
Differentiable Convex Optimization for Meta-Learning

Tanmay Gautam, Samuel Pfrommer, Somayeh Sojoudi

Abstract— Conventional optimization methods in machine
learning and controls rely heavily on first-order update rules.
Selecting the right method and hyperparameters for a particular
task often involves trial-and-error or practitioner intuition,
motivating the field of meta-learning. We generalize a broad
family of preexisting update rules by proposing a meta-learning
framework in which the inner loop optimization step involves
solving a differentiable convex optimization (DCO). We illustrate
the theoretical appeal of this approach by showing that it
enables one-step optimization of a family of linear least squares
problems, given that the meta-learner has sufficient exposure to
similar tasks. Various instantiations of the DCO update rule are
compared to conventional optimizers on a range of illustrative
experimental settings.

I. INTRODUCTION

First-order optimization methods underpin a wide range of
modern control and machine learning (ML) techniques. The
field of deep learning, including domains such as computer
vision [1], [2], natural language processing [3], deep reinforce-
ment learning [4], and robotics [5], has yielded revolutionary
results when trained with variants of gradient descent such
as stochastic gradient descent (SGD) [6] and Adam [7].
Algorithms like projected and conditional gradient descent
extend the class of first-order methods to accommodate
problems with constraints such as matrix completion, or
training well-posed implicit deep models [8], [9].

While this proliferation of methods has facilitated rapid
advances across the control and ML communities, designing
update rules tailored to specific problems still remains a
challenge. This challenge is exacerbated by the fact that
different domains are tasked with solving distinct problem
types. The deep learning community is, for instance, tasked
with solving high-dimensional non-convex problems whereas
the optimal control community often deals with constrained
convex problems where the constraints encode restrictions
on the state space and system dynamics. Moreover, even
different problem instances within a particular problem class
may require significantly varying update rules. As an example,
within deep learning, effective hyperparameter (e.g. learning
rate) selection for algorithms such as Adam and SGD is highly
dependent on the underlying model that is to be trained.

A. Contributions

This work proposes a new data-driven approach for
optimization algorithm design based on differentiable convex
optimization (DCO). This approach enables the use of

All authors are with the Department of Electrical Engineering
and Computer Sciences, University of California Berkeley,
Berkeley, CA, 94720. tgautam23@berkeley.edu;
sam.pfrommer@berkeley.edu*; sojoudi@berkeley.edu

previous optimization experience to propose update rules that
efficiently solve new optimization tasks sampled from the
same underlying problem class. We start by introducing the
notion of DCO as a means to parameterize optimizers within
the meta-learning framework. We then propose an efficient
instantiation of meta-training that can be leveraged by the
DCO optimizer to learn appropriate meta-parameters. To illus-
trate the generality of the DCO meta-learning framework, we
then formulate concrete differentiable quadratic optimizations
to solve unconstrained optimization problems, namely, DCO
Gradient (DCOG), DCO Momentum (DCOM) and DCO
General Descent (DCOGD). These DCO instantiations are
generalizations of existing first-order update rules, which in
turn demonstrates that existing methods can be thought of
special cases of the DCO meta-learning framework.

DCO also provides sufficient structure conducive to rigor-
ous theoretical analysis for the meta-learning problem. We
establish convergence guarantees for the DCOGD optimizer
to the optimal first-order update rule that leads to one
step convergence when considering a family of linear least
squares (LS) problems. Finally, we illustrate the potential
of our proposed DCO optimizer instantiations by comparing
convergence speed with popular existing first-order methods
on proof-of-concept regression and system identification tasks.

B. Related Works

1) Meta-Learning: Deep learning has been shown to
be particularly performant in scenarios where there is an
abundance of training data and computational resources [1],
[10], [3], [11]. This, however, excludes many important
applications where there is an inherent lack of data or where
computation is very expensive. Meta-learning attempts to
address this issue by gaining learning process experience
on similarly structured tasks [12]. This learning-to-learn
paradigm is aligned with the human and animal learning
process which tends to improve with greater experience.
Moreover, by making the learning process more efficient
meta-learning targets the aforementioned issues of data and
compute scarcity.

Meta-learning methods can be categorized into three broad
classes. In [13], authors provide a unifying formulation
that encapsulates a wide class of existing meta-learning
approaches.

Optimizer-focused methods aim to improve the underlying
optimizer in the inner loop used to solve the tasks at hand
by meta-learning optimizer initialization or hyperparameters.
Within few-shot learning, Model Agnostic Meta Learning
(MAML) and its variants use prior learning experience to
meta-learn a model/policy initialization that requires just a

few inner gradient steps to adapt to a new task [14], [15].
Other works aim to meta-learn optimizer hyperparameters. In
[16], [17], authors attempt to identify optimal learning rate
scheduling strategies. Another strategy within this category
is to directly learn a parameterization of the optimizer. Due
to the sequential structure of inner loop parameter updates,
recurrent architectures have been considered in this space
[18], [19]. The inner loop optimization has also been viewed
as a sequential decision-making problem and consequently
optimizers have also been characterized as policies within an
RL setting [20].

Black-box methods represent the inner loop via a forward-
pass of a single model. The learning process of the inner loop
is captured by the activation layers of the underlying model.
The inner loop learning can be instantiated as RNNs [21], [22],
convolutional neural networks (CNN) [23] or hyper-networks
[24]. The meta-learning loop finds the hyperparameters of
the inner loop network yielding good performance.

In non-parametric methods, the inner loop aims to identify
feature extractors that enable the matching of validation and
training samples to yield an accurate prediction using the
matched training label. The meta-loop aims to identify the
class of feature extractors that transform the data samples
into an appropriate space where matching is viable [25], [26].

2) Implicit Layers: Recent work has proposed a novel
viewpoint wherein deep learning can be instantiated using
implicit prediction rules rather than as conventional explicit
feedforward architectures [8], [27], [28]. In [8] and [28]
authors formalize how deep equilibrium models, characterized
by nonlinear fixed point equations, represent weight-tied,
infinite-depth networks. In this framework, [8] demonstrates
how the aforementioned models are able to generalize most
of the popular deep learning architectures. In [27], authors
propose neural ordinary differential equations (ODE): an
alternative instantiation of an implicit layer where the layer
output is the solution to an ODE. This is shown to be an
expressive model class yielding particularly impressive results
when processing sequential data. Implicit layers have also
been characterized as differentiable optimization layers. The
work [29] introduces differentiable quadratic optimization
(QP) layers that can be incorporated within deep learning
architectures. In [30] authors develop software to differentiate
through defined convex optimization problems. Some notable
applications of differentiable optimization layers include
parameterizing model predictive control policies [31] and
representing a maximum satisfiability (MAXSAT) solver [32].

C. Notations

Throughout this work, we consider the problem of solving
a task T which consists of an optimization problem and an
evaluation step. The optimization problems are characterized
with a loss function l(θ) over decision variables θ belonging
to some parameter space Θ ⊆ Rp. For evaluation, we denote
a validation criterion lval that assesses the optimizer θ⋆

found in the associated problem. We refer to solving the
optimization over θ as the inner loop problem. At the meta-
level we consider an algorithm Opt(· ;ϕ) : Θ → Θ with

meta-parameters ϕ which generates a sequence of parameter
updates using first-order information to solve the inner loop
problem. We denote the horizon of the parameter update
sequence by T . By meta-training, we refer to the optimization
over the meta-parameters over a training set of N tasks
{Ti}Ni=1. For a vector-valued function f(x) : Rd → Rp we
let the operator ∇xf(·) : Rd → Rd×p denote the gradient. If
f : Rd → R is a scalar function, the Hessian of f is denoted
by ∇2

xf(·) : Rd → Rd×d. We denote that a square symmetric
matrix A is positive definite (all eigenvalues strictly positive)
by A ≻ 0. The vectorization of a matrix A ∈ Rm×n is
denoted by vec(A) ∈ Rmn and is constructed by stacking
the columns of A. The Kronecker product of two matrices
A and B is denoted A ⊗ B. For a vector x ∈ Rn and
p ≥ 1, ∥x∥p denotes the ℓp-norm of x. For m ∈ N+,
we define [m] to be the set {a ∈ N+ | a ≤ m}, where
N+ is the set of positive integer numbers. We define the
operator ⊙ as an elementwise multiplication. U(a, b) denotes
the uniform probability distribution with support [a, b] and
N (µ, σ2) represents a univariate normal distribution centered
at µ with standard deviation σ. Finally, we define ED[·] as
the expectation operator over distribution D.

II. BACKGROUND

This section contextualizes our proposed framework. Sec-
tion II-A illustrates how conventional first-order update rules
can be typically expressed as the solution to a convex
optimization problem. Section II-B then elaborates on the
differentiable convex optimization methods that can be used to
differentiate through the aforementioned inner loop gradient
steps to update meta-parameters.

A. First-order methods

We consider a generic unconstrained optimization problem

min
x

f(x) (1)

with differentiable objective f . First-order methods are a
popular means to solve optimization problems of the form (1).
The first-order property refers to the underlying methods’ use
of gradient information to generate a sequence of parameter
iterates. Next we briefly survey a subset of important first-
order methods that solve optimization problems of the form
(1). We highlight how the update rules of these algorithms can
be formulated as convex optimization problems themselves.
This motivates the formulation of a generic parameterized
convex optimizer to yield optimal parameter updates.

1) Gradient descent: Gradient descent (GD) is a standard
first-order method used to solve a variety of unconstrained
optimization problems. For an unconstrained optimization
problem, GD updates aim to reconcile the notion of minimiz-
ing a linear approximation of the objective while simultane-
ously maintaining proximity to the current parameter iterate.
This can be cast as the convex optimization

x(t+1) = argmin
x
{∇f(x(t))⊤(x− x(t)) +

λ

2
||x− x(t)||22}

(2)

where λ > 0 is the step size. Solving (2) in closed-form
yields the well-known GD update.

2) Gradient descent with Momentum: A popular practical
variation of GD is to utilize the history first-order information
within the parameter update rule. This is referred to as
GD with momentum. The contribution of historic first-order
information is captured by the notion of a state. More
concretely, we define state update for t > 1 as

S(t+1) = βS(t) + (1− β)∇f(x(t)), (3)

where β ∈ [0, 1] is an averaging parameter and we initialize
S(1) := ∇f(x(1)). The convex update rule in this method
substitutes ∇f(x(t)) with S(t+1):

x(t+1) = argmin
x
{(S(t+1))⊤(x− x(t)) +

λ

2
||x− x(t)||22}

(4)

Other notable first-order methods whose updates are defined
via convex optimization problems are the proximal gradient
(PG) [33], [34] and mirror descent (MD) [35], [36] meth-
ods. The former addresses unconstrained nondifferentiable
problems whose objective is a composite function that can
be decomposed into the sum of a differentiable and non-
differentiable part. The latter targets potentially constrained
problems with updates that simultaneously minimize a linear
approximation of the objective and a proximity term between
parameter updates.

B. Differentiable Optimization Layers

We now present the formulation for a general DCO [30]:

D(x;ϕ) := argmin
y∈Rn

f0(x, y;ϕ)

s.t. fi(x, y;ϕ) ≤ 0 for i ∈ [q],

gj(x, y;ϕ) = 0 for j ∈ [r], (5)

where x ∈ Rd is the optimization input and y ∈ Rn is
the solution. Here optimization parameters are defined by a
vector ϕ. The functions fi parameterize inequality constraint
functions which are convex in y and gj parameterize affine
equality constraints. As with the constraint functions, the
objective f0 is convex in the optimization variable y.

Note that this formulation defines a general parameterized
convex optimization problem in the output y. The solution
to the optimization is a function of the input x.

When embedding DCO as a layer within the deep learning
context, we require the ability to differentiate through D
with respect to ϕ when performing backpropagation. This is
achieved via implicit differentiation through the Karush-Kuhn-
Tucker (KKT) optimality conditions as proposed in [29], [37].
Particular instantiations of DCO, such as parameterized QPs,
can enable more efficient backpropagation of gradients [29].

III. META-OPTIMIZATION FRAMEWORK

Consider the setting where we have N training tasks
Ti = (li, l

val
i) for i ∈ [N], where each task consists of a

tuple containing a training loss function li and an associated
performance metric lval

i . Each of these tasks is sampled from

an underlying distribution D, i.e Ti ∼ D ∀i ∈ [N]. For task
Ti, we consider the optimization

min
θi∈Θ

li(θi) (6)

where we aim to minimize loss li over the decision variable
θ constrained to the set Θ ⊂ Rp. We let ϕ denote the set
of meta-parameters that configure the method used to solve
optimization (6), e.g. ϕ could include the learning rate in a
gradient-based algorithm. The validation loss lval

i is used to
evaluate the final θ⋆i recovered from solving (6). As motivation
for this setup, we consider the general training-validation
procedure seen in ML. Here li can be seen as the loss on
training data with respect to model parameters θ and lval

i

denotes the loss on validation data. Note that for problems
where the metric of interest is in fact the objective of (6), we
can trivially define lval

i := li.
In this meta-learning framework, the goal is to perform

well on a new task Ttarget = (ltarget, l
val
target) ∼ D using previous

experience from tasks {Ti}Ni=1. Since Ttarget is sampled from
the same distribution D as the training tasks, it has structural
similarities that can be exploited by meta-learning.

A. Inner Optimization Loop

Depending on the structure of (6), several iterative methods
exist to solve the considered problem. The chosen algorithm
has an update rule that yields a sequence of parameter updates
{θ(t)i }Tt=1 where T is defines the total number of updates and
i indexes the associated task Ti. Within the class of first-order
methods, these update rules require computing or estimating
(e.g. within reinforcement learning) the gradient G

(t)
i :=

∇θli(θ
(t)
i) to solve the inner optimization of task Ti. The

algorithm Opt applies the computed first-order and zeroth-
order information at time step t along with an abstraction of
past information encapsulated by state S(t) to yield both an
updated parameter θ(t+1)

i and state S(t+1):

(θ
(t+1)
i , S

(t+1)
i) := Opt(θ(t)i , S

(t)
i , G

(t)
i ;ϕ). (7)

Here we characterize the optimizer with meta-parameters ϕ.
Solving the inner loop problem to completion involves recur-
sively applying (7) T times from an initial condition θ

(1)
i and

history state S
(1)
i , which we denote by OptT (θ

(1)
i , S

(1)
i ;ϕ).

Note that moving forward, unless made explicit, we suppress
the return argument of the next state, i.e. we utilize the
shorthand θ

(t+1)
i := Opt(θ(t)i , S

(t)
i , G

(t)
i ;ϕ).

B. Meta-Learning Loop

The meta-learning loop wraps around the inner loop. It
aims to find optimal meta-parameters ϕ⋆ that ensure that for
each task Ti in distribution D, the inner loop optimizer Opt
produces θ⋆i that performs well on metric lval

i (θ⋆i):

min
ϕ

ETi∼D[l
val
i (θ⋆i (ϕ))] (8)

where ETi∼D denotes the expectation over task distribution
D. An empirical version of this meta-learning process with
training tasks {Ti}Ni=1 can be formulated as

ϕ⋆ = argmin
ϕ

1

N

N∑
i=1

lval
i (θ⋆i)

= argmin
ϕ

1

N

N∑
i=1

lval
i (argmin

θ∈Θ
li(θ))

≈ argmin
ϕ

1

N

N∑
i=1

lval
i (OptT (θ

(1)
i , S

(1)
i ;ϕ)), (9)

:= argmin
ϕ

ltotal(ϕ) (10)

where the inner optimization is approximated by running
algorithm Opt for T time steps. Optimization (9) can be
approximated by another iterative gradient-based scheme that
estimates ∇ϕl

val
i (θ⋆i). This requires differentiation through the

inner loop update rule Opt with respect to meta-parameters
ϕ. More specifically, we require differentiation with respect
to ϕ through a trajectory of parameter updates with horizon
T . The meta-parameters will then be updated using a meta-
optimizer of choice that uses first-order information on the
meta-parameters:

ϕ(t+1) := MetaOpt
(
ϕ(t),∇ϕl

total
(
ϕ(t)
))

. (11)

Remark 1. Note that an approximated attempt at meta-learning
is ubiquitous in practice. More specifically, the notion of
hyperparameter selection (e.g. learning rate) for a first-order
method is an instance of approximated meta-learning. In this
context, we let hyperparameters be viewed as meta-parameters.
Given a task, the goal in hyperparameter selection is to
identify these such that the algorithm Opt generates θ⋆i with
low lval

i (θ⋆i). In practice, the selection of hyperparameters (i.e.
MetaOpt) is restricted to crude rules of thumb or grid search
guided by previous experience of similar problems. It is
clear how such approximations can often fall short especially
when considering high-dimensional or even continuous meta-
parameter search spaces. Moreover, it does not accommodate
parameterizing Opt to describe novel update rules. The meta-
learning framework in (9) generalizes the hyperparameter
selection problem and makes it more rigorous.

C. Meta-Training

The meta-training algorithm for an arbitrary optimizer Opt
with meta-parameters ϕ is presented in Algorithm 1. For
each meta-parameter update, average validation losses across
training tasks {Ti}Ni=1 are accumulated in ltotal. For each
task Ti, these validation losses are measured after running
the inner loop optimization using Opt(·;ϕ) for T iterations.
MetaOpt(·, ·) then uses first-order information on ltotal with
respect to ϕ to update the meta-parameters.
Remark 2. For a specific task Ti, the role of the meta-
optimizer can be viewed as trying to learn the loss landscape
of the inner problem locally around θ

(t)
i for t ∈ [T] and adapt

Algorithm 1 Meta-Training Framework

Input: Training set consisting of N tasks {Ti}Ni=1

Design choices: Inner loop horizon T , meta-training epochs
M , optimizer Opt(·;ϕ), meta-optimizer MetaOpt(·, ·)
Return: Meta-parameters ϕ

begin training
1. Initialize meta-parameters ϕ(1)

2. Initialize inner loop parameters and initial optimizer
states {θ(1)i , S

(1)
i : i ∈ [N]}

for k ∈ [M] do
3. Initialize ltotal ← 0
for i ∈ [N] do

for t ∈ [T] do
4. Compute inner loop gradient G(t)

i ← ∇θli(θ
(t)
i)

5. (θ(t+1)
i , S

(t+1)
i)← Opt(θ(t)i , S

(t)
i , G

(t)
i ;ϕ)

end for
6. ltotal ← ltotal + lval

i (θ
(T+1)
i)/N

end for
7. ϕ(k+1) ←MetaOpt(ϕ(k),∇ϕl

total)
end for
end training

the optimizer accordingly to encourage efficient descent. Thus,
the updates within the inner loop help the meta-optimizer
get a better gauge of the loss landscape. In turn, T should
be selected based on how complicated or spurious the inner
problem’s loss landscape is. For more complicated inner
problems, more information (i.e. updates) are necessary to
gauge the loss landscape. For simpler problems, a smaller
horizon should suffice.
Remark 3. Algorithm 1 allows for flexibility when choosing
MetaOpt. Stochastic first-order methods can be employed to
solve the meta-training problem. That is, rather than using
the entire batch of N tasks {Ti}Ni=1, a random minibatch
can be selected to perform a meta-parameter update. This
strategy becomes particularly useful in settings where N is
prohibitively large. Furthermore, adding stochasticity in the
MetaOpt procedure may reap some known benefits of SGD
such as not succumbing to local minima.

IV. DIFFERENTIABLE CONVEX OPTIMIZERS

We now propose various instantiations of the the inner loop
optimization step (7) as differentiable convex optimizations.
More generally, our proposed DCO meta-learning framework
parameterizes optimizer Opt as a DCO introduced in (5):

Opt(·;ϕ) := D(·;ϕ). (12)

As discussed in Section II-A, this formulation contains a
range of well-known first-order update rules as special cases.

To demonstrate the representational capacity of general
DCOs as formulated in (5) within the meta-learning context,
we focus on the subclass of unconstrained differentiable QPs.
Note that this is a narrower subclass of DCO as we no

longer have an arbitrary convex objective but rather a convex
quadratic one. However, as we will demonstrate, this narrower
formulation lends itself naturally to generalize the structure
of update rules of existing gradient-based methods. While
the formulations themselves admit closed-form solutions, we
treat these as convex optimizations in our implementations
to stay true to the DCO framework.

1) DCO Gradient: We propose DCO Gradient based on
the convex optimization (2) that encodes the vanilla GD
update rule. The formulation discards the optimizer state S

(t)
i

and simply encodes the update rule:

θ
(t+1)
i := argmin

θ
{
(
G

(t)
i

)⊤
θ +

1

2
||Λ⊙ (θ − θ

(t)
i)||22}, (13)

where the parameterization is given by ϕ := Λ ∈ Rp. In
this formulation, learning the parameter Λ can be viewed as
optimizing the per-weight learning rate within vanilla GD.

2) DCO General Descent (DCOGD): We introduce a
generalization of the previous approach that enables a general
linear transformation of the update gradient:

θ
(t+1)
i := argmin

θ
{
(
BG

(t)
i

)⊤
θ +

1

2
||θ − θ

(t)
i ||

2
2}, (14)

where ϕ := B ∈ Rp×p.
3) DCO Momentum (DCOM): Finally, we extend formu-

lation (13) to include momentum information:

S
(t+1)
i := M ⊙G

(t)
i + (1−M)⊙ S

(t)
i , (15)

θ
(t+1)
i := argmin

θ
{
(
S
(t+1)
i

)⊤
θ +

1

2
||Λ⊙ (θ − θ

(t)
i)||22},

(16)

where the parameterization is given by ϕ := {Λ,M ∈
Rp}. Here, the DCO learns both the learning rate and the
momentum averaging mechanism on a per-weight basis.

V. THEORY

We illustrate the potential of the DCO framework by
analyzing the meta-learner process for a class of linear least-
squares problems. Specifically, we let the tasks Ti be the
least-squares problems

min
θ∈Rp

∥Xθ − (y +X∆i)∥22, (17)

where X is a fixed feature matrix with X⊤X invertible and
the regression targets vary using task-specific ∆i. We restrict
our task-dependent regression target shifts to lie in the range
space of X for theoretical tractability and concreteness: note
that each task assumes a shifted version of the same loss
landscape, with the optimal weights also shifted by ∆i.

Namely, let θ′ = (X⊤X)−1X⊤y be the typical least-
squares solution to (17) in the case where ∆i = 0. It is then
clear by inspection that θ∗i = θ′+∆i, and that the minimizing
loss li(θ∗i) is invariant to i; we thus denote the solution to (17)
by l∗. Note that here we consider the case where training and
validation data are identical for a particular task; i.e. li = lval

i .
With some abuse of notation, our kth meta-optimization step
target task loss

l
(k)
target := ltarget(Opt1(θ

(1);ϕ(k))) (18)

consists of an identically constructed task (17) with a distinct
∆ and θ(1). Concretely, we consider the performance on the
target loss after one inner loop optimizer step using the meta-
parameters ϕ(k) obtained from k meta-optimization steps.
Naturally, we expect that increasing both the number of meta-
optimization steps k and the number of training tasks N

should help reduce the target loss, ideally such that l
(k)
target

approaches the optimum l∗. This is formalized in Theorem 1.

Theorem 1. Consider executing Algorithm 1 with the
DCOGD optimizer (14) and T = 1 on the set of shifted
least-squares problems {Ti}Ni=1 introduced in (17), each with
an arbitrary but fixed initial parameter θ(1)i ∈ Rp. Instantiate
MetaOpt as standard GD with step size η > 0. Finally, define
the set of vectors {Zi}Ni=1 by

Zi := θ
(1)
i −∆i − θ′.

Then if {Zi}Ni=1 span Rp, there exists a sufficiently small η
such that the one-step target task loss (18) approaches the
optimum as the number of meta-steps k →∞; specifically,

l
(k)
target − l∗ ≤ O((1− ϵ)k),

for some 0 < ϵ < 1.

Proof. We can solve the gradient update from (14) in closed
form. Doing this yields the following weight vector the ith
task after one step on the inner problem:

θ
(2)
i := θ

(1)
i −BG

(1)
i . (19)

The total loss ltotal with T = 1 can therefore be written as:

ltotal =
1

N

N∑
i=1

∥X(θ
(1)
i −BG

(1)
i)− (y +X∆i)∥22

=
1

N

N∑
i=1

∥XBG
(1)
i −Xθ

(1)
i + y +X∆i∥22. (20)

The meta-learning problem aims to minimize this loss over
the meta-parameter ϕ = B. We will proceed with two steps:
(1) show that there exists a meta-parameter B∗ for which
ltotal equals the optimal minimizer l∗, and (2) show that B∗

is attained by our meta-learning procedure.
The existence of such a minimizing B∗ can be shown

directly by letting B∗ = (1/2)(X⊤X)−1. Noting that

G
(1)
i = 2X⊤X(θ

(1)
i −∆i)− 2X⊤y

from differentiation of (17), we can substitute B∗ and G
(1)
i

into (20) to yield:

ltotal =
1

N

N∑
i=1

∥(X⊤X)−1X⊤y − y∥22 = l∗. (21)

We now show that B∗ is attained by the meta-learning
procedure. Namely, we consider our total loss for each outer
meta-learning step in Algorithm 1 to be a function ltotal(B)
of our meta-parameter ϕ = B. We let ltarget(B) be defined
similarly. It is easy to verify that the gradient ∇Bl

total is
Lipschitz in B; therefore, we aim to show strong convexity

of ltotal in B to complete the proof using standard convex
optimization results.

For convenience, define y′i := −Xθ
(1)
i + y + X∆i.

Substituting into (20), we want to show that the following is
strictly convex:

ltotal(B) =
1

N

N∑
i=1

∥XBG
(1)
i + y′i∥22.

Expanding the square, scaling, and dropping terms which
are linear in B and thus do not affect convexity, we have that
ltotal(B) is strictly convex iff f(B) is strictly convex, where

f(B) =

N∑
i=1

(G
(1)
i)⊤B⊤X⊤XBG

(1)
i .

With some abuse of notation, we aim to compute the
Hessian of f(Bv) with respect to the vectorized Bv =
vec(B). Using standard matrix calculus identities [38] gives

∂f

∂B
= 2

N∑
i=1

X⊤XBG
(1)
i (G

(1)
i)⊤

= 2X⊤XB

N∑
i=1

G
(1)
i (G

(1)
i)⊤.

In order to compute the Hessian, we need to express
vec(∂f

∂B) = ∂f
∂Bv . Using the standard identity vec(ABC) =

(C⊤ ⊗A) vec(B) yields

∂f

∂Bv
=

(
N∑
i=1

G
(1)
i (G

(1)
i)⊤ ⊗ 2X⊤X

)
Bv.

Note that the gradient of f with respect to Bv is now
linear in Bv. It is therefore immediate that that our desired
Hessian is a constant matrix

∇2
Bvf =

N∑
i=1

G
(1)
i (G

(1)
i)⊤ ⊗ 2X⊤X.

Note that the Kronecker product of positive definite
matrices is positive definite. Since X⊤X ≻ 0 by assumption,
∇2

Bvf ≻ 0 (and therefore ltotal(B) is strictly convex) if∑N
i=1 G

(1)
i (G

(1)
i)⊤ ≻ 0. This occurs iff the set of vectors

{G(1)
i }Ni=1 spans Rp. Invertibility of X⊤X implies that this

is equivalent to the collection of vectors {Zi}Ni=1 spanning
Rp, where Zi is as defined in the theorem statement.

Therefore ∇2
Bvf ≻ 0, and ltotal(B) is strongly convex.

Letting B(k) denote the values of the meta-parameters after
k iterations of GD, by standard convex optimization results
[39, Theorem 3.6] we have that for a sufficiently small step
size η,

∥B(k) −B∗∥22 ≤ O
(
(1− ϵ)k

)
,

where 0 < ϵ < 1. As ltarget(B) is Lipschitz on any bounded
set around B∗, the linear convergence in parameter space
implies linear convergence in value, and we have shown the
desired statement.

Note that the condition that {Zi}∞i=1 span Rp is satisfied
almost surely for typical random initializations of θ

(1)
i .

Theorem 1 can thus be interpreted as follows: provided at
least N = p sensibly initialized meta-training tasks, the
meta learner will eventually learn to solve any target task
to arbitrary precision with exactly one inner-loop gradient
descent step. This is an interesting formal guarantee that
suggests the expressive power of our DCO meta-learning
framework. While this section focuses on a particularly simple
and tractable family of shifted least-squares problems as a
proof-of-concept, we expect that the DCO meta-learning
framework provides a tractable avenue for more sophisticated
convergence results.

VI. EXPERIMENTS

We verify the effectiveness of the proposed DCO meta-
learning framework for some illustrative tasks. Specifically,
we leverage the DCO optimizer instantiations introduced in
Section IV to solve linear least squares, system identification,
and smooth function interpolation tasks.

A. Meta-Training Setup

Meta-parameters ϕ were initialized such that the DCO
optimizers resemble existing first-order update rules. Λ and
M were set to constant vectors in (13) and (15) to mimic
the GD update rules introduced in Section II-A. Similarly,
we initialized B as the identity matrix in formulation (14).

One potential challenge in training DCO optimizers is
in ensuring that the proposed formulations remain well-
posed for the entirety of the unrolling of the computational
graph represented by Algorithm 1. While the formulations
as unconstrained QPs are by themselves well-posed, from
a practical viewpoint potentially ill-posed inputs need to be
handled. This is especially true for the initial meta-training
epochs, where suboptimal meta-parameters may give rise
undesirably small or large inner loop gradients. This was
overcome by normalizing inner loop gradients before feeding
them into the DCO optimizers.

In our experiments we set T = 1 with T as defined
in Algorithm 1. Restricting T has the effect of explicitly
training the DCO optimizer to perform an aggressive inner
loop descent step. From a compututational standpoint, this
restriction of T allows to reallocate compute resources from
solving several DCOs in the inner loop to performing more
meta-parameter updates.

Note that Algorithm 1 allows for any first-order meta-
optimizer to perform updates on ϕ. For simplicity we restrict
ourselves to using RMSProp with default hyperparameter
settings as suggested in the PyTorch library.

The DCO optimizers were implemented on a 2.2 GHz
single-core CPU using the CVXPYLayers library [30] and
were solved using general-purpose interior-point solvers.
While the implementation could be made more efficient, it
suffices to outline the potential of the DCO meta-learning
framework to outperform existing first-order baselines.

Throughout the experiments a comparison baseline of first-
order methods Adam, SGD and RMSProp was considered due

0 5 10 15 20 25 30
Training Epoch

20

40

60

80

100

Lo
ss

Least Squares Task
Adam
SGD
RMSprop
DCOD
DCOM
DCOGD

Fig. 1: Optimization performance on 100-dimensional LS
tasks. Validation curves are averaged across 100 new tasks.

to their prevalence in solving unconstrained minimizations.
For each baseline optimizer the learning rate was tuned and
the best validation performance was reported.

B. Least Squares Task

We first focus on solving least-squares (LS) problems

min
θ∈R100

∥Xθ − y∥22, (22)

where X ∈ R100×100, y ∈ R100 with Xij , yi ∼
N (0, 1) ∀i, j ∈ [100]. The meta-training set was constructed
by sampling 100 tasks according to (22). For each task, a LS
objective was sampled which acts as both as li and lval

i , i.e.
li = lval

i for i ∈ [100]. Meta-training was run for M = 20
epochs. Then 100 new tasks were sampled and the evolution
of the average loss across tasks over 30 training epochs was
compared with existing first-order methods. Figure 1 shows
the results. The DCO optimizers exhibit substantially faster
convergence compared to classical baselines.

C. System Identification Task

Next, we consider the task of identifying the underlying
nonlinear discrete-time dynamics for population growth. We
approximate the Beverton–Holt model given by

nt+1 = f(nt) :=
R0nt

K + nt
, (23)

where nt represents the population density in generation
t, R0 > 0 is the proliferation rate per generation, and
K > 0 is the carrying capacity of the environment. To
introduce stochasticity into the model we include additive
disturbance d ∼ N (0, 0.1). In this context, we define a
particular task by sampling a system with R0,K ∼ U(1, 2)
and then generating training and validation samples {n, f(n)}
with n ∼ U(0, 10). For each task we sample 500 training
points and 100 validation points. The goal is to learn the
underlying discrete nonlinear dynamics using a feedforward
architecture with design (1-5-5-1), i.e. 2 hidden layers with
5 units each. The training of each network is carried out
on the training set sampled for each task, and the final
performance for that task is measured using the mean-square
error (MSE) metric on the associated validation set. Meta-
training was run for M = 20 epochs. Figure 2 presents the

0 2 4 6 8 10
Training Epoch

0

50

100

150

200

250

300

350

Lo
ss

System Identification Task
Adam
SGD
RMSprop
DCOD
DCOM
DCOGD

Fig. 2: Optimization performance on approximating the
Beverton–Holt dynamics. Validation curves are averaged
across 100 new tasks.

0 2 4 6 8 10
Training Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Lo
ss

Function Interpolation Task
Adam
SGD
RMSprop
DCOD
DCOM
DCOGD

Fig. 3: Optimization performance on smooth interpolation
tasks. Validation curves are averaged across 10 new tasks.

performance comparison between considered methods on
100 newly sampled tasks. The DCO optimizers continue to
outperform baselines.

D. Smooth Function Interpolation Task

We finally consider the task of interpolating a real,
nonlinear, smooth, univariate function via regression. As an
illustrative example, we consider the smooth function

g(x) = a cos(bx)exp(−c|x|) (24)

where a, b, c ∼ U(0, 1). A particular task is constructed by
sampling 500 training points and 100 validation points from
an instance of g(x). The goal of the task was to learn a
feed-forward network (FFN) with architecture (1-10-10-1)
consisting of 2 hidden layers with 10 units each that yields
low validation loss. As before, meta-training was run for
M = 20 epochs. The performance comparison with first-
order methods on a new set of tasks is shown in Figure 3.
The validation loss learning curves are averaged over 10 tasks.
Similar to previous settings, we have obtained an improved
convergence of DCO optimizers over baselines.

VII. CONCLUSION

This work introduces a novel DCO-based approach for op-
timizer design within the context of meta-learning. The DCO
meta-learning framework remains loyal to the inherent convex

nature of existing first-order update rules. We demonstrate that
DCO-based optimizers not only generalize existing first-order
methods but also have the potential of representing novel
update rules. Theoretically, we show rapid convergence to the
optimal update rule when meta-training DCOGD optimizers
for a family of linear least-squares tasks. Experimentally, we
demonstrate faster convergence of the DCO instantiations
as compared to existing first-order methods on a range of
illustrative tasks. Exciting future work involves finding a
more general instantiation of DCO optimizers and scaling
this approach to more complex networks.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks.” Red Hook, NY, USA:
Curran Associates Inc., 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2015.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[5] N. Sünderhauf, O. Brock, W. J. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The
limits and potentials of deep learning for robotics,” The International
Journal of Robotics Research, vol. 37, pp. 405 – 420, 2018.

[6] H. Robbins and S. Monro, “A Stochastic Approximation Method,”
The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400 – 407,
1951. [Online]. Available: https://doi.org/10.1214/aoms/1177729586

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

[8] L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, “Implicit
deep learning,” SIAM Journal on Mathematics of Data Science, vol. 3,
no. 3, pp. 930–958, 2021.

[9] T. Gautam, B. G. Anderson, S. Sojoudi, and L. El Ghaoui,
“A sequential greedy approach for training implicit deep models,”
Technical report, 2022. [Online]. Available: https://people.eecs.berkeley.
edu/∼tgautam23/publications/ImplicitSequential Preprint.pdf

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[11] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” 2017.

[12] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, vol. 44, no. 09, pp. 5149–5169, sep 2022.

[13] E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov, F. Meier,
D. Kiela, K. Cho, and S. Chintala, “Generalized inner loop meta-
learning,” 2019.

[14] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning - Volume 70, ser.
ICML’17. JMLR.org, 2017, p. 1126–1135.

[15] A. Antoniou, H. Edwards, and A. Storkey, “How to train your maml,”
2018. [Online]. Available: https://arxiv.org/abs/1810.09502

[16] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn
quickly for few shot learning,” CoRR, vol. abs/1707.09835, 2017.
[Online]. Available: http://arxiv.org/abs/1707.09835

[17] A. Antoniou, H. Edwards, and A. Storkey, “How to train your maml,”
2018. [Online]. Available: https://arxiv.org/abs/1810.09502

[18] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn
using gradient descent,” in International Conference on Artificial Neural
Networks, 2001.

[19] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman,
D. Pfau, T. Schaul, B. Shillingford, and N. de Freitas, “Learning to
learn by gradient descent by gradient descent,” in Proceedings of
the 30th International Conference on Neural Information Processing
Systems, ser. NIPS’16. Red Hook, NY, USA: Curran Associates Inc.,
2016, p. 3988–3996.

[20] K. Li and J. Malik, “Learning to optimize,” 2016. [Online]. Available:
https://arxiv.org/abs/1606.01885

[21] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in International Conference on Learning Representations,
2016.

[22] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn
using gradient descent,” in Artificial Neural Networks — ICANN 2001,
G. Dorffner, H. Bischof, and K. Hornik, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 87–94.

[23] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” in International Conference on Learning
Representations, 2017.

[24] S. Qiao, C. Liu, W. Shen, and A. Yuille, “Few-shot image recognition
by predicting parameters from activations,” 06 2018, pp. 7229–7238.

[25] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Advances in Neural
Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc.,
2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/
file/90e1357833654983612fb05e3ec9148c-Paper.pdf

[26] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems, ser. NIPS’17. Red Hook,
NY, USA: Curran Associates Inc., 2017, p. 4080–4090.

[27] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
“Neural ordinary differential equations,” Advances in neural information
processing systems, vol. 31, 2018.

[28] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[29] B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a
layer in neural networks,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, vol. 70. PMLR, 2017, pp. 136–145.

[30] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter,
“Differentiable convex optimization layers,” in Advances in Neural
Information Processing Systems, 2019.

[31] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable
mpc for end-to-end planning and control,” in Advances in Neural
Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran
Associates, Inc., 2018. [Online]. Available: https://proceedings.neurips.
cc/paper/2018/file/ba6d843eb4251a4526ce65d1807a9309-Paper.pdf

[32] P.-W. Wang, P. L. Donti, B. Wilder, and J. Z. Kolter, “Satnet: Bridging
deep learning and logical reasoning using a differentiable satisfiability
solver,” in International Conference on Machine Learning, 2019.

[33] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[34] J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-
Dimensional Models: Principles, Computation, and Applications.
Cambridge University Press, 2021.

[35] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected
subgradient methods for convex optimization,” Operations Research
Letters, vol. 31, no. 3, pp. 167–175, 2003. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167637702002316

[36] C. Blair, “Problem complexity and method efficiency in optimization
(a. s. nemirovsky and d. b. yudin),” SIAM Review, vol. 27, no. 2, pp.
264–265, 1985. [Online]. Available: https://doi.org/10.1137/1027074

[37] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,” in
Proceedings of the 34th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 70. PMLR, 2017,
pp. 146–155.

[38] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Oct.
2008, version 20081110. [Online]. Available: http://www2.imm.dtu.dk/
pubdb/p.php?3274

[39] G. Garrigos and R. M. Gower, “Handbook of convergence theorems
for (stochastic) gradient methods,” arXiv preprint arXiv:2301.11235,
2023.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1214/aoms/1177729586
https://people.eecs.berkeley.edu/~tgautam23/publications/ImplicitSequential_Preprint.pdf
https://people.eecs.berkeley.edu/~tgautam23/publications/ImplicitSequential_Preprint.pdf
https://arxiv.org/abs/1810.09502
http://arxiv.org/abs/1707.09835
https://arxiv.org/abs/1810.09502
https://arxiv.org/abs/1606.01885
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ba6d843eb4251a4526ce65d1807a9309-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ba6d843eb4251a4526ce65d1807a9309-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://doi.org/10.1137/1027074
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

	Introduction
	Contributions
	Related Works
	Meta-Learning
	Implicit Layers

	Notations

	Background
	First-order methods
	Gradient descent
	Gradient descent with Momentum

	Differentiable Optimization Layers

	Meta-Optimization Framework
	Inner Optimization Loop
	Meta-Learning Loop
	Meta-Training

	Differentiable Convex Optimizers
	DCO Gradient
	DCO General Descent (DCOGD)
	DCO Momentum (DCOM)

	Theory
	Experiments
	Meta-Training Setup
	Least Squares Task
	System Identification Task
	Smooth Function Interpolation Task

	Conclusion
	References

