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Abstract— The quadratically constrained quadratic program
(QCQP) with stochastic constraints appears in a wide range of
real-world problems, including but not limited to the control
of power systems. The randomness in the constraints prohibits
the application of classic stochastic optimization algorithms. In
this work, we utilize the techniques from the distributionally
robust optimization (DRO) and propose two novel optimization
formulations to solve the QCQP problems under strong duality.
The proposed formulations do not contain stochastic con-
straints. The solutions to the optimization formulations attain
the optimal objective value among all solutions that satisfy the
stochastic constraints with high probability under the data-
generating distribution, even when only a few samples from the
distribution are available. We design corresponding algorithms
to solve the optimization problems under both formulations.
Numerical experiments are conducted to verify the theory and
illustrate the empirical performance of the proposed algorithm.
This work provides the first results on the application of DRO
techniques to non-convex optimization problems with stochastic
constraints and the approach can be extended to a broad class
of optimization problems.

I. INTRODUCTION

In a wide range of real-world applications, one needs
to solve the quadratically constrained quadratic programs
(QCQP) with stochastic constraints:

min
x∈Rn

xTM0x s.t. xTMix ≥ ξi, ∀i ∈ [m], (1)

where Mi ∈ Rn×n are symmetric matrices, ξ ∈ Ξ ⊂ Rm

is a random vector and [m] := {1, . . . ,m} for positive
integer m. The distribution of ξ is usually unknown and
only a few samples ξ1, . . . , ξS , which are generated from
the distribution, are available.

In general, the QCQPs are nonconvex and are NP-
hard to solve in the worst case [1]. However, real-world
optimization problems are usually highly structured and it is
possible to reduce the computational complexity by utilizing
their structures. Consider, for example, the optimal power
flow (OPF) problem, which is similar to (1) in that power
flow constraints are nonconvex quadratic functions of bus
voltages. Moreover, such constraints are often stochastic
in nature, as they reflect uncertain variables such as the
power demand and the renewable generation. Many practical
power circuits exhibit zero duality gap as a consequence
of their network structures and admit an exact relaxation
[2]. More generally, problems with specific graph structures
are distinguished from abstract optimization problems and
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several relaxation approaches are proposed to transform the
nonconvex problem to an equivalent convex problem; see
[3]–[5]. One common relaxation approach used in OPF and
other problems is to transform problem (1) to a semi-definite
program (SDP):

min
X∈Rn×n

⟨M0, X⟩ s.t. X ⪰ 0, ⟨Mi, X⟩ ≥ ξi, ∀i ∈ [m].

(2)

Under suitable conditions on M0, . . . ,Mm, problems (1) and
(2) are equivalent [3] (i.e., the relaxation is tight). In this
work, we make the following assumptions, including that
such suitable conditions are present.

Assumption 1. Problem (1) is feasible and has a finite
optimal value for all ξ ∈ Ξ. In addition, the SDP relaxation
of problem (1) is tight. For all ξ ∈ Ξ, Slater’s condition [6]
holds for problem (2).

Although the SDP problem (2) is a convex optimization
problem, its constraints are determined by a random vector
ξ and prohibit the application of deterministic convex opti-
mization algorithms or stochastic optimization algorithms,
which are applicable to optimization problems that only
contain randomness in the objective function. Existing algo-
rithms for optimization problems with stochastic constraints
find solutions that satisfy the constraints in expectation [7],
[8]. However, the meaning of the expectation of constraints
is undefined in many applications and a robust solution that
satisfies each constraint with high probability is desired.

This work presents two new formulations of problem
(2), which support high-probability bounds on the optimal
solution and are developed using tools from distributionally
robust optimization (DRO) [9]. Based on the empirical distri-
bution of ξ, the new formulations admit an optimal solution
X∗ under the condition that the constraints are satisfied with
high probability under the data-generating distribution of ξ.
To be more specific, the formulations admit a solution X∗

with the minimal objective value among all X for which it
holds that

P0

[∑
i∈[m]

ωi (⟨Mi, X
∗⟩ − ξi) ≥ 0

]
≥ β, (3)

for all weight vector1 ω ∈ Rm, where P0(·) is the probability
under the data-generating distribution of ξ and β ∈ [0, 1)

1A vector ω ∈ Rm is called a weight vector if ωi ≥ 0 for all i ∈ [m]
and

∑
i∈[m] ωi = 1.



is any pre-specified probability. Note that the bound (3) is
stronger than that in [10]. Most existing works on DRO
focused on convex optimization problems; see [9], [11] for a
review. However, in practice, a variety of applications include
non-convex optimization problems. Our work is the first to
provide a bound, as well as the first to apply DRO, to a
nonconvex problem under strong duality.

The paper is organized as follows. In section II, we first
introduce the DRO formulation of problem (2) and develop
an optimization problem that is based on the expectation
of ξ. Next, in Section III, we modify the expectation-based
formulation and derive another optimization problem that
is based on the quantiles of ξ, which is able to provide
stronger high-probability bounds. We provide the theoretical
guarantees of the solutions to both formulations in Sections
II and III, respectively. Finally, in Section IV, we implement
the proposed algorithms to verify the theory and illustrate the
empirical performances. We conclude the paper in Section
V.

II. EXPECTATION-BASED FORMULATION

In this section, we first introduce the expectation-based
DRO formulation of problem (2) and then establish the
theoretical guarantees satisfied by the optimal solution of
the optimization problem. To apply DRO techniques, we
consider the dual problem of problem (2) with a fixed
instance of ξ:

max
ν∈Rm

ξT ν s.t. M0 −
∑

i∈[m]
νiMi ⪰ 0, ν ≥ 0, (4)

where the vector inequality ν ≥ 0 means that νi ≥ 0 for all
i ∈ [m]. Since problem (2) is a SDP problem with a finite
optimal value, strong duality holds and solving problems (2)
and (4) is equivalent. Compared with the primal problem
(2), the randomness in the dual problem (4) only appears
in the objective function ξSν. This property allows the
application of various techniques in stochastic optimization.
One common approach to solving problem (4) is minimizing
the expectation of ξSν under the empirical distribution. More
specifically, we define the cost function and its expectation
as

γ(ν, ξ) := ξT ν, c(ν,P) := Eξ∼P [γ(ν, ξ)] ,

∀ν, ξ ∈ Rm, P ∈ P.

Then, the empirical mean minimization of problem (4) can
be written as

max
ν∈Rm

c(ν, P̂) s.t. M0 −
∑

i∈[m]
νiMi ⪰ 0, ν ≥ 0,

where
P̂S :=

1

S

∑
i∈[S]

δξi

is the empirical distribution of ξ and ξ1, . . . , ξS are S
independently and identically distributed samples from the
distribution P0, where δξ is the Dirac measure at ξ. To deal
with the discrepancy between the true distribution and the
empirical distribution of ξ, the DRO formulation in [12]

serves as a useful tool. We first define the distributionally
robust predictor.

Definition 1 (Distributionally Robust Predictor). Suppose
that P is the set of Borel distributions and r ≥ 0 is a
constant. For all P′ ∈ P and input ν ∈ V , the distributionally
robust predictor is defined as

ĉr(ν,P′) := sup
P∈P
{c(ν,P) | I(P′,P) ≤ r} , (5)

where I(·, ·) is the relative entropy as defined in [13]. In the
case when P′ = P̂S , we denote the distributionally robust
predictor as ĉr,P̂S

for the notational simplicity.

We note that the above definition is the opposite to that in
Definition 6 of [12], which considers the infimum of c(ν, ·)
under the entropy constraint. Intuitively, this is because our
ultimate goal is to derive bounds for the primal problem (2)
through the dual problem. Now, we define the corresponding
distributionally robust prescriptor.

Definition 2 (Distributionally Robust Prescriptor). For all
P′ ∈ P , the distributionally robust prescriptor ν̂r(P′) a
quasi-continuous function that is a maximizer of the problem

max
ν∈Rm

ĉr(ν,P′) s.t. M0 −
∑

i∈[m]
νiMi ⪰ 0, ν ≥ 0.

In the case when P′ = P̂S , we denote the distributionally
robust prescriptor as ν̂r,P̂S

for the notational simplicity.

To ensure the existence and the regularity of ν̂r(·), we
make the following assumption on the feasible set.

Assumption 2. The feasible set V := {ν ∈ Rm|ν ≥ 0,M0−∑
i∈[m]νiMi ⪰ 0} is compact.

By Proposition 4 of [12], Assumption 2 guarantees that the
function ν̂r(·) exists and is quasi-continuous in P′. Moreover,
the pair (ĉr,P̂S

, ν̂r,P̂S
) is the strong solution to the meta-

optimization problem (6) in [12]. Namely, ĉr,P̂S
(ν̂r,P̂S

) is
the minimal value among all predictors that are larger than
the population expectation with high probability in S.

Lemma 1. Suppose that P∞ is the sample path distribution
under P0. For all r > 0, the following two claims hold:

1) The predictor ĉr,P̂S
satisfies

ĉr,P̂S
(ν̄) ≤ ĉ′

r,P̂S
(ν̄), ∀ν̄ ∈ V

for all predictors ĉ′
r,P̂S

such that for all ν̄ ∈ V ,

lim sup
S→+∞

1

S
logP∞

[
c(ν̄,P0) > ĉ′

r,P̂S
(ν̄)

]
≤ −r.

2) The pair (ĉr,P̂S
, ν̂r,P̂S

) satisfies

ĉr,P̂S
(ν̂r,P̂S

) ≤ ĉ′
r,P̂S

(ν̂′
r,P̂S

)

for all pair (ĉ′
r,P̂S

, ν̂′
r,P̂S

) satisfying

lim sup
S→+∞

1

S
logP∞

[
c(ν̂′

r,P̂S
,P0) > ĉ′

r,P̂S
(ν̂′

r,P̂S
)
]
≤ −r.

The proof is the same as those of Theorems 4 and 7
in [12] and we omit it. Utilizing the distributionally robust



Algorithm 1 Algorithm for the expectation-based formula-
tion.

1: Input: Matrices M0, . . . ,Mm, samples ξ1, . . . , ξS , con-
stant r > 0.

2: Output: Primal solution X̂r,P̂S
.

3: Find the distributionally robust prescriptor ν̂r,P̂S
.

4: Find the distribution P̃r,P̂S
such that

c(ν̂r,P̂S
, P̃r,P̂S

) = ĉr(ν̂r,P̂S
, P̂S).

5: Solve the primal problem (2) with ξ fixed as Eξ∼P̃r,P̂S
(ξ)

and return the solution X̂r,P̂S
.

prescriptor ν̂r,P̂S
, we are able to generate a primal solution

X̂r,P̂S
with guarantees on the constraint satisfaction; see

Algorithm 1. More concretely, we use the DRO approach
to find the “worst-case” distribution P̂S and solve the primal
problem (2) with ξ fixed to be the expectation under the
worst-case distribution.

Now, we provide a practical algorithm to find the primal
solution X̂r,P̂S

. First, we show that for all ν ∈ V , it
is possible to evaluate the distributionally robust predictor
ĉr,P̂S

(ν) and find the corresponding distribution that attains
the supremum in ĉr,P̂S

(ν), namely, the distribution P̃r,P̂S
∈ P

that satisfies ĉr,P̂S
(ν) = c(ν, P̃r,P̂S

). Note that the supremum
in (5) can be attained since the feasible set is compact and
the objective function is linear. Using Lemma 2 of [12], the
set of feasible distributions can be restricted to the set of
distributions that are absolutely continuous with respect to
P̂S except on the set

Ξ∗(ν) := {ξ | γ(ν, ξ) = γ̄(ν)},

where γ̄(ν) := maxξ∈Ξ γ(ν, ξ). For any feasible distribution
P, we denote

pi := P̃r,P̂S
(ξi), ∀i ∈ [S].

Then, we have P̃r,P̂S
[Ξ∗(ν)] = 1 −

∑
i∈[S] pi and problem

(5) is equivalent to

max
p1,...,pS

∑
i∈[S]

pi · γ(ν, ξi) +
(
1−

∑
i∈[S]

pi

)
γ̄(ν) (6)

s.t.
∑

i∈[S]
log(pi) ≥ −S(r + logS),∑

i∈[S]
pi ≤ 1, pi ≥ 0, ∀i ∈ [S].

Noticing that problem (6) is convex in pi and satisfies Slater’s
condition when r > 0, the optimal solution can be derived
via the Karush-Kuhn-Tucker (KKT) conditions. After a direct
analysis of the KKT conditions, we get the algorithm for
computing the distribution P̃ as follows. Denote

δi := γ̄(ν)− γ(ν, ξi) + η, ∀i ∈ [S],

where η is a positive number such that(∏
i∈[S]

δi

)1/S

·
(
1

S

∑
i∈[S]

1

δi

)
= er

or η = 0 if such positive number does not exist. We can
find η by the bi-section method. The worst-case distribution
is given by

P̃r,P̂S
(ξi) = e−r

(∏
j∈[S]

δj

)1/S

/(Sδi), ∀i ∈ [S].

Then, the distributionally robust predictor is given by
ĉr,P̂S

(ν) = c(ν, P̃r,P̂S
). Using the evaluation of ĉr,P̂S

(·),
we can find an approximation to the distributionally robust
prescriptor ν̂r,P̂S

by zeroth-order optimization methods [14],
[15]. Furthermore, the distribution P̃r,P̂S

for ν̂r,P̂S
can be

computed using the above method. The final step is to solve
problem (2) for X̂r,P̂S

, which is a SDP problem and can be
solved by convex optimization methods.

The next theorem proves the theoretical properties satisfied
by the solution X̂r,P̂S

.

Theorem 2. For any r > 0, the solution X̂r,P̂S
satisfies

⟨M0, X̂r,P̂S
⟩ ≤ ⟨M0, X̂

′
r,P̂S
⟩

for all X̂ ′
r,P̂S
⪰ 0 such that

lim sup
S→+∞

1

S
logP∞



⟨M1, X̂

′
r,P̂S
⟩ − ξ01

...
⟨Mm, X̂

′
r,P̂S
⟩ − ξ0m


T

ν < 0

 ≤ −r,
∀ν ∈ V, s.t.

〈
M0 −

∑
i∈[S]

νiMi, X̂
′
r,P̂S

〉
= 0,

(7)

where ξ0 is the expectation of ξ under the distribution P0.

Proof. The proof is finished in two steps.
Step I. We first prove that the solution X̂r,P̂S

satisfies
condition (7). By definition, the pair (ν̂r,P̂S

, P̃r,P̂S
) is a

solution to

max
ν∈Rm

max
P∈P

c(ν,P), s.t. ν ∈ V, I(P̂S ,P) ≤ r. (8)

Switching the two maximization operations, it is equivalent
to

max
P∈P

max
ν∈Rm

c(ν,P), s.t. ν ∈ V, I(P̂S ,P) ≤ r.

Using the strong duality of problem (2), the above problem
has the same optimal value as

max
P∈P

min
X∈Rn×n

⟨M0, X⟩, (9)

s.t. X ⪰ 0, ⟨Mi, X⟩ ≥ Eξ∼P(ξi), ∀i ∈ [S],

I(P̂S ,P) ≤ r.

Since P = P̃r,P̂S
attains the optimal value of problem (8),

the problem (9) has the same optimal value as

min
X∈Rn×n

⟨M0, X⟩, (10)

s.t. X ⪰ 0, ⟨Mi, X⟩ ≥ Eξ∼P̃r,P̂S
(ξi), ∀i ∈ [m].



The solution to the above problem is exactly X̂r,P̂S
. There-

fore, ⟨M0, X̂r,P̂S
⟩ is the optimal value of the problem (10)

and is equal to that of problem (8), which is ĉr,P̂S
(ν̂r,P̂S

).
Using the constraint of problem (10) and the condition on
ν, we get
⟨M1, X̂r,P̂S

⟩
...

⟨Mm, X̂r,P̂S
⟩


T

ν − ĉr,P̂S
(ν) = ⟨M0, X̂r,P̂S

⟩ − ĉr,P̂S
(ν)

= ĉr,P̂S

(
ν̂r,P̂S

)
− ĉr,P̂S

(ν) ≥ 0,

∀ν ∈ V, s.t.

〈
M0 −

∑
i∈[S]

νiMi, X̂r,P̂S

〉
= 0.

From the first claim of Lemma 1, it holds that

lim sup
S→+∞

1

S
logP∞

[
c(ν,P0) > ĉr,P̂S

(ν)
]
≤ −r, ∀ν ∈ V.

Combining c(ν,P0) = (ξ0)T ν with the last two inequalities,
we get the condition (7) for X̂r,P̂S

.
Step II. Now, we prove that X̂r,P̂S

attains the minimal
objective value among all predictors that satisfy condition
(7). Suppose that X̂ ′

r,P̂S
also satisfies the condition (7).

Without loss of generality, we can assume that X̂ ′
r,P̂S

is a
minimizer to

min
X∈Rn×n

⟨M0, X⟩, (11)

s.t. X ⪰ 0, ⟨Mi, X⟩ ≥ ⟨Mi, X̂
′
r,P̂S
⟩, ∀i ∈ [S].

Otherwise, we can replace X̂ ′
r,S with a solution to the

problem (11) and the value of ⟨M0, X̂
′
r,S⟩ will decrease

without violating the inequality (7). Define the function

ĉ′
r,P̂S

(ν) :=


⟨M1, X̂

′
r,P̂S
⟩

...
⟨Mm, X̂

′
r,P̂S
⟩


T

ν, ∀ν ∈ V.

The dual problem of problem (11) can be written as

max
ν∈Rm

ĉ′
r,P̂S

(ν), s.t. ν ∈ V. (12)

Let ν̂′r,S be a solution to the problem (12). Then, the
complementary slackness condition of problem (11) implies
that the pair (ĉ′r,S , ν̂

′
r,S) is a data-driven predictor-prescriptor

pair that satisfies the condition (7). The second claim of
Lemma 1 ensures that

ĉ′
r,P̂S

(ν̂′r,S) ≥ ĉr,P̂S
(ν̂r,S).

In summary, we get

⟨M0, X̂
′
r,S⟩ = ĉ′

r,P̂S
(ν̂′

r,P̂S
) ≥ ĉr,P̂S

(ν̂r,P̂S
) = ⟨M0, X̂r,P̂S

⟩,

which implies that X̂r,P̂S
has the minimal value ⟨M0, X̂r,P̂S

⟩
among all X ⪰ 0 that satisfies the condition (7).

From the theorem, we can see that X̂r,P̂S
attains the

minimal objective value under the condition (7). Intuitively,

this condition claims that a weighted combination of the
(expected) constraints of problem (2) is satisfied with high
probability for some weights ν ∈ V . However, the meaning
of the comparison to the expected value ξ0 in the constraints
is not clear, especially when the sample size S is small. In the
next section, we introduce the quantile-based formulation,
which avoids this limitation.

III. QUANTILE-BASED FORMULATION

In this section, we provide another DRO formulation to
problem (2), which is able to provide stronger theoretical
guarantees than the expectation-based formulation and avoid
the limitations. Since we want to find solutions that satisfy
probability constraint with the form of (3), we can directly
enforce the probability bound using the quantiles of γ(·, ξ)
as the objective function. For all α ∈ [0, 1], we define the
α-quantile of γ(ν, ξ) as

qα(ν,P) := sup {γ | P [γ(ν, ξ) ≤ γ] ≤ α} ,
∀ν ∈ V, P ∈ P.

Then, we define the distributionally robust predictor and the
distributionally robust prescriptor in the same way as the
expectation-based formulation.

Definition 3 (Distributionally Robust Predictor-Prescriptor).
Suppose that α ∈ [0, 1] and r ≥ 0 are constants. For all
P′ ∈ P and input ν ∈ V , the distributionally robust predictor
is defined as

q̂α,r(ν,P′) := sup
P∈P
{qα(ν,P) | I(P′,P) ≤ r} .

The corresponding distributionally robust prescriptor
ν̂α,r(P′) is a quasi-continuous function that is a maximizer
of

max
ν∈Rm

q̂α,r(ν,P′) s.t. ν ∈ V. (13)

In the case when P′ = P̂S , we denote the distributionally
robust predictor-prescriptor pair as (q̂α,r,P̂S

(·), ν̂α,r,P̂S
) for

the notational simplicity.

The existence of ν̂α,r(·) is also guaranteed by Assumption
2 and we omit the proof. Note that we still use the supremum
in the definition of q̂α,r. We first show that the distribution-
ally robust predictor q̂α,r,P̂S

(·) is also a quantile of γ(·, ξ)
under the empirical distribution P̂S .

Lemma 3. For all α ∈ [0, 1] and r, S > 0, there exists an
integer k(α, r, S) ∈ [S + 1] such that

q̂α,r,P̂S
(ν) = γ(k(α,r,S))(ν; P̂S), ∀ν ∈ V,

where γ(k)(ν; P̂S) is the k-th smallest value of {γ(ν, ξi), i ∈
[S]} ∪ {γ̄(ν)}.

Proof. We first show that for the predictor q̂α,r,P̂S
(·), the set

of feasible distributions can also be restricted to the set of
distributions that are absolutely continuous with respect to P̂
except on the set

Ξ∗(ν) := {ξ | γ(ν, ξ) = γ̄(ν)}.



The proof is the same as that of Lemma 2 of [12] except the
bound on the expectation, i.e., the second last inequality in
the proof. To deal with this issue, we only need to prove that
for all ν ∈ V , p ∈ [0, 1], ξ∗ ∈ Ξ∗, Pc ≪ P̂S and P⊥ ∈ P
such that P⊥ ⊥ Pc, it holds that

QP′,α[γ(ν, ξ)] ≥ QP′′,α[γ(ν, ξ)], (14)

where

P′ := p · Pc + (1− p) · δξ∗ , P′′ := p · Pc + (1− p) · P⊥.

Let F ′(γ) and F ′′(γ) be the cumulative distribution function
of γ(ν, ξ) under the distribution P′ and P′′, respectively. By
the definition of the quantile, to prove inequality (14), it is
sufficient to show that

F ′(γ) ≥ F ′′(γ), ∀γ,

which is equivalent to

Eξ∼P′ [1(γ(ν, ξ) ≤ γ)] ≥ Eξ∼P′′ [1(γ(ν, ξ) ≤ γ)] , ∀γ,

where 1(γ(ν, ξ) ≤ γ) is an indicator function. This can be
proved in the same way as the proof in [12]. As a result,
there exists an integer k ∈ [S + 1] such that q̂α,r,P̂S

(ν) =

γ(k)(ν; P̂S).
Next, we prove that the integer k does not depend on ν

and P̂S . Let P̃r,P̂S
be the worst-case distribution that attains

q̂r,P̂S
(ν). Assume without loss of generality that

γ(ν, ξ1) ≤ · · · ≤ γ(ν, ξS).

Denote

pi := P̃r,P̂S
(ξi), ∀i ∈ [S], pS+1 := P̃r,P̂S

(Ξ∗).

Then, the integer k is the solution to

max
k∈[S],p∈RS+1

k,

s.t.
∑

i∈[k]
pi ≤ α, − 1

S

∑
i∈[S]

log(Spi) ≤ r,∑
i∈[S+1]

pi = 1, pi ≥ 0, ∀i ∈ [S + 1],

which is independent of ν and P̂S . Intuitively, k is the small-
est integer such that the probability P̃r,P̂S

on the smallest k
elements is at least α and the relative entropy constraint is
not violated.

When there is no confusion about α, r and S, we denote
k := k(α, r, S) for simplicity and re-write problem (13) as

max
ν∈Rm

γ(k)(ν; P̂S), s.t. ν ∈ V. (15)

In the case when k = S+1, the evaluation of γ(S+1)(ν; P̂S)
requires the knowledge of Ξ, which may be unknown in
practice. Hence, we focus on the case when k ∈ [S]
in the remainder of the paper. The distributionally robust
prescriptor ν̂k,P̂S

is a solution to problem (15). To get a
solution for problem (2), we define the Lagrangian function

L(ν,X; P̂S) := γ(k)(ν; P̂S) +

〈
X,M0 −

∑
i∈[S]

νiMi

〉
.

Then, we consider the mini-max problem

min
X∈Rn×n

max
ν∈Rm

L(ν,X; P̂S), s.t. ν ≥ 0, X ⪰ 0.

Then, the dual function to problem (15) is defined as

d(X) := max
ν∈Rm

L(ν,X; P̂S), s.t. ν ≥ 0.

We make the following assumption on the dual problem.

Assumption 3. The dual problem minX⪰0 d(X) is feasible,
i.e., there exists X ⪰ such that d(X) < +∞.

Under Assumption 3, we show that the dual problem has
a finite optimal value.

Lemma 4. The dual problem minX⪰0 d(X) has a finite
optimal value.

Proof. We consider the following relaxation of the dual
problem:

min
X∈Rn×n

⟨M0, X⟩,

s.t. ⟨Mi, X⟩ ≥ ξ(k)i , ∀i ∈ [m], X ⪰ 0,

where ξ(k)i is the k-th smallest value in {ξ1i , . . . , ξSi }. The
dual problem has a finite optimal value if the relaxed problem
has a finite optimal value. Since the relaxed problem is a SDP
problem, it has the dual problem

max
ν∈Rm

γ(ν, ξ(k)), s.t. ν ∈ V.

Since the dual problem is a special case of problem (2), it
is feasible with a bounded optimal value by Assumption 2.
Hence, the duality theory implies that the relaxed problem is
also feasible and has a bounded optimal value. This finishes
the proof.

As a result, we can choose the primal solution X̂k,P̂S
to

be an optimum of the dual problem:

X̂k,P̂S
∈ argmin

X∈Rn×n

d(X), s.t. X ⪰ 0. (16)

The following lemma characterizes the dual function.

Lemma 5. We have d(X) = ⟨M0, X⟩ < +∞ if and only if

γ(k)(ν; P̂S) ≤
∑

i∈[m]
νi⟨Mi, X⟩, ∀ν ∈ Rm, s.t. ν ≥ 0.

(17)

Proof. We first prove the necessity part. Suppose that there
exists ν ∈ Rm such that

ν ≥ 0, γ(k)(ν) >
∑

i∈[m]
νi⟨Mi, X⟩.

Then, we choose a constant C > 0 and consider

L(k)(Cν,X; P̂S)

=C · γ(k)(ν; P̂S) +

〈
X,M0 − C ·

∑
i∈[m]

νiMi

〉
=C

(
γ(k)(ν; P̂S)−

∑
i∈[m]

νi⟨Mi, X⟩
)
+ ⟨M0, X⟩.



Letting C → +∞, we have

d(X) ≥ L(k)(Cν,X; P̂S)→ +∞.

This is a contradiction to the condition that d(X) < +∞.
Then, we prove the sufficiency part. By the condition,

L(k)(ν,X; P̂S) = γ(k)(ν; P̂S)−
∑
i∈[m]

νi⟨Mi, X⟩+ ⟨M0, X⟩

≤ ⟨M0, X⟩.

Therefore, ν = 0 is a maximizer of the Lagrangian function
over ν and d(X) = ⟨M0, X⟩ < +∞.

Intuitively, the condition (17) implies that the constraints
of problem (2) are satisfied with probability at least k/S −
exp[−rS + o(S)] under the true data-generation distribution
P0. To be more concrete, we have the following theorem.

Theorem 6. Suppose that X satisfies the condition (17). For
all weight vector ω ∈ Rm and k ∈ [S + 1], it holds that

P0

[∑
i∈[m]

ωi (⟨Mi, X⟩ − ξi) ≥ 0

]
(18)

≥ α− exp[−rS + o(S)].

Proof. Choosing ν = ω in the condition (17), it follows that
for at least k samples in {ξi, i ∈ [S]}, it holds that

γ(ω, ξi) ≤
∑

j∈[m]
ωj⟨Mj , X⟩.

By the definition γ(ν, ξ) = νT ξ, it follows that∑
j∈[m]

ωj

[
⟨Mj , X⟩ − ξij

]
≥ 0. (19)

The condition (19) says that a weighted average of the
constraints is satisfied with weight ωj . Therefore, under the
empirical distribution P̂S , we have

P̂S

[∑
j∈[m]

ωj [⟨Mj , X⟩ − ξj ] ≥ 0

]
≥ k

S
.

Now, Theorem 10 of [12] implies that

lim sup
S→+∞

1

S
log

{
P∞

[
qα(ω,P0) > γ(k)(ω; P̂S)

]}
≤ −r.

Combining the last inequality with, we get

P0

[∑
j∈[m]

ωj (⟨X,Mj⟩ − ξj) > 0

]
≥ α−exp[−rS+o(S)].

This finishes the proof.

In practice, natural choices of ω might include the unit
vectors e1, . . . , em. In this case, Theorem 6 guarantees that
each of the constraints individually is satisfied with the stated
probability. However, ω can also be chosen to encode any
constraint “budget” by setting the weights according to the
relative value of the satisfaction (or violation) margin among
the m constraints. The strength of Theorem 6 is that it holds
for any such budget under the unknown true distribution.

By definition, the primal solution X̂k,P̂S
satisfies the

condition (17) and thus, it also satisfies the condition in
Theorem 6. In practive, the user may first choose k and then

Algorithm 2 Algorithm for the quantile-based formulation.

1: Input: Matrices M0, . . . ,Mn, empirical distribution P̂S ,
number of iterations tmax, parameter k ∈ [S].

2: Output: Primal solution X̂k,P̂S
.

3: Initialize S1 ← {ei | i ∈ [m]}.
4: for t = 1, 2, . . . , tmax do
5: Update Xt to be a maximizer to the SDP problem:

max
X∈Rn×n

⟨M0, X⟩,

s.t.
∑

i∈[m]
νi⟨Mi, X⟩ ≥ γ(k)(ν), ∀ν ∈ St,

X ⪰ 0.

6: if condition (17) holds for Xt then
7: break
8: end if
9: Find weight vector ν̃ ∈ Rm that violates (17), i.e.,∑

i∈[m]
ν̃i⟨Mi, X⟩ < γ(k)(ν̃).

10: Update St+1 ← St ∪ {ν̃}.
11: end for
12: Return the last iterate of Xt as X̂k,P̂S

.

choose a suitable α and r to maximize the right-hand side
of (18). Given k ∈ [S] and α ∈ [0, k/S], the maximal radius
r such that k(α, r, S) = k is given by

r = − k
S
log

(
Sα

k

)
− S − k

S
log

(
S(1− α)
S − k

)
,

where we define 0 log(0) = 0. Therefore, given the sample
size S ≫ 1 and the parameter k ∈ [S], one wants to solve
the maximization problem

p∗k,S := max
α∈[0,k/S]

α− SS

kk(S − k)S−k
· αk(1− α)S−k.

The solution of the above problem will maximize the right-
hand side of (18).

Now, we provide an algorithm for the dual problem (16).
The algorithm is based on the cutting-plane method [16] and
is described in Algorithm 2. Here, we denote the i-th unit
basis of Rm as ei for all i ∈ [m]. Basically, we approximate
the condition (17) by a finite number of linear constraints∑

i∈[m]
νi⟨Mi, X⟩ ≥ γ(k)(ν), ∀ν ∈ St.

These constraints provide a relaxed condition of (17), which
requires the inequality to hold for all weight vectors ν. If
the solution of the relaxed problem Xt satisfies the condition
(17), it must be an optimal solution to the dual problem (16).

Now, we describe an algorithm to check whether the
condition (17) is satisfied for a given matrix X . In addition,
if condition (17) fails, the algorithm finds a weight vector
ν̃ that violates the condition. The algorithm is based on the



following mixed-integer programming (MIP) problem:

min
z∈RS ,t∈R,ν∈Rm

t,

s.t. t+ C · zi ≥
∑

j∈[m]
νj

(
⟨M0, X⟩ − ξij

)
,

zi ∈ {0, 1}, ∀i ∈ [S],
∑

i∈[S]
zi = k − 1,

where C ≫ 1 is a large enough constant. The MIP problem is
based on the big-M method [17]. If the variable zi = 1, since
the constant C is sufficiently large, there is no constraint on
t. Otherwise if the variable zi = 0, the constraint requires
that

t ≥
∑

j∈[m]
νj

(
⟨M0, X⟩ − ξij

)
.

This means that t should be the maximal value of the right-
hand side over all indices i such that zi = 0. With a
given ν, to minimize the value of t, zi is equal to one
for indices with the k − 1 smallest values of the right-
hand side. Then, the optimal value of t should be the k-
th smallest value of the right-hand side over all samples. If
we further minimize over the weight vector ν, the condition
(17) holds if and only if the optimal value t∗ is non-negative.
In addition, if t < 0, the corresponding vector ν∗ provides
a weight vector such that condition (17) is violated by X .
Although Algorithm 2 requires solving an MIP problem,
the algorithm runs efficiently in practice and exhibits good
empirical performances in our examples; see more details in
Section IV.

IV. NUMERICAL EXPERIMENTS

In this section, we test the Algorithm 2 for the quantile-
based formulation on a synthetic example. For a given
dimension n, we choose m = 2(n−1) and generate matrices
M0, . . . ,Mm as follows. Let G be a connected, undirected,
acyclic graph with n nodes. In our experiments, we choose
G to be a tree with n nodes. For each i ∈ {0, . . . , n − 1},
we define

(Mi)j,k :=

{
0, if (j, k) /∈ G
ψi,j,k, if (j, k) ∈ G,

where {ψi,j,k | i ∈ [n − 1], (j, k) ∈ G} are independent
uniform random variables on [0, 1]. Then, we define

Mi+n−1 := −Mi, ∀i ∈ [n− 1].

For the random vector ξ, its first n−1 entries are independent
uniform random variables on [−1, 0]. The last n− 1 entries
of ξ are equal to the first n − 1 entries. This definition of
M1, . . . ,Mm and ξ leads to the constraints

ξi ≤ ⟨Mi, X⟩ ≤ −ξi, ∀i ∈ [n− 1].

We choose graph-structured matrices as they mirror the ob-
jective and constraint functions of OPF and similar network
flow problems. It is shown in [3], [4] that the graph structure
and the non-negativeness of the entries of Mi ensure that
the problem (2) admits an exact SDP relaxation. As a result,
one can generate the decision variable for problem (1) from
a solution to problem (2) by the algorithm in [18].

To verify the results of Theorem 6, we generate S′ ≫ S
independent samples of ξ, which are denoted as ξ̃1, . . . , ξ̃S

′
.

For each i ∈ [m], we count the number of samples that
satisfy the constraint〈

Mi, X̂k,P̂S

〉
≥ ξji .

By theory, we expect at least p∗k,SS
′ samples to satisfy the

above condition. We choose the maximal number of itera-
tions tmax = 100 for Algorithm 2. In all tested examples,
the optimal solution is found and the algorithm terminates
in less than tmax = 100 iterations. The problem size and
the sample size is n = 10 and S = 20, respectively. We
use S′ = 104 samples to verify the results of Theorem 6.
We implement the Algorithm 2 for all quantiles k ∈ [S] and
compare the performances. The algorithms are implemented
in Python 3.10 and MATLAB 2023a environment equipped
with solvers MOSEK 10.0 [19] and Gurobi 10.0 [20].

As a baseline for comparison, we test Algorithm 2 against
the naive approach of requiring that each constraint be sat-
isfied for at least k samples from the empirical distribution.
Specifically, the naive approach chooses the solution of (2)
with ξ = ξ(k), where the i-th element of ξ(k) is the k-th
smallest of {ξ1i , . . . , ξSi }. As S grows, this naive algorithm
becomes more reliable, but for problems with a small number
of samples and many constraints, it will not be robust to the
true distribution.

The results are summarized in Figure 1. For all k ∈ [S],
the output of Algorithm 2 (i.e., X̂k,P̂S

) satisfies the condition
(17). From the figure, we can see the trade-offs between the
the optimal objective value and the constraint satisfaction
rate, which can be adjusted by choosing the parameter k.
As the high-probability bound becomes stricter with a larger
k, the objective value becomes larger but the constraints are
satisfied by more samples. Hence, both Algorithm 2 and the
naive algorithm exhibit the expected behavior with respect to
k. From the left plot, we can see that the objective values of
Algorithm 2 are larger than those of the naive algorithm. This
is because the naive algorithm enforces a relaxed condition
of (17). In the right plot, we compute the probability that
the solution satisfies a given constraint for the S′ extra
samples. We compare the pointwise (over k) minimum and
the mean satisfaction rate among all m constraints, and we
also compare the rates with the theoretical lower bound p∗k,S .
We can see that both solutions satisfy the constraint with a
probability that is larger than the lower bound, except for
the naive solution at k = 14. In addition, the Algorithm 2
finds more robust solutions than the naive algorithm. The
naive algorithm is not theoretically guaranteed to generate
distributionally robust solutions. As k approaches T , the
performance of the two algorithms become similar, though
this behavior is not necessarily expected to hold for all
problem instances or choices of weights w. The gap between
Algorithm 2 and the naive algorithm is expected to grow
when the sample size S is small compared to the number of
constraints m, or when the true distribution has a high covari-
ance. In other words, as the empirical distribution approaches



Fig. 1. Results of Algorithm 2 and the naive algorithm. The left plot compares the objective values of the two algorithms. The right plot compares the
constraint satisfaction rate of the two algorithms.

the true distribution, the methods become equivalent. As a
summary, the naive algorithm can efficiently generate robust
solutions in some cases, but Algorithm 2 is theoretically
guaranteed and works better especially when the sample size
S is small.

V. CONCLUSION

In this work, we consider the nonconvex QCQPs with
stochastic constraints under strong duality. Existing stochas-
tic optimization algorithms only allow randomness in the
objective function and thus, they are not applicable. We
propose two new DRO formulations, and we prove that the
solution to the DRO formulations attains the optimal objec-
tive value among all solutions that satisfy the constraints with
high probability under the data-generating distribution, even
when we only have access to a few samples from the dis-
tribution. In addition, we develop corresponding algorithms
that solve the proposed DRO formulations and implement
the algorithms on a few examples to illustrate the empirical
performance. The new formulations are the first results on the
application of DRO techniques to a nonconvex optimization
problem with stochastic constraints. The approach can be ex-
tended to a broad class of nonconvex optimization problems
with stochastic constraints and generate robust solutions that
satisfy the constraints with high probability.
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