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Abstract—Designing scalable and robust algorithms for the
optimal power flow (OPF) problem is critical for the control
of large-scale power systems under uncertainty. The chance-
constrained AC OPF (CCOPF) problem provides a natural
formulation of the trade-off between the operation cost and the
constraint satisfaction rate. In this work, we propose a new data-
driven algorithm for the CCOPF problem, which is based on
the distributionally robust optimization (DRO). The proposed
DRO approach achieves the optimal efficiency in the sense that
(i) it finds the minimum-cost solution given the maximum rate
of violating the constraints, and (ii) it uses an exact mixed-
integer reformulation of chance constraints instead of inner
approximations as used in existing literature. We apply the
proposed algorithm to the semi-definite relaxation of the CCOPF
problem and illustrate the advantage of our approach on IEEE
benchmark power systems.

Index Terms—Distributionally robust optimization, optimal
power flow, chance constraint.

I. INTRODUCTION

Developing resilient algorithms for the optimal power
flow (OPF) problem is fundamental to efficient and reliable
decision-making in large-scale energy systems. The OPF prob-
lem consists of minimizing some objective, including but not
limited to generation costs, subject to the physics of the
power network as well as additional constraints on power
quality, safety, and reliability. Independent system operators
solve OPF at several timescales, from hours to minutes ahead
of the dispatch time, in order to manage the market and
match supply to demand. Traditionally, the primary source
of uncertainty in optimal power flow was stochastic loads.
This uncertainty was handled through forecasts which were
accurate enough that mismatches between supply and demand
could be handled in real-time without a significant deviation
from nominal network and market conditions. However, given
the ongoing emergence of intermittent renewable generation,
more sophisticated methods will be necessary to ensure that
decisions can be made as efficiently as possible while being
robust to large forecast errors.

The randomness in the constraints prohibits the application
of optimization algorithms for deterministic problems and
most stochastic optimization algorithms, which are often appli-
cable to optimization problems that only contain randomness
in the objective function. The robust optimization approach
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was proposed in [1] and [2] to find the worst-case solution,
namely, the optimal decision that satisfies all constraints for
all possible realizations of the randomness in the system. The
robust optimization approach produces the most conservative
solution and results in a high operational cost.

To improve the efficiency of the operation of power sys-
tems, it is often preferable to allow a small user-specified
probability of violating the constraints in the OPF solution in
exchange for a much better operational cost (small violations
will later be handled via a real-time control mechanism).
Chance-constrained optimal power flow (CCOPF) is a natural
formulation for balancing the trade-off between efficiency and
robustness [3]. In CCOPF, system operators attempt to find the
minimum-cost solution which violates the constraints with a
probability at most equal to a pre-defined parameter named the
violation probability. Chance-constrained methods avoid the
conservativeness associated with robust optimization, which
insures an operating point that is feasible for all possible
realizations of a system’s forecast errors. Please refer to [3]
and [4] for popular formulations of CCOPF.

A challenge for CCOPF is that the true underlying distri-
bution of the random parameters is generally unknown and
must be inferred from historical data. A conventional approach
is the sample average approximation [5], which is easily
applicable but may lead to a high-variance estimate of the true
distribution. The scenario approach lower-bounds the number
of samples required to achieve a given degree of confidence
in the probability of satisfying the chance constraints [6] and
is employed for CCOPF in [3] and [4]. However, the scenario
approach is sample-intensive, may be overly conservative, and
is often computationally complex. Additionally, more sample-
efficient methods allow for samples over larger time horizons
(i.e., a day instead of an hour) to be aggregated into a single
realization of a random vector, which could reduce bias if
forecast errors follow temporal patterns.

Distributionally robust optimization (DRO) alleviates the
issue of unknown true distributions by enforcing the chance
constraints for all distributions in an ambiguity set centered,
in the sense of some characteristic metric of probability distri-
butions, around the empirical distribution [7]. The idea is that,
given enough samples, the true distribution is highly likely to
fall inside the ambiguity set. A number of papers have applied
distributionally robust optimization to OPF or related problems
in energy systems. The authors of [8]–[11] employ moment-
based ambiguity sets containing probability distributions with
the first and second moments close to those of the empirical
distribution. Li et al. [12] add a unimodality assumption to
the moment-based sets to reduce the conservatism. Moment-
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based ambiguity sets often yield exact tractable reformulations
of the chance-constrained program, but they lose information
about the true distribution revealed through other features
of the data. Metric-based ambiguity sets, by contrast, are
constructed using measures of distance between probability
distributions, most often the Wasserstein metric, and are more
expressive. The metric-based approach has the advantage that
various statistical consistency and convergence guarantees
can be established for DRO estimators [13], [14]. To refor-
mulate the chance constraints as tractable constraints, inner
approximations of Wasserstein metric-based ambiguity sets,
such as hyper-cubes [15] and polytopes [16], have previously
been studied. However, these inner approximations are overly
conservative in practice and lead to pessimistic estimations.

All of the aforementioned DRO approaches are designed for
disjoint chance constraints, in which each constraint individ-
ually must be satisfied with a given probability. The chance
constraints in CCOPF are formulated disjointly for each two-
sided constraint [11], [15], [16] or separately for each upper
and lower bound [8], [9], [12]. Joint chance constraints, by
contrast, require that a solution be feasible, that is, satisfies
all constraints simultaneously, with a given probability. Given
the same violation probability, joint chance constraints are
clearly stronger than disjoint chance constraints. Joint chance
constraints can be guaranteed by applying the Boole inequality
to appropriately scaled disjoint chance constraints; see [17].
However, this approach is highly conservative and does not
exploit the potential correlation between random variables in
different constraints. Intuitively, when the randomness between
constraints is highly correlated, joint chance constraints can be
satisfied at a cost that is only slightly higher than that of the
chance constraint of a single stochastic constraint. Yang et al.
[18] build on the Boole inequality approach and achieve an
inner approximation of a moment-based ambiguity set for the
joint case.

The particularly interesting line of work [19]–[22] is in-
spired by [13], which provides a reformulation of Wasserstein
metric-based DRO problems using conditional value-at-risk
(CVaR). The two-part work [19]- [20] is the first to apply the
CVaR reformulation to OPF by penalizing constraint violations
in the objective function; however, this is not a chance-
constrained approach and cannot guarantee the satisfaction
of the constraints in any well-defined sense. Poolla et al.
[21] approximate the joint chance constraints using the Boole
inequality and reformulate them using CVaR. To achieve the
reformulation, the authors use an inner approximation of the
ambiguity set via a hyper-rectangle in the parameter space.
Arab et al. [22] improve on [21] by using an ellipsoidal ap-
proximation, which reduces the conservativeness by exploiting
the correlation between random variables. While the ellipse ap-
proximation improves on the hyper-rectangle approximation,
the method in [22] remains overly conservative as a conse-
quence of mismatch between the inner approximation and the
ambiguity set; see Section IV for numerical illustrations. To
address the above issues, we build upon our conference paper
[23] tailored to a class of non-convex problems using DRO
to study the CCOPF problem. Compared to [23], we develop
strong theoretical results in the context of power systems for

TABLE I
COMPARISON OF RELEVANT CHANCE-CONSTRAINED OPF LITERATURE

chance-constrained joint metric-based exact reformulation
[8] ✓ ✗ ✗ ✓
[16] ✓ ✗ ✓ ✗
[11] ✓ ✗ ✗ ✓
[15] ✓ ✗ ✓ ✗
[9] ✓ ✗ ✗ ✓
[12] ✓ ✗ ✗ ✓
[18] ✓ ✓ ✗ ✗

[19], [20] ✗ ✓ ✓
[21] ✓ ✓ ✓ ✗
[22] ✓ ✓ ✓ ✗

this work ✓ ✓ ✓ ✓

both the joint and disjoint cases, and we numerically illustrate
the performances of our approach on benchmark IEEE power
systems.

In this work, we expand upon the existing findings related
to the DRO approach for CCOPF. Inspired by [14], we use
a relative entropy-based ambiguity set in our DRO formula-
tion and establish stronger theoretical guarantees than those
in existing literature. Then, we apply the approximation of
the chance-constraints from Roald et al. [3] and the semi-
definite relaxation from Low et al. [24] to reformulate the
problem as a mixed-integer program, which can be handled
by existing optimization solvers. Moreover, we implement the
algorithms on benchmark OPF problem instances, showcasing
the advantages of our new formulation. We summarize our
contributions in the following:

• Instead of the commonly used Wasserstein metric, our
DRO formulation utilizes a relative entropy-based am-
biguity set. We prove that the relative entropy-based
formulation admits the least conservative DRO solution
in the sense that the solution achieves the minimum
possible generation cost under a certain asymptotic bound
on out-of-sample performance.

• We provide the first exact reformulation of joint distribu-
tionally robust chance constraints over the ambiguity set.
By comparison, existing works construct an approxima-
tion set of the ambiguity set and/or only consider disjoint
chance constraints, which makes it challenging to control
the trade-off between the efficiency and robustness of the
solution. In our formulation, the balance can be effec-
tively controlled by an input parameter. In addition, our
reformulation always leads to a feasible problem, while
existing approaches cannot guarantee the feasibility.

• We empirically compare the performance of our DRO
approach with the state-of-the-art approach in [22] on
the IEEE 14- and 118-bus test cases. We show that
our approach is able to find more reliable and efficient
solutions satisfying the joint chance constraints, while
the approximation algorithm in [22] leads to overly
conservative solutions.

Table I summarizes the relevant existing literature on DRO for
power systems (most, but not all, of the listed papers focus on
OPF) and illustrates our contributions. It is worth mentioning
that all works in Table I except [22] use the common linearized
DC approximation of the nonlinear power flow equations,
though this approximation is not always coupled to the specific
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handling of chance constraints. In comparison, we consider the
full ACOPF problem in this work.

The remainder of the paper is organized as follows. In
Section II, we first introduce the AC OPF problem and
the corresponding joint chance constraint. Reformulations
of the chance-constrained AC OPF problem, including the
distributionally robust optimization approach, are derived in
Section III. Finally, in Section IV, we implement the proposed
algorithm to verify the theory and illustrate the superior
empirical performances compared with existing algorithms.
We conclude the paper in Section V. The proofs are provided
in the appendix.

Notation: For every positive integer n, we define [n] :=
{1, . . . , n}. The set of n-dimensional integer, real and complex
vectors are denoted as Zn, Rn and Cn, respectively. Similarly,
we use Rm×n and Cm×n to denote the set of m-by-n real
and complex matrices, respectively. The set of symmetric and
positive semi-definite matrices of size n-by-n is denoted as
Sn+. Let 1n and 0n be the vectors with all elements equal
to 1 and 0, respectively. For every complex number x, the
real and imaginary parts of x are denoted as ℜ(x) and ℑ(x),
respectively. The same notation applies componentwise to
complex vectors and matrices. Denote ek as the k-th standard
basis vector of Rn. For any two matrices X,Y ∈ Rm×n, the
innerproduct between them is defined as ⟨X,Y ⟩ := Tr(XTY ),
where Tr stands for the trace. For each vector v ∈ Rn, we say
v ≤ 0n if vk ≤ 0 for all k ∈ [n]. Let ∥ · ∥ be the 2-norm of
vectors. For a given vector v ∈ Rn, matrix diag(v) ∈ Rn×n

is the diagonal matrix with diagonal entries from v. We say
f(S) = o(S) if limS→∞ f(S)/S = 0.

II. AC OPF PROBLEM AND CHANCE CONSTRAINTS

In this section, we first introduce the notation for system
variables and parameters in power flow equations. Then, we
formulate the deterministic AC OPF problem as a quadratically
constrained quadratic program (QCQP). Finally, we consider
the stochastic OPF problem, where the system status is subject
to random power injections. We formally define the joint
and disjoint chance constraints and formulate the chance-
constrained OPF problem.

A. QCQP Formulation of Deterministic AC OPF

Here, we present the deterministic AC OPF problem,
namely, the AC OPF problem without unforecasted power
injections, as a QCQP. Our formulation and most of our
notation is based on [25]. Consider a power system with the set
of busesN := [n]. Define the system variables and parameters:

• V ∈ Cn: Vector of complex bus voltages.
• I ∈ Cn: Vector of complex nodal current injections.
• Y ∈ Cn×n: Network admittance matrix, constructed such

that I = YV.
• PD, QD ∈ Rn: Vectors of active and reactive loads,

respectively. If bus k has no load, the k-th components
are zero.

• P
G
, PG ∈ Rn: Vectors of upper and lower active

generation limits, respectively. If bus k has no generator,
the k-th components are zero.

• Q
G
, QG ∈ Rn: Vectors of upper and lower reactive

generation limits, respectively. If bus k has no generator
or dispatchable reactive compensation device, the k-th
components are zero.

• V , V ∈ Rn: vectors of upper and lower voltage magni-
tude limits, respectively.

• ckd: The d-th degree coefficient of the quadratic cost
function for the k-th generator, where d ∈ {0, 1, 2}.

Conventional OPF formulations consider fixed loads and dis-
patchable generators. To simplify the notation, the formu-
lation used in this work incorporates renewable generators
(without curtailment) into the load vectors as negative loads.
Conversely, centrally dispatchable demand responses can be
incorporated into the generator limits through appropriate
adjustments.

To formulate the OPF problem as an optimization problem
with real variables, we define the real vector

X :=

[
ℜ{V}
ℑ{V}

]
∈ R2n.

Additionally, for each k ∈ N, we define the following matrices:

Yk := eke
T
k Y,

Yk :=
1

2

[
ℜ{Yk + Y T

k } ℑ{Y T
k − Yk}

ℑ{Yk − Y T
k } ℜ{Yk + Y T

k }

]
,

Yk := −1

2

[
ℑ{Yk + Y T

k } ℜ{Yk − Y T
k }

ℜ{Y T
k − Yk} ℑ{Yk + Y T

k }

]
,

Mk :=

[
eke

T
k 0

0 eke
T
k

]
.

While the OPF problem can accommodate different choices of
the objective function, we focus on a common total generation
cost f : R2n×2n → R as follows:

f(W) :=
∑

k∈N

[
ck0 + ck1

(
⟨W,Yk⟩+ PD

k

)
+ ck2

(
⟨W,Yk⟩+ PD

k

)2 ]
.

We can now write the deterministic AC OPF problem as a
real-valued QCQP in terms of X:

min
X∈R2n

f(XXT )

s.t. PG
k − PD

k ≤ ⟨XXT ,Yk⟩ ≤ P
G

k − PD
k , (1a)

QG

k
−QD

k ≤ ⟨XXT ,Yk⟩ ≤ Q
G

k −QD
k , (1b)

V 2
k ≤ ⟨XXT ,Mk⟩ ≤ V

2

k, (1c)
∀k ∈ N ,

where constraints (1a) and (1b) are the real and reactive power
balance equations, respectively. These are hard constraints
imposed by the laws of physics and cannot be violated.
Moreover, for buses without generators, the lower and upper
bounds in (1a) and (1b) are equal. Constraint (1c) limits
the voltage magnitude at each bus. This is a soft constraint
imposed by regulation or operator preference. It is physically
possible to violate these constraints, and small violations may
be tolerated if they are sparse and/or low in magnitude.

In our analysis, we neglect line flow limits to streamline
the presentation and mathematical derivation. However, since
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such constraints are in the form of (1a), our method can readily
handle a more detailed formulation of AC OPF.

B. System Response to Unforecasted Power Injections

We now turn to rigorously formulating an approximate OPF
problem based on the analysis in [3]. For the purposes of
solving the OPF problem, the complex voltage vector serves
as the decision variable as it fully specifies the operating
point of the system; that is, given the complex voltage at
each bus, the current and power injections can be computed.
However, in practice, system operators cannot directly actuate
voltage magnitudes and angles at all buses in the system.
Instead, they control voltage magnitudes and active power
injections at generator buses. Combined with the active and
reactive demand from loads, the system naturally resolves to
the complex voltage profile obtained as the OPF solution if
the forecast is accurate.

We consider a random active power injection vector ξ ∈ Rn,
realized after the OPF decision is made. The random vector
ξ represents the forecast error associated with either loads
or intermittent renewable energy generators, such as wind
turbines or solar panels. For simplicity, we will assume that the
active power injection induces a proportional reactive power
injection according to a constant power factor cosϕ.

If the system operator leaves non-slack generator setpoints
unchanged after the realization of the random variable, then
the following variables are held constant:

1) Voltage magnitude and active power injection from
generators at the set of generator buses PV .

2) Active and reactive loads at the set of load buses PQ.
3) Voltage magnitude and angle at the slack bus Pθ.

Under this response mechanism, the full aggregate active
power imbalance induced by ξ is offset by the slack bus.
Instead, we assume that an Automatic Generation Control
(AGC) scheme is used to distribute the burden among the
generators. The imbalance is divided among buses according
to participation factors α ∈ Rn, where 1T

nα = 1 and αk = 0
for all k /∈ PV . In summary, the known change of the post-
contingency system state is given by:

∆Pk = ξk − αk1
T
n ξ, ∀k ∈ PQ ∪ PV, (2)

∆Qk = γξk, ∀k ∈ PQ,
∆|Vk| = 0, ∀k ∈ PV ∪ {Pθ}, ∆θPθ = 0,

where we use symbol ∆ to denote the change of corresponding
system state variable, γ is equal to

√
cos−2 ϕ− 1 and θk is

the voltage angle at bus k. After applying these changes, we
can determine 2n of the post-contingency power flow variables
and the other 2n variables are determined by solving the power
flow equations.

Remark 1. In [22], the participation factors in α account
for the mismatch from forecast errors and the difference in
resistive losses induced by the forecast errors. For simplicity,
we do not adopt this approach as the difference in losses is
small relative to the errors. In practice, the participation factor
at the slack bus may be artificially lowered to offset the burden
associated with resistive losses.

Given voltage profile X ∈ R2n and forecast error ξ ∈ Rn,
denote the change in active power injections, reactive power
injections and squared voltage magnitude, respectively, as

∆P (X, ξ), ∆Q(X, ξ), ∆|V |2(X, ξ).

Hence, the constraints in the OPF problem (1) become

PG
k − PD

k ≤ ⟨XXT ,Yk⟩ −∆Pk(X, ξ) + ξ ≤ P k − PD
k ,

QG

k
−QD

k ≤ ⟨XXT ,Yk⟩ −∆Qk(X, ξ) + γξ ≤ Qk −QD
k ,

V 2
k ≤ ⟨XXT ,Mk⟩+∆|V |2k(X, ξ) ≤ V

2

k,

∀k ∈ N . (3)

Notice that we include the forecast error explicitly in the
active and reactive power balance equations. This is necessary
because the bounds also change with the forecast error. For
the notational simplicity, we write the constraints in (3) in the
compact form:

A(XXT ) + ∆(X, ξ) ≤ 06n, (4)

where A : R2n×2n 7→ R6n is an affine operator, ∆ : R2n ×
Rn 7→ R6n characterizes the response to the random power
injections, and the inequality is enforced componentwise.

C. Chance-constrained OPF

The randomness of ξ prohibits the application of most
stochastic optimization algorithms to problems that involve
constraint (4). As an alternative formulation, the chance con-
straints provide a practical way to enforce the stochastic
constraint and quantify the satisfaction rate. Intuitively, the
chance constraint requires that the stochastic constraint of (4)
be satisfied with high probability. Let P0(·) be the probability
with respect to the distribution of ξ and ϵ ∈ (0, 1] be
the desired maximum violation probability. The joint chance
constraint is defined as

P0

[
A(XXT ) + ∆(X, ξ) ≤ 06n

]
≥ 1− ϵ. (5)

Now, we can formulate the joint chance-constrained OPF
(CCOPF) problem:

minX∈R2n f(XXT ) s.t. chance constraint (5), (6)

The parameter ϵ effectively controls the trade-off between the
reliability and efficiency of the solution to problem (6). With
a smaller ϵ, the chance constraint becomes more restrictive
and the operational cost becomes higher; and vice versa.
Another similar chance constraint, named the disjoint chance
constraint, can be written as

P0

[
Ak(XXT ) + ∆k(X, ξ) ≤ 0

]
≥ 1− ϵ, ∀k ∈ [6n]. (7)

In the main manuscript, we focus on the joint chance constraint
and leave the analysis of the disjoint case, as well as their
generalizations, to the appendix.
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III. REFORMULATIONS OF CCOPF
Although the CCOPF problem (6) is mathematically well-

defined, the presence of uncertainty presents two challenges.
First, since the change in the power system status is implicitly
decided by the active power injection ξ through power flow
equations, the function ∆(·, ·) cannot be written in closed
form. In Section III-A, we derive a linear approximation of
∆(·, ·) and develop an efficient fixed-point iteration algorithm
to find approximate solutions to the original non-linear formu-
lation.

Second, the true distribution of ξ is unknown in most
applications. Hence, it is not possible to enforce or verify
the chance constraint (5). In Section III-B, we propose DRO-
based reformulations of CCOPF, which only rely on historical
samples of ξ. We show that the chance constraint is satisfied
by the DRO solutions with high probability in terms of the
sample complexity.

A. Linearization and Fixed-point Iteration Algorithm

To avoid the computation cost of solving ∆(·, ·) via power
flow equations, we construct linear approximations to the
implicit function and design an iterative algorithm that con-
verges to a reliable approximation solution in practice. First,
we utilize the prior information that the forecast errors are
relatively small in practice and approximate ∆(X, ξ) with the
first-order Taylor expansion around point ξ = 0n. Namely, we
have

∆(X, ξ) ≈ ∆(X,0n) +D∆(X)ξ = D∆(X)ξ,

where D∆(X) ∈ R6n×n is the Jacobian of ∆(·, ·) with respect
to the second input at point (X,0n). Given vector X, the
Jacobian can be computed in closed form; see the appendix for
the derivation of D∆(X). Then, the approximate joint chance
constraint is given by

P0

[
A(XXT ) +D∆(X)ξ ≤ 06n

]
≥ 1− ϵ. (8)

The approximate disjoint chance constraint is defined in a
similar way and we focus on the joint chance constraint in the
remainder of this subsection. We note that this linearization
approach is commonly used in CCOPF literature [3], [22].

Moreover, as proposed in [3], we further decouple the
interaction between X and ξ through the fixed-point iteration.
To be more specific, in the t-th iteration of the algorithm,
the Jacobian D∆(Xt) is fixed and we compute the new point
Xt+1 by solving problem (9). Note that we apply DRO-based
algorithms in Section III-B to find solution Xt+1 that satisfies
the chance constraint with high probability. Then, the Jacobian
at point (Xt+1,0n) is computed and used in the next iteration.

The pseudo-code of the heuristic algorithm is provided in
Algorithm 1. Intuitively, if the initialization is close to the
solution, the fixed-point iteration enjoys fast convergence. In
most applications, the forecast errors are small relative to
the forecasted power injections and thus, our approximation
scheme is considerably accurate in the following sense:

1) The first-order approximation ∆(X, ξ) ≈ D∆(X)ξ is
acceptable under a wide range of operating conditions.

Algorithm 1 Fixed-point iteration for joint CCOPF problem.
1: Input: tolerance µ, maximum violation probability ϵ.
2: Output: robust solution X.
3: Initialization:

X0 ← argminX∈R2n f(XXT ) s.t. A(XXT ) ≤ 06n.

4: for t = 0, 1, . . . do
5: Update Xt+1 to be the optimizer of

min
X∈R2n

f(XXT ) (9)

s.t. P0

[
A(XXT ) +D∆(Xt)ξ ≤ 06n

]
≥ 1− ϵ.

▷ Solved by DRO-based algorithms.
6: If ∥Xt+1 −Xt∥ ≤ µ, return Xt+1.
7: end for

2) The robust solution to the chance-constrained problem
is expected to be not too far from to the deterministic
solution (i.e., the solution with ξ = 0).

As a consequence, although there is no convergence guarantee,
the fixed-point iteration exhibits efficient and robust conver-
gence in practice; see the numerical experiments in Section IV
and [3]. We also numerically illustrate the approximation qual-
ity for benchmark power systems instances in the appendix.

B. Distributionally Robust Optimization Approach

In this subsection, we develop exact reformulations of the
approximate chance constraints in Section III-A, including
but not limited to the joint chance constraint (8), based on
DRO techniques. To preserve the generality of our results, we
consider the general objective function and constraint function

g(X) : Rd 7→ R, h(X, ξ) : Rd × Rn 7→ Rm,

where random vector ξ ∈ Rn obeys the distribution P0, and
integers d and m are the size of input variable X and the
number of constraints, respectively. In this subsection, we
consider the optimization problem with stochastic constraints:

minX∈Rd g(X) s.t. h(X, ξ) ≤ 0m. (10)

Note that our theory can be extended to the case when the
randomness ξ also incurs in the objective function g or the
feasible set is a convex subset of Rd. We focus on the simpler
problem (10) since our target is to solve the CCOPF problem
(9). We make the following assumption:

Assumption 1. The support of P0 belongs to a compact set
Ξ ⊂ Rn. Both functions g(·) and h(·, ·) are continuous. In
addition, for every positive integer S and all realizations
ξ1, . . . , ξS ∈ Rn, problem

minX∈Rd g(X) s.t. h(X, ξj) ≤ 0m, ∀j ∈ [S]

is feasible and has a finite optimal value.

In our formulation of the CCOPF problem (9), Assumption
1 is satisfied unless, for instance, the reserve capacity of the
conventional generators is insufficient to compensate for some
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realizations of the forecast error. In this case, CCOPF would
be infeasible.

In practice, the true distribution P0 is unknown and only
limited historical samples may be available. Suppose that
there are S independently and identically distributed samples,
ξ1, . . . , ξS , generated from the distribution P0. We define the
empirical distribution of ξ as

P̂S :=
1

S

∑
k∈[S]

δξk ,

where δξ is the Dirac measure at ξ. The goal of the DRO
approach is to find robust solutions that satisfy the chance
constraint with high probability using empirical distribution
P̂S . Define the ambiguity set

Dr (P) := {P′ ∈ P | I (P,P′) ≤ r} , ∀P ∈ P,

where I(·, ·) is the relative entropy [26], r > 0 is the radius
and P is the family of Borel distributions with support in
Ξ. The robustness of DRO solutions is guaranteed by the
satisfaction of chance constraints under all distributions in the
ambiguity set Dr(P̂S). Other distributional metrics, such as
the Wasserstein metric, are considered in CCOPF literature
[21], [22]. In this work, however, we use the relative entropy
due to the strong optimality guarantees it can provide; see
Theorems 3-4 and [14], [26]. Intuitively, the large deviation
theory guarantees that the relative entropy between the true
data-generation distribution and the empirical distribution can
be bounded by a value that depends on the sample size [26].
Hence, the true distribution is contained in the ambiguity set
with high probability and the relative entropy-based ambiguity
set is the “smallest” ambiguity set with such property [14].

For problem (10), the joint chance constraint is given by

P0 [h(X, ξ) ≤ 0m] ≥ 1− ϵ. (11)

Remark 2. More generally, our results can be extended to the
case when the joint constraints are defined by a convex cone

P0

[
ωTh(X, ξ) ≤ 0, ∀ω ∈ W

]
≥ 1− ϵ, (12)

where W is the convex cone spanned by weight vectors1

ω1, . . . , ωL. Constraint (12) reduces to the cardinal case (11)
when L = m and ωℓ = eℓ for all ℓ ∈ [m].

Define the α-quantile

qα(F,P) := sup {q | P [F (ξ) ≤ q] ≤ α}

for all α ∈ [0, 1], function F (·) : Rn 7→ R and distribution
P ∈ P . Then, the chance constraint (11) can be equivalently
written as

P0 [hℓ(X, ξ) ≤ 0, ∀ℓ ∈ [m]] ≥ 1− ϵ

⇐⇒ P0

[
h̄X(ξ) ≤ 0

]
≥ 1− ϵ

⇐⇒ q1−ϵ

(
h̄X,P0

)
≤ 0, (13)

where we define

h̄X(ξ) := maxℓ∈[m] hℓ(X, ξ).

1A vector ω ∈ Rm is called a weight vector if ω ≥ 0m and 1T
mω = 1.

Adopting language from [14], we first introduce the distribu-
tionally robust predictor of the α quantile.

Definition 1 (Distributionally Robust Predictor). For all ϵ ∈
[0, 1], r > 0, X ∈ Rd and P ∈ P , the distributionally robust
predictor is defined as

q̂1−ϵ,r,P(X) := supP′∈Dr(P) q1−ϵ

(
h̄X,P′) .

For notational simplicity, when there is no confusion about
P̂S , we denote predictor q̂1−ϵ,r,P̂S

as q̂1−ϵ,r,S .

Intuitively, the distributionally robust predictor is the worst-
case α-quantile over all distributions in the relative entropy
ball Dr(P). In the following lemma, we prove that the dis-
tributionally robust predictor is either a quantile of h̄X under
the empirical distribution P̂S or the maximum value

h∗
X := maxξ∈Ξ h̄X(ξ).

Lemma 1. For all ϵ ∈ [0, 1] and r > 0, there exists an integer
k(ϵ, r, S) ∈ [S + 1] such that

q̂1−ϵ,r,S(X) = h̄k(ϵ,r,S),P̂S
(X) , ∀X ∈ Rd,

where h̄k,P̂S
(X) is the k-th smallest value in {h̄X(ξj), j ∈

[S]} ∪ {h∗
X}. When there is no confusion, we denote for the

notational simplicity

k := k(ϵ, r, S) and h̄k(X) := h̄k(ϵ,r,S),P̂S
(X) .

In the case when k = S + 1, the evaluation of h̄S+1(X)
requires the knowledge of h∗

X, which may be unknown in
practice. Hence, we focus on the case when k ∈ [S], which
can be guaranteed by choosing suitable values of ϵ and r.
Furthermore, the value of k can be computed by solving
a convex optimization problem; see problem (28) in the
appendix.

Then, we define the distributionally robust prescriptor.

Definition 2 (Distributionally Robust Prescriptor). For all
ϵ ∈ [0, 1] and r > 0, the distributionally robust prescriptor
X̂1−ϵ,r,P is a quasi-continuous function of P that solves

minX∈Rd g(X) s.t. q̂1−ϵ,r,P(X) ≤ 0. (14)

Similarly, when there is no confusion about P̂S , we denote
prescriptor X̂1−ϵ,r,P̂S

as X̂1−ϵ,r,S .

By Lemma 1, the feasible set of problem (14) is a subset of
{X ∈ Rd | h̄k(X) ≤ 0}. Thus, combining with Assumption 1,
problem (14) has a finite optimal value and the distributionally
robust prescriptor X̂1−ϵ,r,S is well-defined.

Now, we provide a mixed-integer reformulation of (14)
to compute the distributionally robust prescriptor. Choosing
C > 0 to be a sufficiently large constant, we show that the
distributionally robust prescriptor is a solution to

min
X∈Rd,b∈ZS

g(X) (15)

s.t. hℓ(X, ξj) ≤ Cbj , ∀ℓ ∈ [m], j ∈ [S],

1T
Sb ≤ S − k, bj ∈ {0, 1}, ∀j ∈ [S].

Intuitively, the constraints in (15) enforce the joint chance
constraint under the empirical distribution P̂S . Namely, the
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constraint h(X, ξj) ≤ 0m is satisfied by at least k samples. In
the next theorems, we show that the chance constraint under
the true distribution P0 can also be guaranteed by choosing k
to be slightly larger than (1− ϵ)S.

Theorem 2. The solution to (15) is a distributionally robust
prescriptor.

For the CCOPF problem (9), the problem (15) is equivalent
to a mixed-integer QCQP. In Section III-C, we apply the
semi-definite relaxation to the QCQP and when the relaxation
is exact, problem (9) is equivalent to a mixed-integer semi-
definite program (MISDP), which can be handled by off-the-
shelf convex optimization solvers.

Finally, we establish the theoretical properties of the distri-
butionally robust prescriptor. First, we prove that the distribu-
tionally robust prescriptor satisfies joint chance constraint (13)
with high probability in terms of the sample complexity S.

Theorem 3. For all ϵ ∈ [0, 1] and r > 0, it holds that

P∞

[
q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

)
≤ 0

]
≥ 1− exp [−rS + o(S)] ,

(16)

where P∞ is the probability measure of the sample path space
of ξ under distribution P0. Furthermore, we have

P∞

[
hℓ

(
X̂1−ϵ,r,S , ξ

)
≤ 0, ∀ℓ ∈ [m]

]
(17)

≥ 1− ϵ− exp [−rS + o(S)] .

In the regime when the support Ξ is a finite set, we can
apply the strong large deviation principle [14] and derive the
following finite-sample bound in the same way as Theorem 3:

P∞

[
q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

)
≤ 0

]
≥ 1− (S + 1)de−rS . (18)

Moreover, we show that the distributionally robust prescriptor
achieves the minimum operational cost over all decisions that
asymptotically satisfy the joint chance constraint (13).

Theorem 4. Suppose that prescriptor X̃1−ϵ,r,P ∈ Rd is a
quasi-continuous function of P and satisfies constraint (16).
Then, we have

P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
= 0,

where we denote X̃1−ϵ,r,S := X̃1−ϵ,r,P̂S
.

Compared with existing DRO formulations [21], [22], our
formulation provides stronger guarantees in the following
two senses. First, the DRO solution X̂1−ϵ,r,S achieves the
minimum possible generation cost over all robust solutions
that satisfy the joint chance constraint (16). This optimality
property arises from the choice of the relative entropy for
the ambiguity set, and such property cannot be established by
other distributional metrics, although the Wasserstein metric
can provide similar high-probability bounds [13]. Second,
the mixed-integer reformulation (15) is exact. In contrast,
existing literature considered parameterized approximations
to the ambiguity set, such as the hyper-rectangle [21] and
the ellipsoid [22]. In practice, however, there is no guarantee
that the ambiguity set is of the specified shape and thus, the

approximate DRO solution is usually overly conservative; see
the comparison results in Section IV.

In practice, it is preferable for the user to first specify k and
then compute the optimal ϵ and r to maximize the right-hand
side of (17). Given k ∈ [S] and ϵ ∈ [1− k/S, 1], the maximal
radius r such that k(ϵ, r, S) = k is given by

r = − k

S
log

(
S(1− ϵ)

k

)
− S − k

S
log

(
Sϵ

S − k

)
,

where we define 0 log 0 = 0. Therefore, when the sample size
S is sufficiently large, we ignore the o(S) term on the right-
hand side of (17) and solve the maximization problem

ϵ∗k,S := argmax
ϵ∈[1−k/S,1]

1− ϵ− SS

kk(S − k)S−k
(1− ϵ)kϵS−k,

(19)

where we define 00 = 1. The solution to the above problem
maximizes the right-hand side of (17) and can be found by
the bi-section algorithm.

C. Semi-definite Relaxation

In the last part of this section, we deal with the non-
convexity of problem (9) induced by the quadratic parame-
terization XXT . In the context of CCOPF problem, even with
a fixed integer vector b, problem (15) is still a non-convex
QCQP and can be NP-hard to solve in the worst case. To
achieve the efficient and reliable operation of large-scale power
systems, various techniques have been proposed to reduce the
optimization complexity by utilizing the special structures of
real-world power circuits. In literature, the semi-definite re-
laxation is widely applied to transform the non-convex QCQP
to a semi-definite program (SDP); see [25] and [24] for semi-
definite relaxations of OPF. More specifically, after making
the change-of-variables W := XXT and dropping the rank
constraint rank(W ) = 1, we can apply the distrubutionally
robust reformulation (15) to solve problem (9) by

min
W∈S2n+ ,b∈ZS

f(W) (20)

s.t. A(W) +D∆(Xt)ξ
j ≤ Cbj · 16n, ∀j ∈ [S],

1T
Sb ≤ S − k, bj ∈ {0, 1}, ∀j ∈ [S].

Note that the SDP part of (20) can be further written in the
standard form using the Schur complement [25]. We denote
problem (20) as the distributionally robust CCOPF (DRC-
COPF) problem. With the rank constraint dropped, problem
(20) is a MISDP, which can be solved efficiently by various
solvers (e.g., YALMIP [27]).

The graphical structures of practical power networks, re-
flected in the algebraic properties of operator A, guarantee
the exactness of the semi-definite relaxation [24], [28], [29]. In
this work, we make the assumption that the network admits an
exact semi-definite relaxation, and our method can be readily
extended to other formulations including DC OPF. Under the
exact relaxation assumption, we are able to recover the rank-
1 solution from the MISDP solution [25]. Therefore, in Step
5 of Algorithm 1, we first solve the relaxation (20) to find
Wt+1 and then generate the rank-1 solution Xt+1 for the
next iteration.
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To further reduce the computational complexity of solving
problem (20), we develop a heuristic algorithm that finds
approximate solutions by solving a small number of SDPs.
Intuitively, the proposed algorithm searches for the optimal
integer vector b in a greedy way and avoids the mixed-integer
part in problem (20). With a given k, the algorithm removes the
“most restrictive sample” among the k+1 samples selected in
the case of k+1. The heuristic algorithm is able to find nearly
optimal approximate solutions for benchmark power systems
and requires a much shorter running time; see Section IV and
the appendix for more details.

IV. DEMONSTRATION ON IEEE TEST CASES

In this section, we apply our results to solve the joint
CCOPF problem (6) on the IEEE 14- and 118-bus test
cases. All system parameters are taken from the case data in
MATPOWER [30], [31]. We make the following modifications
to the system parameters:

1) As suggested in [25], a small resistance of 10−4 per-unit
is added to each transformer to insure an exact semi-
definite relaxation.

2) Wind generators are installed at nW buses randomly
chosen from load buses with nonzero active loads. The
forecasted output of a generator is equal to a proportion
η of the pre-installation load at that bus.

Note that wind generators could also have been installed at
slack or generator buses. In our model, wind generator forecast
errors account for the entire random power injection; that is,
we assume loads are deterministic. Wind output forecast errors
are taken from hour-ahead forecast errors from the National
Renewable Energy Laboratory’s Wind Integration National
Dataset, which contains simulated forecast and output data
for over 120,000 sites in the United States over seven years
[32]. Specifically, each load bus chosen for a wind generator
is assigned to a randomly selected site in Alameda County,
California. The forecast errors are then scaled appropriately,
assuming that the forecasted output is half of the installed
capacity of the turbine. Turbines are selected from a single
county and thus, their outputs are correlated; exploiting the
correlations between random variables in different constraints
is an important feature of joint chance-constrained methods.

For each network, we implement Algorithm 1 and use the
DRO formulation (20) to solve (9). We use Ŝ training samples
drawn independently from the full path of S samples. For
comparison, we also solve (9) using the method from [22],
which approximates a Wasserstein metric-based ambiguity set
using a minimum-volume ellipsoid in the parameter space.
To the best of our knowledge, this is the least conservative
approximation of a metric-based ambiguity set for joint chance
constraints in the literature (with ours being the first exact
reformulation). The MISDP solver, the greedy algorithm and
the method from [22] is called DRCCOPF-KL, DRCCOPF-
G and DRCCOPF-E, respectively. For benchmarking, we
also compare with the robust optimization (RO) approach,
where all constraints satisfied for all S available samples, and
the deterministic OPF approach, where each wind generator
simply outputs its forecasted value. As the forecast errors

Fig. 1. Ratio between the second and third largest eigenvalues for IEEE 118-
bus system.

are approximately zero-mean in practice, deterministic OPF
essentially enforces the constraints in expectation. The RO
approach gives the most conservative solution.

We simulate the IEEE 14- and 118-bus systems with param-
eters η = 0.9, cosϕ = 1, and nW = 6 for the 14-bus system
and nW = 45 for the 118-bus system. We generate S = 2185
samples and Ŝ = 200 samples are used as training samples.
Our hour-ahead forecast errors were taken from June 1 to
August 31, 2007. To evaluate the performance under different
robustness requirements, we performed a sweep over k from
180 to 200. Recall that for a given k and Ŝ, the optimal ϵ can
be computed from (19).

All simulations are performed in MATLAB 2023b. The
MISDP problem (20) is solved using YALMIP [27] and all
convex problems are solved using CVX [33]. We note that all
simulation results in this section describe the performance of
the voltage setpoint recovered from the solution to the MISDP
(20) after applying Corollary 1 of [25].

A. Solution Recovery

First, we analyze the exactness of the semi-definite re-
laxation in Section III-C. Molzahn et al. [34] proposed the
ratio between the second and third largest eigenvalues of the
solution to the relaxed problem as a metric for exactness. If
the eigenvalue ratio is high, the true power injections and
voltage magnitudes at each bus will be close to those computed
from the solution to the relaxed problem. We compute the
eigenvalue ratio of solutions generated by DRCCOPF-G and
DRCCOPF-E for the 118-bus system. As seen in Figure
1, both approaches produce solutions with eigenvalue ratios
higher than, in the logarithmic sense, to the benchmark value
of 107 from [34]. However, DRCCOPF-G often leads to
slightly higher-quality solutions with ratios closer to 109 or
1010. This is a promising feature of the method proposed here.

B. Efficiency and Robustness

Now, we compare the generation cost (efficiency) of dif-
ferent solutions under the same maximum allowable violation
rate (robustness). For the DRCCOPF-G and DRCCOPF-KL
approach, the violation rate can be effectively controlled by
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Fig. 2. Performance comparison for 14-bus system.

Fig. 3. Performance comparison for 118-bus system.

parameter k, while the DRCCOPF-E approach controls the
robustness by parameters ϵ and ρ. We use the RO approach
as the benchmark, which corresponds to the most conservative
setting, and other costs are given as a proportion of the RO
cost for reference. As another benchmark, we also illustrate
the cost of deterministic OPF approach. All reasonable robust
methods should always have higher costs than the determinis-
tic approach, which, as a result, represents a lower bound on
the achievable efficiency.

The results of the 14- and 118-bus systems are plotted in
Figures 2 and 3, respectively. The left subplots compare the
cost of the solution of DRCCOPF-G with that of DRCCOPF-
E for several different Wasserstein radii ρ. The right subplots
give the realized constraint violation rates for both methods on
all of the S available samples. Note that the deterministic OPF
method violates the constraints at a rate of more than 97%.
This is a result of joint chance constraints, since violating
even a single constraint constitutes a violation. Notice that
DRCCOPF-E never violates the joint chance-constraint for
any radius. For the 14-bus case, we also compare with the
solutions of DRCCOPF-KL. We can observe that the solutions
of DRCCOPF-KL and DRCCOPF-G exhibit very similar
behaviors, which imply that the greedy algorithm finds nearly
optimal solutions. Therefore, we focus on the DRCCOPF-G
approach in the following discussion.

First, DRCCOPF-E is qualitatively more conservative than
DRCCOPF-G in the sense that it fails to exploit the tolerance
provided by non-zero values of ϵ to achieve lower objective
values. In fact, for small ϵ and large ρ, DRCCOPF-E is even
more inefficient than RO as a consequence of its approxima-
tion of the ambiguity set. By contract, distributionally robust
methods are generally less conservative than RO. As shown
in our results, the DRCCOPF-G approach closes a significant
fraction of the gap between the robust and deterministic opti-
mizations by approaching but never exceeding the prescribed
maximum violation rate.

Moreover, the running time of DRCCOPF-G is compa-
rable with that of DRCCOPF-E. For the 118-bus system,
DRCCOPF-G takes an average of 412 seconds to find the

Fig. 4. Distribution of selected generator outputs for DRCCOPF-G and
DRCCOPF-E for the 14-bus system.

solution using a single 3.79-GHz CPU, while the DRCCOPF-
E finishes in 235 seconds on average. However, the greedy
search structure of DRCCOPF-G approach allows the applica-
tion of parallel computing techniques, which will significantly
improve the computational efficiency of the algorithm.

Furthermore, the DRCCOPF-G approach always generates
a feasible solution as long as the deterministic problem is
feasible for every sample (that is, as long as Assumption 1
is satisfied). This is because DRCCOPF-G basically requires
satisfaction of the constraints for a subset of k samples.
DRCCOPF-E and other existing approximate methods, by
contrast, compute uncertainty margins indirectly using training
samples, possibly rendering the problem infeasible. Indeed,
we have observed that DRCCOPF-E is only feasible for a
limited range of parameters and fail to find a solution for
relatively large values of η (more renewable penetration) and
small values of ϵ.

C. Demonstration on Selected Constraints

Finally, we select a few constraints to highlight the differ-
ence in performance. We focus on the generator outputs of
three selected buses in the 14-bus system and plot the distri-
bution of post-contingency generator outputs of DRCCOPF-G
and DRCCOPF-E solutions. The results are shown in Figure 4,
where the deterministic setpoint and lower bound are included
for reference. Since the upper bound is not violated, it is
not included in the histograms. From the results, we can see
that DRCCOPF-G is significantly closer to the lower bound
for real or reactive power for three selected generators, while
DRCCOPF-E produces overly conservative power outputs.

V. CONCLUSION

In this work, we focus on the distributionally robust ap-
proach for the CCOPF problem. We propose a new DRO
formulation based on the relative entropy, which achieves the
optimal generation cost given the maximum violation rate. In
addition, we provide an exact reformulation of the joint chance
constraint, which guarantees the feasibility of the reformulated
problem and leads to significantly better efficiency compared
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with existing approaches based on inner approximation. Fi-
nally, numerical results on IEEE benchmark power systems are
exhibited to show the superior performance of our approach
compared to existing state-of-the-art approaches.
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APPENDIX

A. Heuristic Algorithm for MISDP

In this section, we describe a heuristic algorithm for the
MISDP problem (20). Comparing with the internal algorithm
of the YALMIP solver, the proposed algorithm achieves a
much better computational complexity and is able to find
solutions of the same quality, in terms of the objective function
value and the constraint satisfaction rate.

Intuitively, the heuristic algorithm searches for the optimal
integer vector b in a greedy way by gradually reducing the
value of k. The algorithm starts with the most conservative
case when k = S. In this case, the only feasible vector b is the
zero vector 0S and problem (20) reduces to a SDP problem,
which can be efficiently solved by a variety of optimization
solvers. Then, for each integer k0 < S, the algorithm searches
for the optimal b for the case k = k0 from that for the case
k = k0 + 1. More specifically, suppose that we have obtained
an approximate solution (Wk0+1,bk0+1) for the case when
k = k0 + 1. For each index ℓ ∈ [S] such that bk0+1

ℓ = 0, we
construct the vector bk0,ℓ ∈ RS by

bk0,ℓ
ℓ = 1, bk0,ℓ

j = bk0+1
j , ∀j ∈ [S]\{ℓ}, (21)

and we solve the following SDP problem:

min
W∈S2n+

f(W) (22)

s.t. A(W) +D∆ξ
j ≤ Cbk0,ℓ

j · 16n, ∀j ∈ [S].

Let f∗
ℓ be the optimal objective function value of the above

SDP problem. Then, the greedy algorithm chooses the most
restrictive sample ξℓ

∗
by

ℓ∗ := argminℓ∈[S]f
∗
ℓ , s.t. bk0+1

ℓ = 0.

After removing the most restrictive sample, the approximate
solution for the case k = k0 is given by (Wk0 ,bk0,ℓ

∗
),

where Wk0 is the solution to problem (22) with ℓ = ℓ∗.
To further reduce the computational cost, we only need to
consider indices ℓ ∈ [S] such that bk0+1

ℓ = 0 and problem
(20) has active constraints with sample ξℓ. Namely, the fol-
lowing componentwise inequality holds with equality for some
components:

A(Wk0+1) +D∆ξ
ℓ ≤ Cbk0+1

ℓ · 16n. (23)

This is because otherwise if the above inequality holds strictly,
the optimal objective value will be the same with sample ξℓ

(i.e., b = bk0+1) and without sample ξℓ (i.e., b = bk0,ℓ).
Therefore, the value f∗

ℓ will not be the minimum among all
choices of ℓ. The pesudo-code of the greedy is provided in
Algorithm 2. We note that Algorithm 2 operates in the “top-
down” style in the sense that it gradually decreases the value of
k from S. Similarly, we can develop the “bottom-up” version
of the greedy algorithm, which gradually increases the value
of k from 0. In practice, the top-down algorithm is preferred
since a large value of k is usually chosen to ensure a high
constraint satisfaction rate. Therefore, the top-down algorithm
requires fewer iterations to reach the targeted value of k.

Since the greedy algorithm approximates the solution to
MISDP (20) with a small number of SDP problems, the

http://epubs.siam.org/doi/10.1137/1101016
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Algorithm 2 Greedy algorithm for MISDP problem (20).
1: Input: samples ξ1, . . . , ξS , integer k0.
2: Output: robust solution X.
3: Initialization: let bS ← 0S .
4: for k = S − 1, S − 2, . . . , k0 do
5: Let L ⊂ [S] be the set of indices such that:

1) bk+1
ℓ = 0;

2) inequality (23) does not hold strictly with sample ξℓ.
6: for ℓ ∈ L do
7: Construct vector bk0,ℓ ∈ RS by (21).
8: Apply Algorithm 1 to solve problem (22).
9: Let f∗

ℓ be the optimal objective value.
10: end for
11: Let ℓ∗ ← argminℓ∈L f∗

ℓ and bk ← bk,ℓ∗ .
12: end for
13: Apply Algorithm 1 to solve problem (21) with b = bk0 .
14: Return the solution X to the above problem.

running time of the greedy algorithm is much better than
that of the off-the-shelf solvers, e.g., YALMIP. For example,
using a single 3.79-GHz CPU, the greedy algorithm takes
an average of 412 seconds to solve the 118-bus case for
each k ∈ {180, . . . , 200}, while the YALMIP solver takes
more than two hours for a single iteration of Algortihm 1,
which includes solving a single MISDP problem instance. In
addition, we compare the solutions generated by the greedy
algorithm and the YALMIP solver for the 14-bus system. The
YALMIP solutions are shown to be optimal up to a small gap
between the lower and upper bounds. The results are plotted in
Figure 2. We can see that the greedy algorithm is able to find
solutions of almost the same quality as the global optima. To
be more concrete, the objective function values and constraint
satisfaction rates of the two solutions are very close.

In summary, although there is no theoretical optimality
guarantee, the heuristic greedy algorithm is able to find near-
optimal solutions in an efficient and robust way for benchmark
power systems.

B. Linearization Accuracy

To evaluate the accuracy of the first-order approximation
presented in Section III-A for our test case, we compare the
actual and first-order approximate post-contingency system
responses for the 14-bus system. The responses are computed
for all available samples. The operating point is obtained by
DRCCOPF-KL with k = Ŝ = 100. Actual system responses
are computed by running the MATPOWER power flow solver.
The generator outputs (on separate subplots) and squared
voltage magnitudes (on a single plot, with a different color
for each bus) are given in Figures 5 and 6, respectively. As
shown by the figures, the approximation is quite accurate and
appears appropriate for our problem instance. In Section IV,
the approximate system response will be used to compute
violation rates.

Fig. 5. Actual and approximate post-contingency generator outputs.

Fig. 6. Actual and approximate post-contingency squared voltage magnitudes.

C. Derivation of Sensitivity Factor

In this section, we derive the sensitivity factor D∆(X),
which is defined as the Jacobian of ∆(X, ξ) with respect
to ξ. More specifically, by the definition of D∆(X) and the
constraints (3), we have

D∆(X) =


∂ξ∆P (X, ξ)− In
−∂ξ∆P (X, ξ) + In
∂ξ∆Q(X, ξ)− γIn
−∂ξ∆Q(X, ξ) + γIn

∂ξ∆|V |2(X, ξ)
−∂ξ∆|V |2(X, ξ)

 ∈ R6n×n. (24)

Therefore, the problem reduces to the calculation of the partial
derivatives of ∆P , ∆Q and ∆|V |2 with respect to ξ.

We begin with the first-order approximation of the power
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flow equations around an operating point X:

J

[
∆Θ
∆|V |

]
=

[
∆P
∆Q

]
, (25)

where Θ ∈ Rn is the vector of voltage angles and J ∈ R2n×2n

is the Jacobian matrix, which can be computed by the implicit
function theorem. For convenience, we provide the expression
of J:

J = 2(In ⊗XT )



Y1

...
Yn

Y1

...
Yn


·
[
−diag(|V |) diag(sinΘ) diag(cosΘ)
diag(|V |) diag(cosΘ) diag(sinΘ)

]
,

where ⊗ denotes the Kronecker product and the magnitude,
sine, and cosine operators are elementwise. Note that J
depends on X; we do not write this dependence to avoid
clutter.

Then, applying the forecast error and AGC response (2), the
equations (25) can be rewritten as:

J

[
∆Θ
∆|V |

]
=

[
In − α1T

n

γIn

]
ξ +

[
δP
δQ

]
, (26)

where δP and δQ are the additional changes in active and
reactive power injections after non-slack generator setpoints
are changed, respectively. Applying knowledge of different
bus types (slack, generator, and load), many components in
equations (26) are zero and we only need solve the sub-
systems

J1

[
∆ΘPV∪PQ
∆|V |PQ

]
=

[
(In − α1T

n )PV∪PQ
(γIn)PQ

]
︸ ︷︷ ︸

:=G1

ξ,

J2

[
∆ΘPV∪PQ
∆|V |PQ

]
=

[
(In − α1T

n ){Pθ}
(γIn){Pθ}∪PV

]
︸ ︷︷ ︸

:=G2

ξ +

[
δP{Pθ}

δQ{Pθ}∪PV

]
,

where (·)S denotes the rows indexed by members of S.
Solving the above sub-systems gives[

∆ΘPV∪PQ
∆|V |PQ

]
= J−1

1 G1ξ,[
δP{Pθ}

δQ{Pθ}∪PV

]
= (J2J

−1
1 G1 −G2)ξ.

Equivalently, we get the following rows of sensitivity factors

(∂ξδP ){Pθ} = (J2J
−1
1 G1 −G2)1,

(∂ξδQ){Pθ}∪PV = (J2J
−1
1 G1 −G2)2:1+|{Pθ}|+|PV|,

(∂ξδ|V |)PQ = (J−1
1 G1)|PV|+|PQ|+1:|PV|+2|PQ|,

where on the right-hand side, we use the MATLAB-style of
row indexing. All other rows are zero.

Finally, combining the above results with (26), we can
compute the sensitivity factors of the constraint functions on

active power, reactive power, and squared voltage magnitude,
respectively:

∂ξ∆P (X, ξ) = In − α1T
n + ∂ξδP (X, ξ),

∂ξ∆Q(X, ξ) = γIn + ∂ξδQ(X, ξ),

∂ξ∆|V |2(X, ξ) = 2|V | ◦ ∂ξ∆|V |(X, ξ),

where ◦ denotes the elementwise product. Substituting the par-
tial derivatives into the expression (24), we get the sensitivity
factor D∆(X).

D. Proof of Lemma 1

Proof of Lemma 1. We first show that in the definition of
predictor q̂1−ϵ,r,S , the supremum can be restricted to the set
of distributions in Dr(P̂S) that are absolutely continuous with
respect to P̂S except on the set

Ξ∗(X) :=
{
ξ | h̄X(ξ) = h∗

X

}
.

The proof is the same as that of Lemma 2 of [14] except the
bound on the expectation, i.e., the second last inequality in
the proof. To deal with this issue, we only need to prove that
for all X ∈ Rd, p ∈ [0, 1], ξ∗ ∈ Ξ∗(X), and Pc,P⊥ ∈ P such
that Pc ≪ P̂S and P⊥ ⊥ Pc

2, it holds that

q1−ϵ

(
h̄X,P′) ≥ q1−ϵ

(
h̄X,P′′) , (27)

where

P′ := p · Pc + (1− p) · δξ∗ , P′′ := p · Pc + (1− p) · P⊥.

Let F ′(h) and F ′′(h) be the cumulative distribution function
of h̄X(ξ) under distribution P′ and P′′, respectively. By the
definition of quantile, to prove inequality (27), it is sufficient
to show that

F ′(h) ≥ F ′′(h), ∀h ∈ R,

which is equivalent to

Eξ∼P′
[
1(h̄X(ξ) ≤ h)

]
≥ Eξ∼P′′

[
1(h̄X(ξ) ≤ h)

]
, ∀h ∈ R,

where 1(γ(ν, ξ) ≤ γ) is the indicator function. This can be
proved in the same way as the proof in [14]. As a result, there
exists a distribution that attains q̂1−ϵ,r,P̂S

(X) and has support
in {ξj , j ∈ [S]} ∪ Ξ∗(X), which implies the existence of an
integer k ∈ [S + 1] such that

q̂1−ϵ,r,P̂S
(X) = h̄k,P̂S

(X) .

Next, we prove that integer k does not depend on X and P̂S .
Let P1−ϵ,r,S be the aforementioned worst-case distribution that
attains q̂1−ϵ,r,S(X). Assume without loss of generality that

h̄X(ξ1) ≤ · · · ≤ h̄X(ξS).

Define vector p ∈ RS+1 as

pj := P1−ϵ,r,S(ξ
j), ∀j ∈ [S], pS+1 := P1−ϵ,r,S [Ξ∗(X)] .

2For distributions P,P′ ∈ P , we use P ≪ P′ and P ⊥ P′ to denote the case
when P is absolutely continuous and singular with respect to P′, respectively.
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Then, by problem (33) in [14], the integer k is the solution to

max
k∈[S],p∈RS+1

k (28)

s.t.
∑

j∈[k]
pj ≤ 1− ϵ, 1T

S+1p = 1, p ≥ 0S+1,

− 1

S

∑
j∈[S]

log(Spj) ≤ r,

which is independent of X and P̂S . Intuitively, k is the largest
integer such that the probability P1−ϵ,r,S on the smallest k
samples is at most 1− ϵ and the relative entropy constraint is
not violated.

E. Proof of Theorem 2

Proof of Theorem 2. The formulation (15) is based on the big-
M method [35]. If the variable bj = 1, since the constant
C is sufficiently large, there is no constraint on hℓ(X, ξj).
Otherwise if the variable bj = 0, the first constraint becomes

hℓ(X, ξj) ≤ 0, ∀ℓ ∈ [m],

which is equivalent to the condition h̄X(ξj) ≤ 0. With a given
X ∈ Rd, the constraint 1T

Sb ≤ S − k requires that the above
condition holds for at least k samples. To achieve the minimum
over X, the condition bj = 0 should hold for the k indices
that correspond to the k smallest values in {h̄X(ξj), j ∈ [S]}.
In other words, the constraints in (15) are equivalent to

h̄k(X) ≤ 0.

Combining with Lemma 1, we get the desired result.

F. Proof of Theorem 3

Proof of Theorem 3. By the definition of the prescriptor
X̂1−ϵ,r,S , we have

q̂1−ϵ,r,S

(
X̂1−ϵ,r,S

)
≤ 0.

By a similar technique to the proof of Lemma 1, the results of
Theorem 10 of [14] also holds for the predictor q̂1−ϵ,r,S and
we have

lim sup
S→∞

1

S
logP∞

[
q̂1−ϵ,r,S

(
X̂1−ϵ,r,S

)
< q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

) ]
≤ −r.

Combining the above two inequalities, we get

P∞

[
q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

)
≤ 0

]
≥ 1− exp [−rS + o(S)] .

By the definition of the quantile and applying the union bound,
it follows that

P∞

[
hℓ

(
X̂1−ϵ,r,S , ξ

)
≤ 0, ∀ℓ ∈ [m]

]
≥ 1− ϵ− exp [−rS + o(S)] .

which is the desired result of this theorem.

G. Proof of Theorem 4

Proof of Theorem 4. We first construct a set where the dis-
tributionally robust predictor q̂1−ϵ,r,S takes positive value.
Assume conversely that

pS := P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
> 0.

Since the prescriptor X̂1−ϵ,r,S attains the minimal objective
value under the constraint h̄k(X) ≤ 0, we have

P∞

[
h̄k

(
X̃1−ϵ,r,S

)
> 0

]
≥ pS .

Since P∞(b > z) is a right-continuous function of z ∈ R
for every random variable b, there exists a sufficiently small
constant τ > 0 such that

P∞

[
h̄k

(
X̃1−ϵ,r,S

)
> τ

]
≥ pS/2 > 0.

Consider the set

XS :=
{(

X̃1−ϵ,r,S , P̂S

)
| h̄k

(
X̃1−ϵ,r,S

)
> τ

}
⊂ Rd × P.

Since X̃1−ϵ,r,S is a quasi-continuous function of the empirical
distribution P̂S , the set XS is a non-empty quasi-open set
[36, Prop. 1.2.4] under the product topology of the Euclidean
topology on Rd and the weak topology on P . Therefore, the
interior of XS , denoted as X ◦

S , is non-empty.
Now, we construct a data-driven predictor q̃1−ϵ,r,P that is

continuous and does not dominate the distributionally robust
predictor q̂1−ϵ,r,P. For every point (X,P) ∈ XS , we define

d(X,P) := min {dist [(X,P),X c
S ] , τ} ,

where X c
S := (Rd × P)\XS is the complementary set of XS

and the distance function is induced by the Euclidean 2-norm
on Rd and the Prokhorov metric [37] on P . Since the distance
function is continuous, the function d(·, ·) is also continuous
and takes positive values on X ◦

S . We define

q̃1−ϵ,r,P(X) := q̂1−ϵ,r,P(X)− d(X,P), ∀(X,P) ∈ Rd × P.

It follows from the definition of d and XS that

0 ≤ q̃1−ϵ,r,P(X) ≤ q̂1−ϵ,r,P(X), ∀(X,P) ∈ XS , (29)

where the second inequality holds strictly on X ◦
S . Note that

the predictor q̃1−ϵ,r,S := q̃1−ϵ,r,P̂S
is a data-driven predictor

since it only relies on the empirical distribution P̂S .
Finally, we show that q̃1−ϵ,r,P is feasible for problem (5) in

[14], namely,

lim sup
S→∞

1

S
logP∞

[
q̃1−ϵ,r,S(X) < q1−ϵ

(
h̄X,P0

)]
≤ −r.

(30)

Since condition (30) is satisfied by q̂1−ϵ,r,S and

q̃1−ϵ,r,S(X) = q̂1−ϵ,r,S(X), ∀X ∈ Rd s.t. X ̸= X̃1−ϵ,r,S ,

we only need to show

lim sup
S→∞

1

S
logP∞

[
q̃1−ϵ,r,S

(
X̂1−ϵ,r,S

)
(31)

< q1−ϵ

(
h̄X̃1−ϵ,r,S

,P0

) ]
≤ −r.
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Since prescriptor X̃1−ϵ,r,S satisfies condition (16), it holds that

lim sup
S→∞

1

S
logP∞

[
q1−ϵ

(
h̄X̃1−ϵ,r,S

,P0

)
< 0

]
≤ −r.

Combining with the property (29), we get the desired result
(31).

In summary, we have constructed a predictor
q̃1−ϵ,r,S

(
X̂1−ϵ,r,P

)
that is continuous and feasible

for problem (5) in [14], but it does not dominate
the distributionally robust predictor q̂1−ϵ,r,S

(
X̂1−ϵ,r,P

)
.

However, this is contradictory with Theorem 10 in [14],
which claims that the distributionally robust predictor is the
strong solution to problem (5).

H. Disjoint Chance Constraint

In this section, we extend the theory in Section III-B to
disjoint chance constraints. Using the same notation as Section
III-B, the disjoint chance constraint (7) can be written as

P0 [hℓ(X, ξ) ≤ 0] ≥ 1− ϵ, ∀ℓ ∈ [m]. (32)

With the same violation probability ϵ, the disjoint chance
constraint is less restrictive than the joint counterpart (11).
On the other hand, if we choose ϵ to be ϵ/m in (32), Boole’s
inequality leads to

P0 [h(X, ξ) > 0m] ≤
∑

ℓ∈[m]
P0 [hℓ(X, ξ) > 0] ≤ ϵ,

which implies that the joint chance constraint holds with vio-
lation probability ϵ. More generally, with the disjoint chance
constraint, we are able to bound the probability that at least
s constraints are violated for all s ∈ [m]. More specifically,
define the indicator function

1ℓ(X, ξ) :=

{
1 if hℓ(X, ξ) > 0

0 otherwise,
∀ℓ ∈ [m].

Then, it holds that

E0 [1ℓ(X, ξ)] = P0 [hℓ(X, ξ) > 0] ≤ ϵ,

where E0 is the expectation under the true distribution P0.
Using Markov’s inequality, we get

P0 [hℓ(X, ξ) > 0 for at least s indices ℓ]

=P0

[∑
ℓ∈[m]

1ℓ(X, ξ) ≥ s

]
≤

E0

[∑
ℓ∈[m]1ℓ(X, ξ)

]
s

≤mϵ

s
.

In the following, we consider two different generalizations of
chance constraint (32), which we denote as the finite case and
the infinite case.

We first define the finite case of disjoint chance constraint.
Given L weight vectors ω1, . . . , ωL ∈ Rm, the disjoint chance
constraint is defined as

P0

[
ωT
ℓ h(X, ξ) ≤ 0

]
≥ 1− ϵ, ∀ℓ ∈ [L]. (33)

The cardinal case (32) is a special case with L = m and
ωℓ = eℓ for all ℓ ∈ [m]. Basically, the reformulation of the
finite case can be derived in a similar way as that of the

joint chance constraint. Therefore, we omit the proofs for the
disjoint chance constraint and use the same notation as Section
III-B. Choosing C > 0 to be a sufficiently large constant, the
distributionally robust prescriptor X̂1−ϵ,r,S is a solution to

min
X∈Rd,B∈ZS×L

g(X) (34)

s.t. ωT
ℓ h(X, ξj) ≤ CBj,ℓ,

1T
SB:,ℓ ≤ S − k, Bj,ℓ ∈ {0, 1},

∀ℓ ∈ [L], j ∈ [S],

where the integer k ∈ [ℓ] is defined in Lemma 1 as a function
of ϵ, r and S. Problem (34) is the disjoint counterpart of prob-
lem (15) and can be formulated as a MISDP for the CCOPF
problem if the semi-definite relaxation is exact. Similarly, we
can prove that the distributionally robust prescriptor achieves
the optimal cost among solutions that satisfy disjoint chance
constraint (33) with high probability.

Theorem 5. For all ϵ ∈ [0, 1] and r > 0, it holds that

P∞

[
q1−ϵ

(
ωT
ℓ h(X̂1−ϵ,r,S , ·),P0

)
≤ 0

]
(35)

≥ 1− exp [−rS + o(S)] , ∀ℓ ∈ [L],

which leads to

P∞

[
ωT
ℓ h

(
X̂1−ϵ,r,S , ξ

)
≤ 0

]
≥ 1− ϵ− exp [−rS + o(S)] , ∀ℓ ∈ [L].

Furthermore, suppose that prescriptor X̃1−ϵ,r,P ∈ Rd is a
quasi-continuous function of P and satisfies constraint (35).
Then, we have

P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
= 0,

where we denote X̃1−ϵ,r,S := X̃1−ϵ,r,P̂S
.

Next, we extend the disjoint chance constraint to a more
general case. Instead of a finite number of weight vectors, the
infinite case is defined by a set of weight vectors W , which
can contain an infinite number of elements. The infinite case
of disjoint chance constraint is then formulated as

P0

[
ωTh(X, ξ) ≤ 0

]
≥ 1− ϵ, ∀ω ∈ W. (36)

Hence, the finite case can be viewed as a special example
of the infinite case, where the set W only contains a finite
number of weight vectors. As an example of the infinite case,
the set W can be the set of all weight vectors:

W =
{
ω ∈ Rm | 1T

mω = 1, ω ≥ 0m

}
.

In this case, the constraint (36) enforces that all convex
combinations of stochastic constraints are satisfied with high
probability. More generally, in certain applications, the con-
straints can be divided into several groups. We can choose the
setW to be the union of weight vectors of a subset of indices:

W =
⋃

k∈[L]

{
ω ∈ Rm | 1T

mω = 1, ω ≥ 0m, ωℓ = 0,∀ℓ /∈ Ik
}
,

where Ik ⊂ [m] are disjoint subsets. Similar to the finite
case, the chance constraint (36) can be reformulated as a



16

MISDP. However, the MISDP contains an infinite number of
constraints and thus, is considerably more challenging to solve.
More specifically, for each ω ∈ W , the constraint requires that
there exists a vector bω ∈ ZS such that

ωTh(X, ξj) ≤ Cbω
j , 1T

Sb
ω ≤ S − k, (37)

bω
j ∈ {0, 1}, ∀j ∈ [S].

To deal with this challenge, we develop an iterative algorithm
to approximate the constraint (37). In the t-th iteration, we use
a finite set of weight vectors Wt to approximate the set W .
The algorithm proceeds in two stages:

1) With a fixed set Wt, the algorithm generates an approx-
imate distributionally robust prescriptor X̂t by solving
problem (34) with weight vectors in Wt;

2) With a fixed solution X̂t, the algorithm finds the weight
vector ωt that violates constraint (37) by the largest
margin. If there does not exist such weight vectors,
we know that the constraint (37) is satisfied and the
algorithm is terminated. Otherwise, we add vector ωt to
set Wt.

The pseudo-code of the aforementioned algorithm is provided
in Algorithm 3. For the CCOPF problem, if the set W is a
polyhedral, problem (38) becomes a MISDP and problem (39)
becomes a MIP. In this case, the algorithm runs efficiently in
practice and exhibits good empirical performances; see more
details in Section III of [23]. If the set W has certain special
structure, the initial set W1 can be chosen based on the prior
information about W . For example, if W is a polyhedral,
we can initialize W1 to contain all extreme points of the
polyhedral. In the general case when the set W is not a
polyhedral or even non-convex, problem (39) can be more
challenging to solve.

Problem (39) is also based on the big-M method. If the
variable bj = 1, since the constant C is sufficiently large,
there is no constraint on s. Otherwise if the variable bj = 0,
the constraint requires that

ωTh
(
X̂t, ξ

j
)
≥ s.

This means that s should be the minimal value of the left-
hand side over all indices j such that bj = 0. With a given
ω ∈ Rm, to maximize the value of s, variable bj is equal to
one for indices with the k largest values of the left-hand side.
Then, the optimal value of s should be the k-th largest value
of the left-hand side over all samples. If we further minimize
over the weight vector ω, the condition (37) holds if and only
if the optimal value st is non-positive. In addition, if st > 0,
the corresponding vector ωt provides a weight vector such that
condition (37) is violated by the largest margin.

Since problem (38) usually involves cone constraints, such
as the semi-definite constraint in the CCOPF case, Algorithm
3 does not fit into the framework of classical cutting-plane
methods, e.g., [38]. Therefore, the convergence of Algorithm
3 cannot be directly derived from those of existing cutting-
plane methods and we leave the theoretical analysis to future
works.

Algorithm 3 Algorithim for the infinite case of disjoint chance
constraints.

1: Input: Set of weight vectors W , empirical distribution
P̂S , number of iterations tmax, parameters ϵ, r.

2: Output: Approximate prescriptor X̂1−ϵ,r,S .
3: Compute k by solving (28).
4: Initialize W1 ← ∅.

▷ Alternatively, initialize with a finite subset of W .
5: for t = 1, 2, . . . , tmax do
6: Let X̂t be a solution to:

min
X∈Rd,B∈ZS×Lt

g(X) (38)

s.t. ωT
ℓ h(X, ξj) ≤ CBj,ℓ,

1T
SB:,ℓ ≤ S − k, Bj,ℓ ∈ {0, 1},

∀ℓ ∈ [Lt], j ∈ [S],

where we define Lt = |Wt| and Wt = {ω1, . . . , ωLt
}.

7: Let (st, ωt,bt) be a solution to:

max
s∈R,ω∈W,b∈ZS

s, (39)

s.t. ωTh
(
X̂t, ξ

j
)
≥ s+ Cbj ,

1T
Sb ≤ S − k, bj ∈ {0, 1}, ∀j ∈ [S].

8: if solution st ≤ 0 then ▷ condition (37) is satisfied.
9: break

10: end if
11: Update Wt+1 ←Wt ∪ {ωt}.
12: end for
13: Return the last iterate of X̂t as X̂1−ϵ,r,S .

In this work, we assume that the minimum-cost solution
X̂1−ϵ,r,S can be found, namely, it is a solution to the following
optimization problem:

min
X∈Rd,bw∈RS

g(X)

s.t. constraint (37) is satisfied for all ω ∈ W.

The next theorem claims that the solution X̂1−ϵ,r,S satisfies a
similar optimality condition as the finite case.

Theorem 6. For all ϵ ∈ [0, 1] and r > 0, it holds that

P∞

[
q1−ϵ

(
ωTh(X̂1−ϵ,r,S , ·),P0

)
≤ 0

]
(40)

≥ 1− exp [−rS + o(S)] , ∀ω ∈ W,

which leads to

P∞

[
ωTh

(
X̂1−ϵ,r,S , ξ

)
≤ 0

]
≥ 1− ϵ− exp [−rS + o(S)] , ∀ω ∈ W.

Furthermore, suppose that prescriptor X̃1−ϵ,r,P ∈ Rd is a
quasi-continuous function of P and satisfies constraint (40).
Then, we have

P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
= 0,

where we denote X̃1−ϵ,r,S := X̃1−ϵ,r,P̂S
.
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We omit the proof due to its similarity to the proof of
Theorems 3 and 4.
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