
Control and Uncertainty Propagation in the Presence of Outliers by Utilizing
Student-t Process Regression

Dimitris Papadimitriou Somayeh Sojoudi

Abstract— Gaussian Process Regression (GPR) has been ex-
tensively used to estimate unknown models and quantify model
uncertainty in control tasks concerning safety-critical applica-
tions. However, one of the drawbacks of GPR is that it does not
take into account the function evaluations of the observations
in the uncertainty estimation, rendering it unsuitable for appli-
cations with observations prone to outliers or to an unassumed
noise disturbance. In this work, we introduce the Student-t Pro-
cess Regression (TPR) as a generalization of GPR for estimating
dynamics models in the control literature. The key attribute of
TPR is that the estimation variance explicitly depends on the
function evaluations rendering it more robust to outliers. We
prove uniform error bounds for the estimation based on TPR
under certain continuity assumptions. Furthermore, we employ
TPR to estimate unknown and nonlinear dynamical systems,
which we incorporate in a Model Predictive Control (MPC)
framework, and we show with simulations that the resulting
estimation uncertainty compensates for the existence of outliers.
Such informative variance estimates are of vital importance as
they can lead to more informative uncertainty propagation and
thus more robust and less constrained control policies.

I. INTRODUCTION

In Control and Reinforcement Learning, the underlying
dynamics of the systems are usually partially or totally un-
known. Hence, estimation methods must be devised to learn
these models that are often nonlinear. The arising estimation
uncertainty however should be taken into consideration in
the control design, especially in safety-critical applications,
in order to provide safety guarantees during operation.

Subspace identification of unknown linear systems regard-
ing control applications has been extensively studied for both
non-sparse models [1] and sparse models [2]. Furthermore,
the estimation uncertainty has been incorporated in the de-
sign of safe controllers using robust control formulations [3].
For nonlinear systems, various methods such as maximum
likelihood estimation [4] and neural network regression [5]
have been introduced in system identification. As before,
estimates of the uncertainty can be incorporated in the control
process [6].

Gaussian Processes (GPs) have been extensively utilized
in the machine learning literature [7] and additionally in
system identification [8]. One of the main advantages of
GPs is the closed-form formulas for the prediction and the
uncertainty that allow for system identification and robust
control formulation [9], [10].
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Student-t Processes (TPs), which constitute a general-
ization of GPs, have been introduced as an alternative to
the latter in stochastic optimization [11], [12]. The main
benefit in comparison to GPs is that the estimation vari-
ance exclusively depends on the function evaluations of
the observed data and not just the features as captured by
the chosen kernel function. This attribute renders TPs 1)
more robust to outliers that are common in Control and
Reinforcement Learning applications and 2) suitable for
applications where noise is heteroscedastic or more broadly
some of its distributional characteristics are unaccounted for.
Our main contributions can be summarized as follows. We
introduce Student-t Processes in the control framework and
provide uniform error bounds for the estimation of unknown
nonlinear functions using TPR. Moreover, we incorporate the
estimation uncertainty in a control framework. The resulting
formulation is a convex optimization problem that can be
solved efficiently.

Notation: We denote matrices and vectors with bold upper
and lower case letters, respectively. For scalars, we use non-
bold lower case letters. The identity matrix of size n is
denoted with In. We denote the cardinality of a set D with
|D|. We use f̂ for an estimate of the function f . D and
Dτ represent a continuous domain and its discretization,
respectively. [z] is a point in the discrete domain Dτ closest
according to the Euclidean metric to z ∈ D.

II. PROBLEM FORMULATION

We study systems whose underlying dynamics can be
modeled as

xt+1 = f(xt,ut) := h(xt,ut) + g(xt,ut), (1)

where xt ∈ Rnx and ut ∈ Rnu denote the state and the
control input, respectively. We refer to the state and control
input concatenation vector as zt = [xt,ut] ∈ Rnx+nu for
compactness. The nonlinear function h is known, whereas
g is unknown and presumed nonlinear. We assume that we
have access to a dataset of size n comprised of tuples of
noisy observations of the form (zi, yi) for i = 1, . . . , n.
Our objectives are 1) to obtain an estimate ĝ of g, 2) to
quantify the uncertainty when predicting the system output at
a new state-input pair using ĝ and 3) to convert the dynamics
functions in a form amenable for computationally efficient
control.

III. MODEL ESTIMATION

In this section, we present the details regarding TPR and
we compare the closed form update formulas for the mean
and variance with those of GPR.



A. Student-t Process Regression

A Student-t process can be seen as a generalization of
Gaussian processes since the Student-t distribution converges
to a Gaussian as its degrees of freedom approach infinity. The
definition of a Student-t process is given below.

Definition 3.1: A function g forms a Student-t Process
T Pν in D with mean µ : D → R, kernel function k :
D×D → R and ν degrees of freedom if any finite subset of
function evaluations g(z1), . . . , g(zn) with zi ∈ D follows
a joint multi-variate Student-t distribution with mean µ :=
(µ(z1), . . . , µ(zn)), kernel K ∈ Rn×n with Ki,j = k(zi, zj)
and ν degrees of freedom.

Given the similarities between TPs and GPs, it is expected
that the two share similar properties. In TPR, we assume that
the prior distribution of the unknown function follows a zero
mean Student-t distribution with ν degrees of freedom

g ∼ Tν(0, k), (2)

and a kernel function k. Disregarding momentarily the
measurement noise the joint multi-variate distribution of n
measurements and a new query point z∗ is given by[

y
y∗

]
∼ Tν

(
0,

[
K(Z,Z) k(Z, z∗)
k(z∗,Z) k(z∗, z∗)

])
, (3)

where y is a vector of the yis and Z is the data matrix of
the zis.

In contrast with GPR, if we assume that measurement
noise follows a Student-t distribution with ν degrees of
freedom, the sum of the unknown model and the measure-
ment noise is no longer guaranteed to follow a Student-t
distribution [13]. Hence, to incorporate measurement noise,
we follow [11] and add the noise variance on the diagonal
of the kernel function in (3)[

y
y∗

]
∼ Tν

(
0,

[
K(Z,Z) + σ2In k(Z, z∗)

k(z∗,Z) k(z∗, z∗)

])
. (4)

It should be noted that under this model, the noise term is
uncorrelated but not independent from the function g [11].
The conditional distribution on a new point given past
observations is given by (see [14])

y∗ | y,Z, z∗ ∼ Tν+n(µn(z∗), σ
2
n(z∗)), (5)

where

µn(z∗) = k(Z, z∗)(K(Z,Z) + σ2In)−1y, (6a)

σ2
n(z∗) =

φn(k(z∗, z∗)− k(Z, z∗)
T (K(Z,Z) + σ2In)−1k(Z, z∗)),

(6b)

φn =
ν + yK(Z,Z)−1y − 2

ν + n− 2
, (6c)

and the subscript n denotes the number of data available
to condition on. These update rules differ, from the cor-
responding GPR rules, only in the φn term that appears
in the posterior variance. This is the key advantage of
TPR compared to GPR since the posterior variance of the

prediction explicitly depends on the evaluations of the obser-
vations y. The quadratic term appearing in φn quantifies the
variability of the measurements. For large values of this term
the predictive variance is upscaled. This happens when the
measurements vary significantly, increasing the variance and
hence leading to more conservative confidence intervals, as
will be shown in subsequent sections. On the other hand,
if the measurements do not exhibit high variability, the
predictive variance is down-scaled leading to “narrower”
confidence intervals. Such dependence allows confidence
intervals to be more informative in comparison to the ones
obtained from GPR.

IV. STUDENT-t PROCESS REGRESSION MOTIVATION

Having access to informative confidence intervals is es-
sential, especially for applications in safety-critical control
systems. In this section, we will outline two scenaria under
which TPR is more beneficial than GPR. Given the “adapt-
ability” of TPR to varying levels of unaccounted noise, it is
natural to expect TPR to perform better in the presence of
outliers and heteroscedastic noise.

A statistical outlier is broadly defined as a sample point
that lies abnormally many standard deviations away from
the mean of the distribution from which it was most likely
sampled [15]. If such outliers appear in the dataset, then
we expect the posterior variance of TPR to adapt to their
presence via the term (6c) appearing in the variance formula.
Such anticipation for possible outliers will lead to a higher
variance in the estimates rendering the control laws more
conservative which would be beneficial in such a case.

In addition to our original theme about statistical outliers,
we will also study the scenario with heteroscedastic noise.
In the case of heteroscedastic noise, TPR can also have an
advantage over GPR since it can “automatically” adjust for
the different noise levels. For instance, if the distribution of
noise varies throughout the state space, then using a local
version of TPR as described in Algorithm 1 from Section V-
A will adjust the variance levels throughout the state space
depending on the observed noise levels in the data. GPR
methods that adapt to heteroscedastic noise have indeed been
proposed in the literature [16], but they generally lead to a
higher computational complexity as opposed to TPR whose
only additional substantial complexity is the matrix inversion
appearing in (6c).

V. THEORETICAL ANALYSIS

This section contains the uniform error bounds derived for
the mean prediction using TPR. In what follows we assume
that the unknown function g has a Lipschitz constant Lg .
This assumption is needed to derive the following uniform
error bound theorem.

Theorem 5.1: Assume that we have access to n noisy
measurements. Let D = [0, r]d, Dτ be a discretization of
D of size τd, N(D, τ) be the covering number of D, and
Kn := ‖(K(Z,Z) + σ2In)−1‖2. Let Lk be a Lipschitz
constant for the kernel function k and let the gamma function
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be denoted with Γ(·). Then the following inequality holds for
the error when using the rule (6a) for prediction

P
(
|g(z)− µn(z)| ≤ 3

√
βnσn(z) + γn(τ), ∀ z ∈ D

)
≥ 1− δ

where

βn =
CTN(D, τ)

δ
, (7a)

CT =
2ν
√

(ν − 2)Γ(ν+1
2 )

(ν − 1)2
√
πΓ(ν2 )

, (7b)

γn(τ) = (Lg + Lk
√
n‖α‖2)τ+ (7c)

3
√
βn

√
2|φn|nLkKn max

z,z′∈D
k(z, z′),

α = (K(Z,Z) + σ2In)−1y. (7d)
To prove Theorem 5.1 we will first develop two useful

Lemmas.
Lemma 5.2: A random variable T following a Student-t

distribution with mean 0, variance (ν − 2)/ν and ν > 2
degrees of freedom satisfies the upper tail bound

P(T > x) ≤ CT
x3

,

with CT :=
2ν
√

(ν−2)Γ( ν+1
2 )

(ν−1)2
√
πΓ( ν2 )

.

Proof: Let c :=
Γ( ν+1

2 )√
(ν−2)πΓ( ν2 )

. One can write

P(T > x) =

∫ ∞
x

c

(1 + t2

ν−2 )(ν+1)/2
dt

≤
∫ ∞
x

t

x

c

(1 + t2

ν−2 )(ν+1)/2
dt

=
ν

ν − 1

1

x

c

(1 + x2

ν−2 )(ν−1)/2

≤ ν

ν − 1

1

x

c

(1 + (ν − 1)x2/(2(ν − 2)))

≤ 2cν(ν − 2)

(ν − 1)2

1

x3
,

where in the first inequality we used the fact that t ≥ x and
in the second one we used Bernoulli’s inequality.

It is desirable to develop a bound for the deviation of g
from the posterior mean (6a) in a discrete domain space Dτ .
Afterwards, we will extend the result to a general compact
space D ⊂ Rnx+nu .

Lemma 5.3: For the observed data points (z1, . . . , zn) and
(y1, . . . ,yn), we select δ ∈ (0, 1) and let βn = CT |Dτ |

δ . For
every z ∈ Dτ and n ≥ 1, where Dτ ⊂ Rnx+nu is a discrete
set, the inequality

|g(z)− µn(z)| ≤ 3
√
βnσn(z),

holds with probability at least 1− δ.
Proof: For every z ∈ Dτ , it follows from Lemma 5.2

that

P(|g(z)− µn(z)| > 3
√
βnσn(z)) ≤ CT

βn
.

From the union bound, we conlcude that ∀z

P(|g(z)− µn(z)| ≤ 3
√
βnσn(z)) ≥ 1− δ.

Proof of Theorem 5.1: We generalize Lemma 5.3 to a
continuous space D ⊂ Rnx+nu . We proceed by bounding
the difference in the unknown function g (2), the posterior
mean (6a) and variance (6b) update rules between two points
z ∈ D and z′ ∈ Dτ in the continuous and discrete domains,
respectively. Dτ is a discretization of D such that

max
z∈D
‖z− [z]‖2 ≤ τ. (8)

For the smallest discretization for which this bound holds,
we obtain |Dτ | = N(D, τ) where N denotes the covering
number. Starting with g, and using its Lipschitz assumption
along with (8) we obtain

|g(z)− g(z′)| ≤ Lg‖z− z′‖2 ≤ Lgτ. (9)

Assuming that the kernel function has a Lipschitz constant
Lk, the mean difference between z ∈ D and its projection
[z] on Dτ can be bounded as

|µn(z)− µn([z])| ≤ |k(Z, z)α− k(Z, [z])α|
≤ Lk

√
n‖α‖2‖z− [z]‖2

≤ Lk
√
n‖α‖2τ, (10)

by using Cauchy-Schwarz inequality and setting α =
(K(Z,Z) + σ2In)−1y. We can bound the variance term as
follows

|σ2
n(z)− σ2

n([z])|
= |φnk(Z, [z])T (K(Z,Z) + σ2In)−1

× k(Z, [z])− φnk(Z, z)T (K(Z,Z) + σ2In)−1k(Z, z)|
≤ |φn|‖k(Z, [z]) + k(Z, z)‖2‖(K(Z,Z) + σ2In)−1‖2
× ‖k(Z, [z])− k(Z, z)‖2.

To bound the individual terms, we use the inequali-
ties ‖k(Z, [z]) + k(Z, z)‖2 ≤ 2

√
nmaxz,z′∈D k(z, z′) and

‖k(Z, [z])−k(Z, z)‖2 ≤ Lk
√
n‖[z]−z′‖2 ≤ Lk

√
nτ . Hence,

by letting Kn := ‖(K(Z,Z) + σ2In)−1‖2 we arrive at

|σ2
n(z)− σ2

n([z])| ≤ 2|φn|nLkKnτ max
z,z′∈D

k(z, z′).

Using the fact that |
√
x−√y| ≤

√
|x− y|, we finally obtain

that

|σn(z)− σn([z])| ≤
√

2|φn|nLkKnτ max
z,z′∈D

k(z, z′). (11)

Using Lemma 5.3 along with (9), (10) and (11) we obtain
that

P(|g(z)− µn(z)| ≤ 3
√
βnσn(z) + γn(τ), ∀ z ∈ D) ≥ 1− δ

where

βn =
CTN(D, τ)

δ
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and

γn(τ) =

(Lg + Lk
√
n‖α‖2)τ + 3

√
βn

√
2|φn|nLkKnτ max

z,z′∈D
k(z, z′).

Theorem 5.1 allows us to quantify the uncertainty at a
new query point z∗. As someone would expect though from
the heavier tails of the Student-t distribution, this bound
is considerably more loose than similar bounds derived for
GPR [10]. In the next section, we will present an extension
of TPR that uses local information in the domain to reduce
computational complexity. This variant of TPR can locally
adapt to the presence of outliers or more generally, to varying
levels of noise.

A. Local Student-t Regression

The calculation of the posterior of TP suffers form the
same computational burden as that of GPR. The main
bottleneck consists of the inversion of the Kernel function
K(Z,Z), which requires O(n3) operations. For applications
in which data collection happens once before the estimation,
the kernel function can be inverted only one time alleviating
the computational cost. If, on the other hand data collection
takes place online, a new inversion of an increasingly higher
dimensional kernel matrix K(Z,Z) is needed whenever the
dataset grows rendering the entire process intractable. This
is common especially for applications in dynamic decision
making.

Implementation of local estimation methods using GPR
has been studied in the literature [17]. We propose the use
of local TPR in which only observations in the neighbor-
hood of a query point are taken into consideration in the
estimation. More specifically, for each prediction, only the
m observations (usually n � m) closest to the query point
are considered, reducing the computational complexity of
inverting the kernel matrix to O(m3). Our proposed method
is a simplification over the method in [17] that uses different
models for different parts of the domain and constructs a
weighted average prediction from those individual models.

Algorithm 1: Local Student-t Process Regression
Given query point z∗ ∈ Rnx+nu , Z and m
Select m closest points from Z to z∗ using `2 metric
Construct Z̃ ∈ Rnx+nu×m, ỹ ∈ Rm and compute:
φm = ν+ỹK(Z̃,Z̃)−1ỹ−2

ν+m−2

µm(z∗) = k(Z̃, z∗)(K(Z̃, Z̃) + σ2Im)−1y
σm(z∗) = φm(k(z∗, z∗)− k(Z̃, z∗)

T (K(Z̃, Z̃) +
σ2Im)−1k(Z̃, z∗))

Return µm(z∗), σm(z∗)

The local TPR variant described in Algorithm 1 has a
number of advantages. If outliers appear only in a certain
region of the state space, then local TPR would predict
conservative confidence intervals only around that region
and not throughout the state space. On the contrary, global

TPR would return confidence intervals that are scaled up
in the entire state space, which would lead to unnecessary
conservatism in some parts of the state space.

Furthermore, as mentioned in the motivation section for
TPR, homoscedastic noise can be an unrealistic assumption
for many real-world applications. As such, a number of
approaches that deal with heteroscedastic noise have been
proposed in the literature, which for instance are based on
maximum a posteriori estimation [16] or expectation prop-
agation [18]. Local TPR can be used as another approach to
deal with heteroscedastic noise with no significant additional
computational complexity.

VI. MODEL LINEARIZATION AND UNCERTAINTY
PROPAGATION

In this work, we let both the known and unknown dynam-
ics functions be nonlinear. To obtain a formulation conducive
for control applications, a linearization of the dynamics
functions is helpful. This model linearization leads to an
additional error that should be accounted for in the control
process.

This section quantifies the error of the linear approxima-
tion of the nonlinear system. Regarding model dynamics, the
control algorithms implemented in this work require 1) an
estimate of the dynamics of the system over a horizon H ,
2) linearization of the nonlinear estimates and 3) uncertainty
regions in which the actual model is expected to be due to
linearization and estimation errors. The linearization process
outlined here is similar to the one in [9].

A. Estimation Uncertainty and Linearization Error

Before generalizing to multiple output dynamics we will
focus on single output functions. Using TPR to estimate
g(zt) for a particular state-input pair zt, the dynamics
function (1) now becomes

xt+1 = f̂(zt) := h(zt) + ĝ(zt), (12)

where we substitute in the posterior mean ĝ(z) := µn(z)
as the estimate for g(z) at a point z ∈ R(nx+nu). This
introduces uncertainty in the system due to the variance of
the estimator (6b). Furthermore, (12) is a nonlinear function.
In order to linearize it we assume that the gradient of the
known function h has a Lipschitz constant L∇h , whereas
the gradient of the posterior mean (6a) and the posterior
variance (6b) have Lipschitz constants L∇µn and Lσn ,
respectively. In order to linearize the dynamics around a
point z′ ∈ R(nx+nu), we perform Taylor expansion of the
known function h and the estimated function ĝ around z′.
The linearized estimated function, denoted with f̃ , is then
given by

f̃(z) := h(z′) + Jh(z− z′) + ĝ(z′) + Jĝ(z− z′), (13)

where Jh = [Jh,x,Jh,u] ∈ Rnx×(nx+nu) and Jĝ =
[Jĝ,x,Jĝ,u] ∈ Rnx×(nx+nu) are the Jacobians of h and
ĝ, respectively, evaluated at z′t. We can bound the model
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approximation error using the Lagrangian remainder theorem
as

|f̃(z)− f̂(z)| ≤ 1

2
(L∇h + L∇µn )‖z− z′‖22. (14)

Using the bound from Theorem 5.1, we can bound the
output of f̂ from the original dynamics function f by using
a Lipschitz continuity argument for σ as follows

|f(z)− f̃(z)| ≤ 1

2
(L∇h + L∇µn )‖z− z′‖22+

3
√
βn(σn(z) + Lσn‖z− z′‖2) + γn(τ). (15)

For z ∈ Z , where Z denotes a generic state-action space,
the error in (15) can be upper-bounded by

|f(z)− f̃(z)| ≤ 3
√
βnσn(z) +

(
L∇h + L∇µn

2

)
dmax(z′)2+

3
√
βnLσndmax(z′) + γn(τ), (16)

where dmax(z′) = supz∈Z‖z − z′‖2. Clearly, since z =
[x,u], we can decompose dmax(z′) as dmax(x′)+dmax(u′).
The Lipschitz constants appearing in (16) can be estimated
since all the functions involved are known.

B. Uncertainty Propagation

The above subsection quantified the uncertainty due to
model estimation and linearization. Given a state zt, by
applying f̃ each coordinate of the system transitions inside
the region specified by

fi(z) ∈ f̃i(z)± 3
√
βnσn(z) +

(
L∇h + L∇µn

2

)
dmax(z′)2+

3
√
βnLσndmax(z′) + γn(τ), (17)

where i = 1, . . . , nx. In the general case of a multi-output
function f , we model each coordinate with an independent
TP. The above uncertainty set for coordinate i is an interval
in R.

Lemma 6.1: Let nx > 1 and each component gi(z), i =
1, . . . , nx of g(z) be modeled with an independent Student-
t process. The error of the multi-output function g(z) with
posterior mean vector µn := [µn,1(z), . . . , µn,nx(z)]T and
posterior variances [σn,1(z), . . . , σn,nx(z)] can be upper
bounded by

P (|g(z)− µn(z)| ≤ 3
√
βnσn(z) + γn(τ), ∀ z ∈ D)

≥ (1− δ)nx . (18)
Proof: The result follows from Theorem 5.1 and the

independence of the Student-t processes for each coordinate
by considering the intersection of the following events

P(|g(z)− µn(z)| ≤ 3
√
βnσn(z) + γn(τ), ∀ z ∈ D) =

nx∏
i=1

P(|gi(z)− µn,i(z)| ≤ 3
√
βnσn,i(z) + γn(τ), ∀ z ∈ D)

≥ (1− δ)nx .

Generalizing simultaneously to all coordinates, we ob-
tain an uncertainty set that now belongs to Rnx . We can
rewrite (17) as

f(z) ∈ f̃(z)⊕ E(z) ⊂ Rnx , (19)

where now the set E(z) contains the deviation from the
nominal system f̃(z) in each coordinate. For finite-horizon
control tasks, we are interested in the propagation of the
uncertainty sets throughout the horizon. In this subsection,
we study the propagation of uncertainty when the estimated
dynamics function is applied repeatedly to obtain a trajectory
of horizon H . This is key for the MPC formulation as the
uncertainty of the dynamics should be taken into account at
every time step of the MPC horizon H . At each time step
t = 1, . . . ,H , we recursively define the uncertainty set at
time t as

Et = f̃(Et−1)⊕ E(Et−1), (20)

with E0 containing only the current state of the system.
The expression in (20) allows us to propagate the system

uncertainty to the end of the task horizon. Assume that the
system starts at the known state x0 and that we aim to
linearize the system in (12) over a horizon H around a
trajectory x′0,u

′
0,x
′
1,u
′
1, . . . ,x

′
H−1,u

′
H−1. Using (20), we

can propagate the uncertainty sets until the end of the
horizon H . Initially, E0 = [x0] := [x′0] as there is no
uncertainty about the starting state of the system. The only
unknown is the control input u0, which we assume is
constrained within a set U0 that is centered around the
linearization point u′0. The same assumption is made for
all ui, Ui, i = 1, . . . ,H − 1. Hence, the confidence set
E1 in which we can expect the system to be at the next
time step with high probability is given by (17) for which
dmax(z′0) = supu∈U0‖u − u′0‖22 with u′0 = 0. At the next
time step, the fact that the linearization state x′1 is fixed
allows us to compute dmax(z′1) = dmax(x′1) + dmax(u′1),
which is needed to propagate the confidence set E1 to the
next time step E2. For the maximum distance from the
control linearization point, the same logic applies as before,
dmax(u′1) = supu∈U1‖u−u′1‖22. To compute dmax(x′1), we
constrain the system to lie within a set X1 that is centered
around x′1. The choice of that set is made by balancing the
conservativeness and the feasibility of the controller. The
same process is repeated throughout the horizon H using
each time u′i = 0. The only thing left is to define the
sequence of states x′1, . . . ,x

′
H−1 on which the system will

be linearized. For that we propose using the time-shifted
open-loop trajectory of the previous time step solution of
a receding horizon control problem (21).

Proposition 6.2: Let H denote the horizon of a trajectory
and suppose that the assumptions of Theorem 5.1 hold. By
using (20) to propagate the uncertainty sets along a trajectory
x1, . . . , xH obtained by applying the inputs u1, . . . , uH−1,
the realized state of the system xt lies inside Et for all t =
1, . . . ,H with probability at least (1− δ)nx .

Proof: This follows from the uniform error bound in
Lemma 6.1 and the propagation rule (20).
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C. Control Policy
We can now combine and incorporate the estimated dy-

namics from Section III and the linearization and uncertainty
propagation from Section VI to design a control policy that
completes a specific task with high probability. We will
synthesize such a control policy π using an MPC formulation
of horizon Ht for a task with duration N . More specifically,
at time step t we solve the following convex optimization
problem

J∗(xt, Ht) =

min
ut|t,...,ut+Ht−1|t

J(x̄t|t, . . . , x̄t+Ht|t,ut|t, . . . ,ut+Ht−1|t)

s.t. x̄t|t − xt ∈ Et|t,uk|t ∈ Uk|t (21a)

x̄k+1|t = f̃k|t(x̄k|t,uk|t) (21b)
x̄k|t ∈ Xk|t 	 Ek|t (21c)
∀k = t, . . . , t+Ht − 1 (21d)
x̄t+Ht|t ∈ O 	 Et+Ht|t, (21e)

where the subscript t + k|t denotes the kth state when the
input sequence [ut|t, . . . , ut+k|t] is applied on system (21b).
The objective J is a convex cost function associated with a
particular task, Et|t = [xt], Xk|t and Uk|t, k = t+1, . . . , t+
Ht − 1 denote the state and input constraint sets and the
linearized estimation of the dynamics function f̃k|t is given
by (13). For each k this function is linearized around the
time-shifted open-loop trajectory obtained at time t− 1. We
denote with x̄ the nominal state of the system that excludes
the disturbance. For generality, we allow the state Xk|t and
input Uk|t constraint sets to be time dependent. Given the
solution to (21), the MPC policy at time step t is

ut = π(xt) = u∗t|t, (22)

which is used to propagate the system to the next state. In
the same manner, at the next time step t + 1 we obtain a
policy π(xt+1) by solving (21) again for the new measured
state xt+1. The whole process is repeated until the goal set
O is reached.

The optimization problem (21) is a convex optimization
problem that can be solved efficiently. However, the problem
may become infeasible at some time step, if for instance
constraint (21c) results in an empty set. In this case, we
employ a shrinking horizon strategy, outlined in Algorithm 2,
that drives the system towards the goal set O with high
probability.

To obtain an optimal policy for the system, we need to
assume the existence of an optimal trajectory at the beginning
of the task. This is required since the problem (21) can be
infeasible at the first time step otherwise.

Assumption 6.3: We are initially given a feasible trajec-
tory that can drive the system from a starting state xs to the
goal set O.
Given this assumption, Algorithm 2 will drive the system to
the terminal set O with high probability.

Theorem 6.4: Given βn and γn as in (7a) and (7c), the
control policy π in (22) obtained from Algorithm 2 drives
the system to the terminal set O with high probability.

Algorithm 2: Shrinking Horizon Control
Given xt, Ht, optimal trajectory at the previous time
step x̄∗k|t−1, k = t, . . . , t+Ht

if J∗t (xt, Ht) feasible then
Set Ht+1 = Ht

Let u∗t|t, . . . ,u
∗
t+Ht−1 = arg min J∗t (xt, Ht)

else
Set Ek|t = Ek|t−1, Xk|t = Xk|t−1, f̃k|t = f̃k|t−1∀k
Solve J∗t (xt, Ht − 1)
Set Ht+1 = Ht − 1
Let u∗t|t, . . . ,u

∗
t+Ht−2 = arg min J∗t (xt, Ht − 1)

end
Return Ht+1, u∗k|t, k = t, . . . , t+Ht − 1

Proof: The theorem can be proved by induc-
tion. Assume that at time t the finite-time optimal con-
trol problem solved by Algorithm 2 is feasible and let
[u∗t|t, . . . ,u

∗
t+Ht−1|t] and [x̄∗t|t, . . . , x̄

∗
t+Ht|t] be the optimal

input and nominal state sequences. Notice that if

xt+1 − x̄∗t+1|t ∈ E1|t, (23)

then at the next time step t + 1, we have that the shifted
input and nominal state sequences [u∗t+1|t, . . . ,u

∗
t+Ht−1|t]

and [x̄∗t+1|t, . . . , x̄
∗
t+Ht|t] are feasible for problem (21) with

the prediction horizon Ht−1 and for Ek|t+1 = Ek|t, Xk|t+1 =

Xk|t and f̃k|t+1 = f̃k|t, for k = t+ 1, . . . , t+Ht − 1. From
Proposition 6.2, we have that (23) holds with probability
(1 − δ)nx , and therefore problem J∗t (xt+1, Ht − 1) from
Algorithm 2 is feasible with probability (1 − δ)nx . Then at
time t+ 1, Algorithm 2 returns a feasible sequence of input
actions with probability (1− δ)nx .

So far we have shown that if at time t Algorithm 2 returns
a feasible sequence of inputs, then at time t+1 Algorithm 2
is feasible with high probability. By assumption, we have
that at time t = 0 Problem (21) is feasible for H0 = H .
Therefore, we conclude by induction that for a control task
of length N , Algorithm 2 returns a feasible control sequence
for all t ∈ {0, N} with high probability.

VII. SIMULATIONS

In this section, we provide simulations that showcase
circumstances under which using TPR is preferred to GPR.
Although this work focuses on measurements polluted with
outliers, we will further provide results for the case of
heteroscedastic measurement noise. To evaluate the quality of
the confidence intervals between the two methods, we offer
a simple control simulation for a one-dimensional problem.
More specifically, the system dynamics function is

xt+1 = g(xt, ut) = 3
√
xt + ut,

where xt, ut ∈ R and the known model h is zero. We
collect a dataset of noisy transitions of size n = 200
by applying uniformly random control inputs at randomly
chosen states. The goal of the task is to steer the system
from the starting state xs = 5 to goal state xf = −1 by
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solving (21) with a horizon H0 = 4 and N = 6. We will
focus in showcasing the accuracy of the confidence intervals
and not the performance of Algorithm 2. Thus we will be
removing constraint (21c) from the optimization problem.
The control input and state constraint sets are Uk|t = [−1, 1]
and Xk|t = [x̄k|t−1 − 1, x̄k|t−1 + 1], k = t, . . . , t + Ht − 1,
while O = [x̄f − 1, x̄f + 1]. The cost function is a quadratic
function with Q = 1 and R = 5. Theoretical estimation
of the quantities appearing in the uniform error bound in
Theorem 5.1 will lead to an excessive overestimation of
the confidence sets. For that reason, and in order to have
a more direct comparison to GPR, we follow [19] in which
the authors set βn = 2 and we set 3

√
βn = 2 and γn(τ) = 0.

The kernel function k is the squared exponential kernel. The
Lipschitz constants are set to L∇µ = Lσ = 0.1 and the
degrees of freedom are ν = 5. The comparison between
TPR and GPR is done in two ways. First, by providing
plots of the confidence sets E2|1, E3|2, . . . to visually inspect
the uncertainty sets. Second, for each of the cases studied
below we carry out 10 simulations of the task, each time
with a newly generated dataset, and measure the number of
times the uncertainty sets failed to include the actual system
xt+1|t /∈ Et+1|t for t = 1, . . . , N .

A. Outliers

In the case of outliers, we assume that the system can
potentially experience abnormal noise levels that lie in the
excess of 3 standard deviations away from the unpolluted
data. In this scenario we restrict the presence of outlier data
points only in the region [−1, 1] to further emphasize the
importance of local models. The unpolluted observations are
assumed to have an observation noise that follows a normal
distribution wt ∼ N (0, 1). Although outliers are relatively
infrequent in datasets, we pollute our datasets with up to
20% outlying data points for exposition purposes.

Fig. 1: Confidence intervals Et+1|t using global models. Blue
and red dots designate the ordinary data and the outliers,
respectively.

In Figures 1 and 2, we plot the uncertainty sets
E2|1, E3|2, . . . that we obtain from the closed-loop solution
for the cases of global and local estimations respectively.

Note that the closed loop trajectories coincide, as the update
rule (6a) is the same for both methods. The difference
between the two methods lies in the confidence sets plotted
with the error bars. These examples clearly demonstrate the
benefits of TPR in comparison to GPR. In the global esti-
mation case GPR returns uncertainty sets that are relatively
uniform along the domain as the outliers do not affect the
posterior variance. On the other hand, the uncertainty sets
in TPR are scaled up due to the magnitude of the outliers.
However, if outliers are present only in certain regions of
the state space, then TPR will tend to predict scaled up
uncertainty sets even for the regions that do not exhibit
outliers.

To alleviate this issue we propose using the local variant
of TPR with m = 10 so that local uncertainty cannot
mitigate throughout the state space. Figure 2 shows that
local GPR still fails to capture the higher variation between
[−1, 1] but local TPR exhibits scaled-up uncertainty sets in
that region, in comparison to the rest of the state space.
Table I demonstrates the fail Rates (FR), i.e. the times for
which xt+1|t /∈ Et+1|t for t = 1, . . . , N , averaged over 10
simulations.

Fig. 2: Confidence intervals Et+1|t using local models. Blue
and red dots designate the ordinary data and the outliers,
respectively.

B. Heteroscedasticity

This section studies the potential benefits of using TPR
in the case of heteroscedastic noise in the state space. We
argue that the local variant of TPR can be used in the case of
heteroscedastic noise in a computationally efficient manner.
The plots in Figures 3 and 4 show how the confidence sets
Et+1|t adapt to the local variability of the noise when using
TPR. In these simulations, we used three different Gaussian
noise levels with σ = 4, 1 and 0.1 in three distinct regions
of the domain [−1, 1], [1, 3] and [3, 6], while the models
assume that the actual noise of the data is white Gaussian. In
the global estimation scheme, TPR uniformly scales up the
confidence sets to compensate for the increased variability
of the blue data points, whereas the local version scales up
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or down the confidence sets depending on the high or low
variability of the region.

Fig. 3: Confidence intervals Et+1|t using global models.
Heteroscedastic noise with σ = 0.01 (purple), σ = 1 (red),
and σ = 4 (blue).

Fig. 4: Confidence intervals Et+1|t using local models. Het-
eroscedastic noise with σ = 0.01 (purple), σ = 1 (red), and
σ = 4 (blue).

GPR TPR GPR (local) TPR (local)
Outlier FR (%): 55.7 19.7 60.7 1.7
Heteroscedastic FR (%): 39.5 8.1 29.5 9.6

TABLE I: Percentage of times xt+1|t /∈ Et+1|t, ∀t for GPR
and TPR estimation averaged over 10 simulations.

VIII. CONCLUSION

We studied the benefits of using the Student-t Process
Regression framework in control settings. The posterior
variance of TPR can capture the additional variability due
to statistical outliers, which are common in robotics applica-
tions, and thus it can be used to design control policies that
are more robust to outliers. We proved uniform error bounds
for the prediction error when using TPR, and then presented
a method to linearize the estimated nonlinear dynamics while

propagating the uncertainty throughout a trajectory. Finally,
we presented simulations that showcase the benefits of TPR
over GPR in the presence of outliers as well as in the case
of heteroscedastic noise.
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