correlation of
the columns of a matrix A ∈ Rm×n, which is a powerful
notion in the area of compressed sensing. The authors of [1]
propose a new metric, which they call “mutual incoherence,”
a measure of the alignment of two particular submatrices of
the sensing matrix A, one related to the clean data and one
related to the corrupted data. As it is proposed in [1], this
metric relies on the knowledge of the support of the bad data
vector b, denoted as B ⊂M. The mutual incoherence metric
ρ(B) is then defined as ρ(B) =

∣∣∣∣∣∣AT†
BcAT

B

∣∣∣∣∣∣
∞

, where Bc ≜

M\B, AB is the submatrix of A with rows corresponding to
B, and ABc is the submatrix of A with rows corresponding
to Bc. We need to make a few assumptions about the matrix
A in order to use the mutual incoherence metric to certify
the robustness of the ℓ-PSSE problem.

Assumption 1 (Preconditioning of sensing matrix). Each
row of A is normalized so that ||ai||2 = 1, ∀i ∈ [m], where
ai is the ith row of A.

Assumption 2 (Lower eigenvalue condition).

min

{
λmin

(
AT

BcABc

)
, λmin

([
A
IB

]
[AT ITB ]

)}
> 0 (3)

where IB corresponds to a submatrix formed by the B rows
of the identity matrix I ∈ Rm×n and λmin(·) denotes the
minimum eigenvalue of a matrix.

This second assumption implies that the true vector must
be identifiable if the bad data support B were known. The
authors of [1] show that under these assumptions on A,
if ρ(B) < 1, then problem (2) with a given choice of
regularization parameter λ recovers an estimated state with
a small error from the true state as well as a large degree of
bad data detection with high probability. However, because
this method relies on knowledge of the support of the bad
data vector, its application is limited.

The paper [2] builds on [1] and proposes a way to avoid
using the bad data support, by developing a method for
certification which can be ensured locally for each line in
the network (i, j) ∈ L without considering the actual attack
set. This method partitions the graph into attack, boundary,
and safe regions for a given line (i, j) ∈ L and then looks
at the mutual incoherence metric defined on subsections of
the partitioned boundary measurements, which are fixed for
a given line (i, j) ∈ L and measurement set M. During
an actual attack, if measurements at a node i are attacked
and if every line (i, j) ∈ L attached to node i satisfies
the mutual incoherence condition, then the attack will not
propagate through the network.



Algorithm 1 Sensing matrix partition for local attack i→ j

Inputs: G, M, X , (i, j)
Compute sensing matrix A from G
Set X ij

a ← {xmg
i , xre

ij , x
im
ij }

Set Mij
a ← {all-zero rows of A[: , (X \ X ij

a )]}
Set Mij

db ← {non-zero rows ofA[: ,X ij
a ]} \Mij

a

Set X ij
b ← {non-zero columns of A[Mij

db , :]} \ Xa

Set Mij
ib ← {non-zero rows of A[: ,X ij

b ]} \Mij
db

Set Mij
s ←M\ (Mij

a ∪Mij
db ∪M

ij
ib )

Set X ij
s ← X \ (X ij

a ∪ X ij
b )

Outputs: {X ij
a ,X ij

b ,X ij
s }, {Mij

a ,Mij
db,M

ij
ib ,M

ij
s }

In the next section, we present a modified version of the
graph partitioning that was first introduced in [2]. While
[2] partitions based on kth connected neighbors in the net-
work, this method partitions through variable coupling in
the sensing matrix and thus takes into account the choice
of measurements to determine the variable partition. Unlike
that in [2], our method results in the minimum number of
boundary variables and maximum number of safe variables
and measurements. This version is effectively the same as
that in [2], i.e. it does not change the mutual incoherence
metric or results of [2], but it streamlines the partitioning
process and results in a more intuitive partition for the
application.

III. GRAPH PARTITIONING FOR LOCAL CERTIFICATION

For a given line of attack i→ j, we aim to partition the set
of state variables X into the sets of attacked variables X ij

a ,
boundary variables X ij

b , and safe variables X ij
s , where we

use the superscript ij to indicate that the partition is specific
to the chosen attack line i→ j. It is desirable to partition the
measurement sets into the attacked measurements Mij

a that
depend only on X ij

a , the dependent boundary measurements
that depend on both X ij

a and X ij
b , the independent boundary

measurementsMij
ib that depend only on X ij

b , and the remain-
ing safe measurements Mij

s that can depend on both X ij
s

and X ij
b . We note that the “independent” and “dependent”

boundary measurements are defined as dependent in relation
to the attacked variables X ij

a . The algorithm to formulate the
variable and measurement partitions is given in Algorithm 1.
With this partition, we can rewrite the sensing matrix A as
coupled through the boundary region.

If the matrix A satisfies some mutual incoherence condi-
tion for independent and dependent boundary measurement
sets given by the partition in Algorithm 1, then line i → j
is robust and bad data cannot propagate from i to j. In this
case, if node i is part of the unknown attack set, then it will
still be possible to recover a reasonable estimate of the state
at node j with high probability. The required local mutual
incoherence condition is given as:

ρij ≜
∣∣∣∣∣∣AT†

Mij
ib ,X ij

b

AT
Mij

db ,X
ij
b

∣∣∣∣∣∣
∞

< 1 (4)

We can see that condition (4) depends on the
measurement-variable partition. In this case, the mutual in-
coherence ρij captures the alignment between measurements

in the independent boundary set and the dependent bound-
ary set. This condition ensures that attacked measurements
do not propagate from the dependent boundary set to the
independent boundary set.

Because condition (4) depends on the measurement set, it
is apparent that we can optimize the choice of measurements
M in order to decrease ρij with the goal of finding measure-
ments such that ρij < 1. If we can find a measurement setM
such that ρij < 1 for all i→ j and j → i for (i, j) ∈ L, then
we can say that the network is fully robust. If the network
is fully robust, then we can find good estimates for local
recovery of the safe and boundary region state variables via
the method in [2]. In order to formalize the goal of placing
sensors in a power network so that the network is robust,
we will consider this mutual incoherence condition in an
optimization framework, as presented in the next section.

IV. PROBLEM FORMULATION

The goal is to find a minimum choice of measurements
over the network such that the mutual incoherence condition
is satisfied for all boundary measurement sets {Mij

db,M
ij
ib }

in both i→ j and j → i directions for every line (i, j) ∈ L.
Note that in the formulations below we will use the notation
(i, j) ∈ L to denote lines in both i→ j and j → i directions.
Let ϕ ∈ {0, 1}m be a binary vector which indicates the
choice of measurements such that ϕi = 1 if measurement
i ∈ [m] is chosen and ϕi = 0 otherwise. Note that m is
equal to the total possible number of measurements for a
given power network.

When we consider the mutual incoherence condition
across a line i → j, we can define a partition of all
possible measurements M̃, which is invariant to the choice
of measurements ϕ and depends only on the graph topology.
Given this partition, let M̃ij

db be the set of total possible
dependent boundary measurements and M̃ij

ib be the set
of total possible independent boundary measurements. Let
mij

db ≜ |M̃ij
db|, mij

ib ≜ |M̃ij
ib |, and nij

b ≜ |X ij
b |. We could

formulate an optimization problem with condition (4) as a
constraint. However, this problem may be infeasible if the
constraints (4) cannot be satisfied for all lines (i, j) ∈ L.
Thus, it is more useful to consider the following mixed-
integer nonlinear program (MINLP):

min
β∈R,ϕ∈{0,1}m

Xij ,Eij ,Jij ,∀(i,j)

β (5a)

s.t. M ≤
∑m

i=1
ϕi ≤M (5b)

∀(i, j) ∈ L :(
Rij ⊙ Eij

)
Xij = Sij ⊙ J ij (5c)

Eij
k = ϕ[M̃ij

ib (k)] 1nij
b
,∀k ∈ [mij

ib ] (5d)

J ij
k = ϕ[M̃ij

db(k)] 1nij
b
,∀k ∈ [mij

db] (5e)

||Xij ||∞ ≤ β (5f)

where Rij ≜ AT
M̃ij

ib ,X ij
b
∈ Rnij

b ×mij
ib and Sij ≜ AT

M̃ij
db ,X

ij
b
∈

Rnij
b ×mij

db are subsets of the transposed sensing matrix AT .



We have introduced the variable Xij ∈ Rmij
ib ×mij

db in order
to represent the mutual incoherence as ||Xij ||∞ for each
line (i, j) ∈ L. The matrix variables Eij ∈ Rnij

b ×mij
ib and

J ij ∈ Rnij
b ×mij

db are used to choose columns of the sens-
ing matrix corresponding respectively to independent and
dependent boundary measurements. Eij

k and J ij
k represent

the kth columns of Eij and J ij , respectively. The notation
ϕ[M̃ij

ib (k)] represents the element of ϕ corresponding to
the kth entry of M̃ij

ib (similarly for ϕ[M̃ij
db(k)]). The given

parameters M and M are respectively the minimum and
maximum numbers of measurements, where we select M
such that M ≥ n.

Theorem 1. If the objective of (5) is strictly less than 1,
then a measurement set can be found such that the network
is robust in terms of the mutual incoherence condition (4).

Proof: Using equations (5d) and (5e), we have that
Rij ⊙ Eij is equivalent to AT

Mij
ib ,X ij

b
and Sij ⊙ J ij is

equivalent to AT
Mij

db ,X
ij
b

, thus Xij = AT†
Mij

ib ,X ij
b
AT

Mij
db ,X

ij
b

by

constraint (5c). We have that ||Xij ||∞ corresponds to ρij as
defined in Equation (4), and if β < 1 then (5f) enforces that
ρij is under 1 for every line (i, j) ∈ L.

Note that Problem (5) is nonconvex due to both the
discrete nature of the binary variables ϕ and the nonlinearity
of the EijXij term in constraint (5c). If we examine the
constraint (5c) for some line (i, j) ∈ L, we see that it is
equivalent to: (for ∀k ∈ [nij

b ],∀l ∈ [mij
db])∑mij

ib

r=1
Rij

krX
ij
rlϕ[M̃

ij
ib (r)] = Sij

klϕ[M̃
ij
db(l)] (6)

We can relax the nonconvexity due to the nonlinearity by
introducing new variables:

Zij
rl ≜ Xij

rlϕ[M̃
ij
ib (r)] ∈ R, ∀r ∈ [mij

ib ],∀l ∈ [mij
db] (7)

Then we can reformulate (6) with linear relations:

mij
ib∑

r=1

Rij
krZ

ij
rl = Sij

klϕ[M̃
ij
db(l)], ∀k ∈ [nij

b ],∀l ∈ [mij
db] (8)

With this reformulation, all the nonlinearity is in the
constraints (7). If we relax (7), we have:

Zij
rl ≤ Xij

rlϕ[M̃
ij
ib (r)], ∀r ∈ [mij

ib ], ∀l ∈ [mij
db] (9)

We also note that Xij
rl = Zij

rl . If ϕ[M̃ij
ib (r)] = 1, this

is obvious. If ϕ[M̃ij
ib (r)] = 0, then the only constraint Xij

rl

appears in is (5f), and since we are minimizing the infinity
norm of Xij , we have that Xij

rl will be equal to zero. Thus,
we can substitute Zij into (5f) and (9) in place of Xij . We
can also reformulate constraint (9) using the big-M method
by introducing some large constant C > 0 such that Zij

rl ≤ C
for all r ∈ [mij

ib ], l ∈ [mij
db], for all (i, j) ∈ L to yield the

constraints:

Zij
rl ≤ Cϕ[M̃ij

ib (r)], ∀r ∈ [mij
ib ],∀l ∈ [mij

db] (10)

To reformulate the constraint (5f) in order to yield a MILP,
we introduce a new variable Y ij

rl corresponding to |Zij
rl | for

all r ∈ [mij
ib ] and l ∈ [mij

db] which can be related to Zij
rl by

the following constraints:

Y ij
rl ≥ max{−Zij

rl , Z
ij
rl}, ∀r ∈ [mij

ib ],∀l ∈ [mij
db] (11)

We modify (10) to be upper bounds on Y ij :

Y ij
rl ≤ Cϕ[M̃ij

ib (r)], ∀r ∈ [mij
ib ],∀l ∈ [mij

db] (12)

This formulation allows (5f) to be recast in terms of Y ij :∑mij
db

l=1
Y ij
rl ≤ β, ∀r ∈ [mij

ib ] (13)

In order for the power flow solution to be fully defined
in the case without noise, i.e. m = Ax, we need A to be
full rank, as the authors suggest in [1]. Instead of enforcing
the rank constraint in this optimization problem, we can
enforce a weaker constraint which says that every variable
must appear in at least one of the measurement equations.
We can model this by taking Φx to be the indicator variables
corresponding to the set of measurements that depend on the
variable x ∈ X . The sets Φx are defined based on the struc-
ture of the graph and therefore can easily be incorporated
into the constraints. To enforce that every variable appears
at least once in the chosen measurement equations, we use
the constraints:∑|Φx|

i=1
Φx[i] ≥ 1 ∀x ∈ X (14)

where Φx[i] corresponds to the ith element of Φx for x ∈ X .
Combining these constraints, we have the MILP of interest:

min
β∈R,ϕ∈{0,1}m

Zij ,Y ij ,∀(i,j)∈L

β

s.t. (5b), (14)

∀(i, j) ∈ L : (8), (11), (12), (13)

(15)

In the case that it is impossible to recover a set of
measurements that yields β < 1 for Problem (15), it will
be more helpful to minimize the number of violations of the
mutual incoherence condition, i.e. where ||Y ij ||∞ ≥ 1. We
can do this by solving the related MIP:

min
ϕ∈{0,1}m

Zij ,Y ij ,βij ,∀(i,j)∈L

∑
(i,j)∈L

1{βij ≥ 1}

s.t. (5b), (14)

∀(i, j) ∈ L :

(8), (11), (12)∑mij
db

l=1
Y ij
rl ≤ βij , ∀r ∈ [mij

ib ]

(16)

which is converted to a MILP by introducing binary variables
αij corresponding to the indicators 1{βij ≥ 1} and using the
big-M method to recast the constraints in linear form.



Fig. 1. Four bus network showing all possible voltage magnitude
measurements, real power flow measurements, and real power injection
measurements. Note that because real power injections at buses 1 and 4
are equivalent to p12 and p43 respectively, these measurements are not
considered.

V. SIMULATIONS

The simulations are run on a standard laptop using the
Pyomo modeling language in Python 3.8. The MILPs given
by (15) and (16) are solved with the Gurobi solver, which
uses a branch-and-bound method to determine the binary
variables. Note that for all examined test cases both (15)
and (16) yield sensing matrices that are full rank.

A. Four-Bus Test Case

We first consider the four-bus test network shown in Figure
1. In [2], the authors considered this network and showed
that different combinations of measurement choices yielded
mutual incoherence metrics that were greater than 1 for
certain lines in the network. By considering Problem (15),
we formalize their guess-and-check process.

For the four bus network, we take the line parameters to be
Gij = 5, Bij = −20, and Bsh

ij = 0.5 in per unit values. If we
set M = 3|N |−2 = 10, and M = m = 20, then for the four
bus network, we find that it is impossible to recover a set of
measurements such that the mutual incoherence condition is
satisfied in both directions for every line (i, j) ∈ L, as shown
in the second column of Table I. Instead, we can solve (16)
to yield a choice of measurements that minimizes the number
of violations of the mutual incoherence metric. By solving
(16), we see that it is possible to create a measurement
set such that 2 out of 3 of the lines are robust in both
directions, as shown in the third column of Table I. We
see that a mutual incoherence of 0 is obtained for line
1 → 2. This occurs because the chosen measurement set
has no coupling between attack variables and the rest of the
variables, resulting in X 12

b = ∅.

B. IEEE Test Cases

We solve Problem (15) for some IEEE test cases [17],
finding that there is no choice of measurements such that
mutual incoherence is below 1 for every line on the network.
The results are given in Table II. However, we can still solve
problem (16) to yield the optimal choice of measurements
for the mutual incoherence robustness condition. The results
of (16) are given in Table III. Note that if the data for a part
of the network is under attack, having more lines satisfy the
mutual incoherence condition guarantees a reduction in the
impact of the attack on the SE for nodes far away from the
attacked region [2].

VI. CONCLUSIONS

This paper presented an original framework for optimizing
the choice of measurements in a power system to protect

TABLE I
MUTUAL INCOHERENCE METRIC FOR FOUR BUS NETWORK

Line i → j Mutual incoherence ρij Mutual incoherence ρij

from solving (15) from solving (16)
1 → 2 0.91 0.00
2 → 3 1.02 0.90
3 → 4 1.39 1.52
2 → 1 1.39 1.52
3 → 2 1.02 0.93
4 → 3 0.91 0.19

TABLE II
SOLUTION TO (15) FOR VARIOUS IEEE TEST CASES

Network Fraction of chosen Max ρij Solve time (s)
measurements for (i, j) ∈ L

case5 29 / 39 1.26 0.69
case9 42 / 57 1.48 1.12

case14 95 / 120 1.61 9.33
case30 193 / 248 1.61 39.3

against false data injection. By examining a local metric for
robust PSSE, we were able to define a coupled optimization
problem over all lines of the network. We showed that
for some test cases, there is no choice of measurements
such that every line can be certified as robust in both
directions. However, this framework allows us to find subsets
of measurements that are more optimal than others in terms
of PSSE robustness.
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