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Abstract
The successful incorporation of machine learning models into safety-critical control systems re-
quires rigorous robustness guarantees. Randomized smoothing remains one of the state-of-the-art
methods for robustification with theoretical guarantees. We show that using uniform and unbi-
ased smoothing measures, as is standard in the literature, relies on the underlying assumption that
smooth decision boundaries yield good robustness, which manifests into a robustness-accuracy
tradeoff. We generalize the smoothing framework to remove this assumption and learn a locally
optimal robustification of the decision boundary based on training data, a method we term locally
biased randomized smoothing. We prove nontrivial closed-form certified robust radii for the result-
ing model, avoiding Monte Carlo certifications as used by other smoothing methods. Experiments
on synthetic, MNIST, and CIFAR-10 data show a notable increase in the certified radii and accuracy
over conventional smoothing.
Keywords: Adversarial robustness, neural networks, randomized smoothing

1. Introduction

In light of their impressive representation capabilities and computational efficiency, machine learn-
ing models are rapidly being adopted in a variety of control tasks, ranging from autonomous driving
(Bojarski et al., 2016; Wu et al., 2017) to reinforcement learning for uncertain systems (Levine et al.,
2016; Sutton and Barto, 2018). Nevertheless, these models (and in particular, neural networks) can
be extremely sensitive to small perturbations in their inputs (Biggio et al., 2013; Szegedy et al.,
2014; Nguyen et al., 2015), a property directly at odds with the robustness and stability guarantees
cherished by the control community (Recht, 2019). Recent works have tried to address this gap in
the forms of adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Shafahi et al., 2019)
and robustness certification (Wong and Kolter, 2018; Weng et al., 2018a; Raghunathan et al., 2018;
Fazlyab et al., 2020; Anderson et al., 2020; Ma and Sojoudi, 2021; Anderson and Sojoudi, 2021b).
However, the challenge of developing nontrivial robustness guarantees that scale to practically-sized
settings remains an open problem.

Randomized smoothing, popularized by Lecuyer et al. (2019); Li et al. (2019); Cohen et al.
(2019), is commonly accepted as one of the state-of-the-art methods for robustifying large-scale
models with rigorous robustness guarantees. Instead of relying on the model’s baseline prediction,
randomized smoothing assigns the most probable prediction when considering random perturba-
tions of the input. Intuitively, this ensemble approach averages out any outlier inputs that may
have drastically changed the prediction—such inputs are termed adversarial inputs or adversar-
ial attacks. By using specific probability distributions, e.g., normal or Laplacian, researchers have
proven the non-existence of adversarial inputs within balls corresponding to some norm or metric,
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e.g., ℓ2- or ℓ1-norm, or Wasserstein metrics (Cohen et al., 2019; Teng et al., 2020; Levine and Feizi,
2020). The radius of such a ball is called a certified radius or robust radius.

Despite the popularity of randomized smoothing, the method still presents a handful of limita-
tions and open questions, many of which have only recently been considered or remain under inves-
tigation. For example, Salman et al. (2019) blends randomized smoothing with adversarial training
to significantly improve the resulting model’s certified robustness. The paper Yang et al. (2020a)
determines the geometry of optimal smoothing distributions for ℓ1-, ℓ2-, and ℓ∞-norm bounded at-
tacks. Contrarily, Zhang et al. (2020) considers optimizing the base classifier to maximize the robust
radius for a fixed distribution. The work Dvijotham et al. (2020) develops a measure-theoretic ap-
proach for robustness certification of models smoothed using arbitrary distributions. Many negative
results have also been shown, e.g., Mohapatra et al. (2021) shows that smoothed classifiers suf-
fer from a “shrinking phenomenon”: decision regions shrink and eventually vanish as the variance
of the smoothing distribution increases. Many works have also identified a robustness-accuracy
tradeoff in relation to the smoothness of models (Tsipras et al., 2019; Krishnan et al., 2020; Yang
et al., 2020b; Gao et al., 2020), a limitation we discuss in Section 2.3 and address in our proposed
approach. Finally, some recent papers have considered more general formulations of randomized
smoothing in an attempt to increase certified radii—we discuss these works in-depth in Section 2.4.

Randomized smoothing is usually considered in a static classification setting, and this is the
setting we study. Nonetheless, such works are actively being incorporated into dynamic settings
with more general outputs, e.g., smoothing of neural network policies in reinforcement learning
(Kumar et al., 2021; Wu et al., 2021). Consequently, the results of this paper are of interest in more
general dynamic learning problems than the static classification setting that we present.

1.1. Contributions

We show that standard randomized smoothing methods possess the informal assumption that mak-
ing models smoother is a good surrogate for making them more robust. This manifests into a
robustness-accuracy tradeoff, and we show that to eradicate the assumption it is necessary to gener-
alize to biased and input-dependent distributions. Accordingly, we propose locally biased random-
ized smoothing, which uses training data to directly learn model robustification without relying on
the assumption that smoothness yields robustness. We obtain a closed-form smoothed model with
closed-form certified radii for arbitrary norms, overcoming the Monte Carlo estimations relied on
by many current smoothing methods. Our experiments demonstrate an increased accuracy both on
clean and adversarially attacked data, as well as increased certified radii. Due to page limitations,
all proofs are moved to our online technical report Anderson and Sojoudi (2021a).

2. Randomized Smoothing: Review, Limitations, and Generalizations

2.1. Preliminaries

We denote by P(Rd) the set of probability measures on Rd equipped with the Borel σ-algebra.
If µ ∈ P(Rd) and g : Rd → Rn has µ-integrable components gi : Rd → R, i ∈ {1, 2, . . . , n},
we define the expectation Ex∼µg(x) :=

∫
Rd g(x)dµ(x) =

(∫
Rd g1(x)dµ(x), . . . ,

∫
Rd gn(x)dµ(x)

)
.

We assume µ-integrability whenever we write Ex∼µg(x) or
∫
Rd g(x)dµ(x). The normal distribution

on Rd with mean x and covariance Σ is denoted by N(x,Σ). The distribution function of N(0, 1)
on R is denoted by by Φ, which we recall has a well-defined inverse. The dual norm of a norm
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∥ · ∥ : Rd → [0,∞) is denoted by ∥ · ∥∗, and is given by ∥y∥∗ = sup{x⊤y : ∥x∥ ≤ 1} for all
y ∈ Rd. Throughout, we allow ∥ · ∥ to denote an arbitrary norm, the domain of which will be clear
from context. We let ρ : Rd × Rd → [0,∞) denote the metric defined by ρ(x, y) = ∥x − y∥2. For
ease of exposition, we assume that all argmax and argmin yield singleton sets.1

Consider a classifier f : Rd → {1, 2, . . . , n} defined by f(x) ∈ argmaxi∈{1,2,...,n} gi(x), where
g : Rd → Rn. In this paper, we consider robustifying f using the randomized smoothing framework.

2.2. Review of Randomized Smoothing

Instead of assigning the class f(x) to an input x ∈ Rd, randomized smoothing assign the expected
class under f of random perturbations of x. This amounts to choosing a smoothing measure µ ∈
P(Rd) and replacing f with the smoothed classifier fµ : Rd → {1, 2, . . . , n} defined by fµ(x) ∈
argmaxi∈{1,2,...,n} g

µ
i (x), with gµ : Rd → Rn given by gµ(x) = Eϵ∼µg(x+ ϵ).

Some works consider directly manipulating the hard classifier f without regard to the soft clas-
sifier g (Cohen et al., 2019; Teng et al., 2020). In contrast, we smooth the soft classifier g before
the argmax is taken, as is done in many other works (Salman et al., 2019; Zhai et al., 2020; Levine
and Feizi, 2020; Kumar et al., 2020). Smoothing g, which generalizes smoothing f (Salman et al.,
2019), takes into account the confidence of the base classifier, whereas hard smoothing does not
(Kumar et al., 2020). Consequently, we concern ourselves only with soft smoothing.

Intuitively, randomized smoothing flattens jagged regions of the decision boundary, where ad-
versarial inputs are conjectured to exist (Fawzi et al., 2018). This intuition can be formalized in the
framework of convolution. If µ has density ϕ : Rd → [0,∞) (with respect to Lebesgue measure)
that is symmetric (i.e., ϕ(−x) = ϕ(x)), then randomized smoothing is the convolution

gµ(x) =

∫
Rd

ϕ(ϵ)g(x− ϵ)dϵ =: ϕ ∗ g(x).

In general, the convolution gµ = ϕ ∗ g is smoother than the functions ϕ and g being convolved
(Folland, 1999). From the control and signal processing perspective, this convolutional represen-
tation shows that randomized smoothing acts as a low-pass filter on g. Upon attenuating the high-
frequency behavior in g via smoothing, the radius of robustness around clean inputs has been found
to increase, with certified robust radii given for special cases of the smoothing measure µ.

The most popular form of randomized smoothing, introduced in Cohen et al. (2019), takes the
smoothing measure µ to be that of the normal distribution N(0, σ2I). We refer to this scheme as
normal smoothing. In this case, gµ becomes the Weierstrass transform of g, which is well known to
attenuate high-frequency components in g. Since evaluating gµ(x) in this case requires computing
an integral that has no closed-form formula in general, implementing normal smoothing typically
requires Monte Carlo estimation. The authors of Cohen et al. (2019) proved a certified robust ℓ2-
radius for normal smoothing, which must also be estimated via Monte Carlo methods. We recall the
result below in terms of soft classifier smoothing—see Zhai et al. (2020) for this generalization.

Theorem 1 (Cohen et al. (2019); Zhai et al. (2020)) Assume that g : Rd → [0, 1]n. Let σ2 > 0,
and let µ be the probability measure of the normal distribution N(0, σ2I). Consider a point x ∈ Rd

1. This assumption is violated in some cases, e.g., when considering inputs on decision boundaries. In practice, however,
we are not concerned with these pathological cases, as they correspond to sets of zero Lebesgue measure.
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and let y = fµ(x) ∈ argmaxi∈{1,2,...,n} g
µ
i (x) and y′ ∈ argmaxi∈{1,2,...,n}\{y} g

µ
i (x). Then

fµ(x+ δ) = y for all δ ∈ Rd such that

∥δ∥2 ≤ rσ(x) :=
σ

2

(
Φ−1(gµy (x))− Φ−1(gµy′(x))

)
.

2.3. Limitations of Randomized Smoothing

We remark two important restrictions on the measure µ that are common to most randomized
smoothing methods in the literature: 1) µ is uniform with respect to the input x, and 2) µ is centered
at 0 ∈ Rd. In this section, we formalize these restrictions and show why they should be relaxed.

We begin with Proposition 3 below, which, as a direct consequence of the uniform smoothing
measure, shows that gµ is necessarily “more constant” than g. This forces classification to remain
constant over larger regions of the input space, but when these regions become too large (i.e., when
L becomes very small), the accuracy of the predictions degrades (Krishnan et al., 2020; Yang et al.,
2020b). The proposition has an obvious generalization to the case of local Lipschitzness.

Definition 2 Let L ∈ R, and let ∥ · ∥ and ∥ · ∥′ be norms on Rd and Rn, respectively. A function
h : Rd → Rn is called L-Lipschitz in norms (∥ · ∥, ∥ · ∥′) if for all x, x′ ∈ Rd it holds that ∥h(x)−
h(x′)∥′ ≤ L∥x− x′∥.

Proposition 3 If g is L-Lipschitz in norms (∥·∥, ∥·∥′), then gµ is L-Lipschitz in norms (∥·∥, ∥·∥′).

We next show that smoothing measures centered at the origin 0 ∈ Rd cannot change a linear
decision boundary, even if they are allowed to depend on the input x (which we denote by µx). This
is true even when doing so would increase robustness with respect to the data distribution at hand.
Thus, unbiased smoothing distributions cannot robustify linear classifiers.

Definition 4 A measure µ ∈ P(Rd) is called unbiased if Eϵ∼µϵ = 0. The measure µ is called
biased if it is not unbiased.

Proposition 5 Suppose that g is affine, namely g(x) = Ax + b for some A ∈ Rn×d and b ∈ Rn.
Consider gµ with input-dependent smoothing measure µx, so that gµ(x) = Eϵ∼µxg(x+ ϵ). If µx is
unbiased for all x ∈ Rd, then fµ = f .

When the smoothing measure is unbiased and uniform with respect to the input, we refer to
the scheme as standard smoothing. Together, the two limitations in Propositions 3 and 5 point to a
fundamental informal assumption that underlies standard smoothing: making classifiers smoother,
as characterized by their Lipschitz constant or the linearity of their decision boundaries, is a good
surrogate for increasing robustness. Although standard smoothing has been shown to work well
in many settings, the assumption that smoothness yields robustness is fundamentally flawed, since
minimizing the Lipschitz constant degrades accuracy (Krishnan et al., 2020; Yang et al., 2020b).
If the assumption were to hold, then a constant classifier, obtained, e.g., by letting σ2 → ∞ in
Theorem 1, would be the most robust classifier, which is nonsensical when we take accuracy into
account. The work Madry et al. (2018) corroborates this conclusion, arguing that simultaneous
accuracy and robustness often requires a complicated decision boundary. Thus, our goal should be
to directly increase robustness with respect to the data distribution, without resorting to surrogate
notions such as smoothness. To do so, Propositions 3 and 5 show that we must generalize the
smoothing framework to allow for input-dependent and biased smoothing measures.

4



CERTIFIED ROBUSTNESS VIA LOCALLY BIASED RANDOMIZED SMOOTHING

2.4. Generalizing Randomized Smoothing and Related Works

Henceforth, we consider µ = {µx ∈ P(Rd) : x ∈ Rd} with all µx possibly biased, and define

gµ(x) = Eϵ∼µxg(x+ ϵ). (1)

We refer to this scheme as generalized smoothing.
A handful of recent works have considered generalized smoothing (although most of them in a

blind attempt to increase robust radii, not because they have recognized and seek to overcome the
flawed informal assumption previously discussed). For example, Wang et al. (2021) uses normal
distributions N(0, σ2

i I) to maximize ℓ2-robust regions around every training point xi. If a test input
x is not contained in any such certified region, they optimize a new variance σ2(x) to allocate a
certified region around x, which is then used for future classification. Not only is this restricted to
ℓ2-adversaries and computationally heavy due to two-stage training, but also the resulting classifier
depends on the order of incoming inputs, introducing new performance and robustness concerns.

The works Alfarra et al. (2020) and Chen et al. (2021) use µx being the measure associated
with N(0, σ2(x)I), where the variance is chosen to maximize the certified ℓ2-radius of normal
smoothing; σ2(x) ∈ argmaxσ2>0 rσ(x). The authors of Eiras et al. (2021) use the same idea, albeit
they extend the approach to specific anisotropic distributions. The work Súkenı́k et al. (2021) shows
that, in addition to suffering from the curse of dimensionality, the robustness certificates issued by
these three works are actually invalid in practice. To see this, consider a fixed input x ∈ Rd and its
chosen smoothing measure µx ∈ P(Rd). These works certify that, for δ ∈ Rd within a specified
robust radius, x + δ is classified the same as x under the smoothed classifier using µx. However,
the classifier uses the measure µx+δ ̸= µx when classifying x + δ (since the measure is optimized
per-input), and therefore, the robustness certificate does not apply to the actual classifier used at
test time. To overcome this, Súkenı́k et al. (2021) proposes a specific parameterization of σ2(x) for
generalized smoothing with N(0, σ2(x)) that leads to valid robust ℓ2-radii, but they find that the
certified radii do not notably increase over normal smoothing in practice.

These works, all still preprints, showcase the importance and timeliness of generalized smooth-
ing, and highlight its difficulties in deriving robust radii. In the sequel, we use generalized smoothing
to learn a closed-form manipulation of the decision boundary from data. Our approach culminates
into robust radii for arbitrary norms that are mathematically rigorous and practically valid.

3. Robustifying Binary Linear Classifiers

Since standard smoothing is unable to robustify linear classifiers, we start from the basics: we
assume a binary linear setting, with g : Rd → R, g(x) = a⊤x+ b, and f(x) = sign(g(x)).

3.1. Optimal Robustification Under the Direction Oracle

Consider a point x ∈ Rd. We start by assuming that we know that the true class of x is 1. Formally,
we assume that there exists an oracle function y : Rd → {−1, 1} that gives the true class of x, and
for this point x it holds that y(x) = 1. With this in mind, we remark that

gµ(x) = Eϵ∼µx(a
⊤(x+ ϵ) + b) = g(x) + a⊤Eϵ∼µxϵ. (2)

Since x has true class 1, robustification at x is equivalent to gµ(x) > g(x), so that the neighborhood
around x classified into class 1 increases in size. Hence, our goal amounts to maximizing a⊤Eϵ∼µxϵ.
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Without constraints on µx, this optimization would be unbounded. Therefore, we consider measures
with bounded expectation Eϵ∼µxϵ, and we find that an optimal µx is one attaining2 a⊤Eϵ∼µxϵ =
sup

{
a⊤Eϵ∼νxϵ : ∥Eϵ∼νxϵ∥ ≤ α, νx ∈ P(Rd)

}
= α∥a∥∗.

If, on the other hand, the true class of x is −1, then an optimal µx is one attaining a⊤Eϵ∼µxϵ =
−α∥a∥∗. Therefore, for general x ∈ Rd, we find that the optimal smoothed classifier is given by

gµ(x) = g(x) + αy(x)∥a∥∗, (3)

where y(x) ∈ {−1, 1} is the oracle class assigned to x. We call y the direction oracle, since its value
at x determines which direction to push the decision boundary (either in the a or −a direction).

3.2. Approximating the Direction Oracle

Suppose that we have a subset of training data {(x1, y1), . . . , (xN , yN )} ⊆ Rd ×{−1, 1}. We have
the true classes y(xi) = yi for these data points, and therefore the optimal robustified classification
is given by gµ(xi) = g(xi) + αyi∥a∥∗. However, for a general point x, we do not have access to
y(x) (if we did, we would not need to learn anything). Thus, for x /∈ {x1, x2, . . . , xN}, we propose
to approximate y(x) based on the given data. This approximation of the direction oracle will be
denoted by ŷ : Rd → {−1, 1}, and will be used in place of y in our smoothed classifier (3).

It is insightful to note that gµ does not use the oracle value y(x) to directly classify x. Rather,
it is used to encode which direction to push the decision boundary for robustification. Thus, a
“good” approximation of the direction oracle is one that encodes a “good” manipulation of the deci-
sion boundary to achieve robustification, not necessarily those that accurately predict the true label.
With this insight in mind, we propose the approximate direction oracle to be the 1-nearest neighbor
ŷ(x) = yi∗(x), where i∗ : Rd → {1, 2, . . . , N} is defined3 by i∗(x) ∈ argmini∈{1,2,...,N} ρ(x, xi).
This choice is natural since robustness is a local property and most classifiers are continuous. Note
that ŷ(xi) recovers yi for the data xi. In Theorems 6 and 8, we will see that this approximate direc-
tion oracle yields closed-form certified robust radii. Using other approximate direction oracles could
present an interesting direction for future research (for example, k-nearest neighbors or learning a
neural network to output labels that optimize the induced robustness).

3.3. Locally Biased Randomized Smoothing

With our smoothing scheme now finalized, the classifier becomes

gµ(x) = g(x) + αyi∗(x)∥a∥∗. (4)

We remark the two underlying features that distinguish our scheme from standard smoothing: the di-
rection oracle encodes an informed manipulation of the decision boundary that is determined locally
based on data, and this manipulation optimized for robustness using biased smoothing measures.
For this reason, we term our framework locally biased randomized smoothing.

In contrast to standard smoothing, gµ may be nonlinear when the data informs us that nonlinear-
ity is required to increase robustness. We will continue to refer to fµ (and gµ) as the smoothed clas-
sifier, despite the fact that it may be less smooth than the base classifier. Unlike normal smoothing,
our classifier requires no Monte Carlo estimation, since the smoothing distribution has a closed-form

2. This optimization is always attained by an appropriately chosen Dirac measure.
3. This is well-defined under our assumption that the argmin yields a singleton set.
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expectation. As α → ∞, the classifier fµ converges pointwise to the 1-nearest neighbor classifier.
On the other hand, normal smoothing converges pointwise to a constant function as σ2 → ∞. Thus,
we may view both methods as interpolating between the base classifier, typically optimized for clean
accuracy, and a limiting classifier. With this perspective, a good limiting classifier is one that is opti-
mized for robust accuracy, and we posit that our data-informed 1-nearest neighbor better serves this
purpose than the constant function. Indeed, it has been shown that 1-nearest neighbor classifiers are
accurate and certifiably robust when the data follows mild separation properties (Wang et al., 2018),
which justifies our use of the 1-nearest neighbor approximate direction oracle.

The choice of norm ∥ · ∥ and bias level α are left to the user. As will soon be seen in Theorems
6 and 8, the certified radii are in terms of ∥ · ∥, so the norm should be chosen according to the
threat model at hand. For example, it is common to use ∥ · ∥∞ : δ 7→ maxi∈{1,2,...,d} |δi| in image
classification settings. The effects of the bias level α are explored experimentally in Section 5.

We now provide closed-form certified radii for linear base classifiers.

Theorem 6 Consider x ∈ Rd and fix i = i∗(x). Then fµ(x+ δ) = fµ(x) for all δ ∈ Rd such that

∥δ∥ < rµlinear(x) := min

{
|gµ(x)|
∥a∥∗

,min

{
ρ(x, xj)

2 − ρ(x, xi)
2

2∥xi − xj∥∗
: yj ̸= yi, j ∈ {1, 2, . . . , N}

}}
.

Note that rµlinear(x) ≥ 0 for all x ∈ Rd. Furthermore, the term |gµ(x)|
∥a∥∗ is the distance (in norm

∥ · ∥) from x to the hyperplane {x′ ∈ Rd : g(x′)+αyi∗(x)∥a∥∗ = 0} (Mangasarian, 1999), which is
the decision boundary of f offset by αyi∗(x)∥a∥∗. Thus, when yi∗(x) = f(x), meaning that the base

classifier and the approximate direction oracle agree at x, we have |gµ(x)|
∥a∥∗ = |g(x)|

∥a∥∗ + α. Therefore,

this term of the certified radius is strictly larger than the robust radius r(x) := |g(x)|
∥a∥∗ under f . The

term ρ(x,xj)
2−ρ(x,xi)

2

2∥xi−xj∥∗ with yj ̸= yi quantifies how close x is to a data point of class different from
that assigned by the approximate direction oracle. If x is sufficiently far from such data points and
yi∗(x) = f(x), then rµlinear(x) = r(x)+α, and as a result the robust radius increases by α. This need
not happen in general. If x is relatively close to a data point of class yj ̸= yi or if yi∗(x) ̸= f(x), then
rµlinear(x) may be less than r(x). This is expected, since in these cases the nearby data informs us
that x may not belong to class f(x) predicted by the base classifier. These are the sacrificial points
that may move closer to the resulting decision boundary in the name of robustifying where the data
says to. Such points must exist since it is not possible to robustify everywhere simultaneously.

4. Extension to Nonlinear Classifiers

We now extend the approach to binary nonlinear classifiers. Assume that g : Rd → R is contin-
uously differentiable and possibly nonlinear. For x, ϵ ∈ Rd, the mean value theorem gives that
g(x+ ϵ) = g(x) +∇g(x′)⊤ϵ for some x′ on the line segment between x and x+ ϵ. By continuity
of ∇g, we have that limx′→x∇g(x′) = ∇g(x). Therefore, informally, g(x+ ϵ) ≈ g(x)+∇g(x)⊤ϵ
for all ϵ with small norm. Consequently, instead of using the expectation of g(x + ϵ) to define the
smoothed classifier, we propose to use the expectation of g(x) +∇g(x)⊤ϵ. In doing so, we define
gµ by gµ(x) = g(x)+∇g(x)⊤Eϵ∼µxϵ. Unlike the linear case, gµ(x) may not equal Eϵ∼µxg(x+ϵ).
This modification enables us to prove certified radii while maintaining notable increases in robust
accuracy in practice. When the base classifier is linear, gµ reduces to the prior formulation (2).
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Performing the same analysis as in the linear case, the smoothed classifier becomes

gµ(x) = g(x) + αyi∗(x)∥∇g(x)∥∗. (5)

We emphasize that (5) shows that the convergence of fµ to the 1-nearest neighbor classifier as
α → ∞ is nonlinear and nontrivial. In particular, (5) is a data-informed nonlinear manipulation of
the decision boundary. The smoothed classifier (5) cannot be justified directly without relying on
our methodology; gµ is not simply a naive linear interpolation between g and the 1-nearest neighbor.

Interestingly, when ∥ · ∥ = ∥ · ∥∞, the value gµ(x) approximates the soft classification (under g)
of the adversarial attack xFGSM := x + α sign(∇ℓ(x)) generated by the well-known fast gradient
sign method (FGSM) with loss ℓ(·) = yi∗(·)g(·) to be maximized (Goodfellow et al., 2015). High
values of this loss are actually beneficial with respect to the given data, and therefore an alternative
interpretation of our method is as a preemptive “anti-attack” everywhere in the input space.

Theorem 8 below generalizes the certified radii of Theorem 6 to nonlinear base classifiers. The
result uses a global Lipschitz constant of the gradient, which is easily modified to use local constants
if desired (e.g., the local Lipschitz constant over a ∥·∥-norm ball at x of radius rµdata(x)). In general,
local constants give stronger bounds but are difficult to compute. See related works on estimating
and upper-bounding Lipschitz constants, e.g., Weng et al. (2018b); Fazlyab et al. (2019).

Assumption 7 The gradient ∇g : Rd → Rd is L-Lipschitz in norms (∥ · ∥, ∥ · ∥∗) for some L > 0.

Theorem 8 Suppose that Assumption 7 holds. Consider x ∈ Rd and fix i = i∗(x). Then fµ(x +
δ) = fµ(x) for all δ ∈ Rd such that ∥δ∥ < rµ(x) := min

{
rµbase(x), r

µ
data(x)

}
, where

rµbase(x) =

√
(αL+ ∥∇g(x)∥∗)2 + 4L|gµ(x)| − (αL+ ∥∇g(x)∥∗)

2L
,

rµdata(x) = min

{
ρ(x, xj)

2 − ρ(x, xi)
2

2∥xi − xj∥∗
: yj ̸= yi, j ∈ {1, 2, . . . , N}

}
.

As in the linear case, the certified radius depends on two terms (rµbase(x) and rµdata(x)) that,
informally, characterize the local geometry of the base classifier and quantify the distance to the
nearest data point of a differing class, respectively. Again, rµ(x) ≥ 0. When g is linear, then ∇g
is constant and is therefore 0-Lipschitz. In this case, Theorem 8 holds for all L > 0, and therefore
limL↓0 r

µ
base(x) =

|gµ(x)|
∥∇g(x)∥∗ implies that rµ(x) = rµlinear(x), i.e., the certified radius recovers that of

Theorem 6, despite the proof for the nonlinear case involving more bounding steps.

5. Numerical Experiments

5.1. Illustrative Example

Consider the spiral dataset with test data shown in Figure 1 and a support vector machine (SVM)
learned on isolated training data. Using the SVM as the base classifier, we apply locally biased
randomized smoothing (with an unused subset of training data) with α ∈ [0, 10], denoted α-LBRS.
The certified radius from Theorem 6 is computed at every test point using both ∥ · ∥ = ∥ · ∥2 and
∥ · ∥ = ∥ · ∥∞. The averages of these radii are denoted by ℓ2-avg(rµ(x)) and ℓ∞-avg(rµ(x)),
respectively. We also compute the average true certified radii, ℓ2- and ℓ∞-avgtrue(r

µ(x)), which
are found by setting the certified radius to zero for test points that are classified incorrectly by fµ.
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From the decision region plots in Figure 1, we see for α > 0 that α-LBRS learns to increase the
nonlinearity of the base classifier in order to enhance robustness. In contrast, standard smoothing
leaves the base SVM classifier unchanged, failing to increase robustness. The average certified radii,
the average true certified radii, and the clean accuracy all simultaneously increase upon applying α-
LBRS (see Figure 2). We see that α-LBRS converges pointswise to the 1-nearest neighbor (1-NN)
as α → ∞, which we recall is a nontrivial consequence of our method. We will see in the next
section that this is beneficial even on larger non-synthetic examples.

Figure 1: Test data, SVM decision boundary (bold line), and fµ decision regions (shaded).

Figure 2: Average certified radius and clean accuracy for α-LBRS versus α.

5.2. Evaluating Clean and Robust Accuracy

The MNIST dataset (LeCun, 1998) is considered in a binary setting, where images with digit eight
are labeled 1 and the rest are labeled −1. The training and testing data are randomly selected so that
the number of data points in class −1 equals the number in class 1. Of the training data, N = 10
points are reserved for locally biased randomized smoothing. We train a convolutional neural net-
work (CNN) containing three convolutional layers with ReLU activations and one fully connected
layer. Using the CNN as the base classifier, we apply normal smoothing (Cohen et al., 2019) with
σ ∈ [0, 0.5], denoted σ-NS, and locally biased randomized smoothing with α ∈ [0, 1000], denoted
α-LBRS. We also consider the 1-nearest neighbor (1-NN) using the N reserved training data points.

The accuracy of each model is computed on the test set as well as on an adversarially attacked
version of the test set using a 10-step ℓ2-PGD attack (Madry et al., 2018) with attack radius ϵ ∈
{0.5, 1}. The results are shown in Figure 3. Although σ-NS achieves good robustification for small
σ, the accuracy rapidly degrades to that of a constant function (0.5 for this binary problem) as σ
increases. On the other hand, α-LBRS converges (nonlinearly and nontrivially) to the accuracy of
the 1-NN as α → ∞. The 1-NN is seen to be robust against the attacks (which may in part be due

9
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to the fact that the attacks are designed for the base CNN classifier—a benefit to the defender from
using smoothing at test time), and therefore α-LBRS inherits this robustness for large enough α.

Figure 3: Clean and robust accuracy versus smoothing parameter σ or α.

Next, we fix the parameters σ = 0.05 and α = 10 near the “corners” in Figure 3 (recall that
the abscissa was normalized) that yield both good clean accuracy and good robust accuracy for
ϵ ∈ {0.5, 1}. We attack these models with the wider range of ℓ2-radii ϵ ∈ [0, 3] and find that
α-LBRS maintains its resistance to larger attacks for longer than σ-NS does—the accuracy of σ-
NS degrades at a faster rate—see Figure 4. We also demonstrate the generality of our method by
considering the same experiment using ∥·∥ = ∥·∥∞ along with ℓ∞-PGD attacks. Normal smoothing
is not catered towards ℓ∞-attacks, which explains the performance increase of α-LBRS over σ-NS
relative to the CNN for this attack when compared to the ℓ2-attack.

Figure 4: Robust accuracy versus attack radius.

We repeat the experiments on CIFAR-10 (Krizhevsky and Hinton, 2009) and arrive at the same
conclusions, albeit with generally lower accuracies and higher sensitivities to attacks. See our tech-
nical report Anderson and Sojoudi (2021a) for the quantitative results.

6. Conclusions

In this paper, it is shown that conventional randomized smoothing relies on the idea that smooth
decision boundaries are robust, an assumption that manifests into a robustness-accuracy tradeoff.
To combat this limitation, locally biased randomized smoothing is introduced as a means to learn
locally optimal robustification of a classifier’s decision boundary from data. The method directly
induces robustness without relying on the surrogate notion of smoothness. Certified robust radii are
proved for the binary setting, and experiments show an increased certified, clean, and robust accu-
racy over conventional smoothing. Directions for future research include extending the approach to
the multiclass setting, and studying alternate approximate direction oracles.
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