
Practical Convex Formulations of One-hidden-layer Neural Network
Adversarial Training

Yatong Bai1, Tanmay Gautam2, Yu Gai3, Somayeh Sojoudi4

Abstract— As neural networks become more prevalent in
safety-critical systems, ensuring their robustness becomes essen-
tial. “Adversarial training” is one of the most common methods
for training neural networks to be robust to adversarial pertur-
bations. Current adversarial training algorithms, such as fast
gradient sign method (FGSM) and projected gradient descent
(PGD), solve highly non-convex bi-level optimizations. These
algorithms suffer from the lack of convergence guarantees and
can exhibit an unstable behavior. A recent work has shown
that the (non-robust) standard training formulation of a one-
hidden-layer, scalar-output fully-connected neural network with
rectified linear unit (ReLU) activations can be reformulated as
a finite-dimensional convex program. This result enables the use
of global optimization methods for this class of neural networks.
In this paper, we leverage this “convex training” framework
to tackle the problem of adversarial training. Unfortunately,
the scale of the convex training program proposed in the
literature grows exponentially in data size. We prove that a
stochastic approximation procedure, previously known as a
heuristic, yields high-quality solutions with a scale linear in
training data size. With the complexity roadblock removed,
we derive convex optimization models that efficiently perform
adversarial training. Our convex methods provably produce an
upper bound to the global optimum of the adversarial training
objective and can be applied to both binary classification and
regression. We demonstrate in experiments that the proposed
method achieves a noticeably superior adversarial robustness
and performance compared with the existing methods.

I. INTRODUCTION

The neural network, as one of the most powerful and
popular machine learning tools, are vulnerable to adversarial
attacks. In the field of computer vision, for instance, slight
manipulations of the input images can elicit misclassifications
in neural networks with high confidence [1]–[3]. Neural
networks have found a wide range of applications especially
in control theory [4], where robustness is a high priority.
More recently, deep reinforcement learning has emerged as
a powerful technique for the control of highly non-linear
and complex systems [5], [6]. An adversarial attack on the
underlying neural network may cause the control system
to fail completely [7]. Thus, it is crucial to analyze the
adversarial robustness of neural networks, especially when
they are applied to safety-critical or mission-critical systems.

1Department of Mechanical Engineering, University of California, Berke-
ley. yatong_bai@berkeley.edu

2Department of Electrical Engineering and Computer Science, University
of California, Berkeley. tgautam23@berkeley.edu

3Department of Electrical Engineering and Computer Science, University
of California, Berkeley. yu_gai@berkeley.edu

4Department of Electrical Engineering and Computer Science and
Department of Mechanical Engineering, University of California, Berkeley.
sojoudi@berkeley.edu

While there have been studies on robustness certifications
[8], [9], researchers have also been working extensively on
training classifiers whose predictions are robust to input
perturbations [3], [10], [11]. “Adversarial training” is one
of the most effective methods to train robust classifiers,
compared with other methods such as obfuscated gradients
[12]. Adversarial training replaces the standard loss function
with a robust loss function and solves a bi-level mini-max
optimization. More recently, [13] used “random smoothing”
to achieve robustness. However, this method is more suitable
for defending `2 attacks than defending the more common
`∞ attacks [14]. Previously, researchers have applied convex
relaxation techniques to adversarial training. These works
obtain robust convex certificates that that provide an upper
bound on the inner maximum of the adversarial training
formulation and use weak duality to develop upper bound loss
functions that can be directly optimized with back-propagation
[15], [16]. While these works rely on convex relaxations, the
resulted training formulations are still non-convex.

Training neural networks involves optimizing non-convex
objectives. In practice, training usually relies on Stochas-
tic Gradient Descent (SGD) back-propagation, which only
guarantees convergence to a local minimum for non-convex
programs. While gradient descent can converge to a global
optimizer for one-hidden-layer ReLU networks when the
considered network is wide enough [17], [18], spurious local
minima still exist in general. Moreover, the non-convexity of
the optimization landscape results in poor interpretability and
excessive sensitivity to hyperparameters. These issues become
worse when adversarial training is incorporated: adversarial
training can be highly unstable in practice.

Convex programs have the favorable property that all local
minima are global. To overcome the issue of arriving at
spurious local minima when training neural networks, existing
works have considered convexifying the neural network
training problem [19], [20]. More recently, [21] proposed a
convex optimization problem with the same global minimum
as the non-convex cost function for a one-hidden-layer fully-
connected ReLU neural network.

Therefore, extending “convex training” to adversarial
training has become a natural solution to the optimization
difficulty issues. Unfortunately, the size of the convex program
proposed in [21] grows exponentially in the training data
matrix rank, leading to exponential overall complexity. While
[21] proposed a heuristic method to reduce the computation
through approximation, it did not provide theoretical insights
into the approximation quality. To bridge this gap, we
theoretically bound the quality and show that the scale of

mailto:Yatong Bai <yatong_bai@berkeley.edu>?Subject=Your ACC 2022 paper
mailto:Tanmay Gautam <tgautam23@berkeley.edu>?Subject=Your ACC 2022 paper
mailto:Yu Gai <yu_gai@berkeley.edu>?Subject=Your ACC 2022 paper
mailto:Somayeh Sojoudi <sojoudi@berkeley.edu>?Subject=Your ACC 2022 paper

this approximation is linear in training data size.
With these roadblocks cleared, we build upon the afore-

mentioned works to develop “convex adversarial training”,
explicitly focusing on the hinge loss (binary classification) and
the squared loss (regression). We mathematically show that
solving the proposed robust convex optimizations trains robust
neural networks and empirically demonstrate the advantages
over traditional methods. The theoretical analysis focuses on
one-hidden-layer neural networks but can extend to more
complex architectures.

Due to space restrictions, some of the proofs are moved
to the appendix, which also includes additional numerical
experiments.

II. BACKGROUND

A. Notations

Throughout this work, we focus on fully-connected neural
networks with one ReLU-activated hidden layer and a scalar
output, defined as ŷ =

∑m
j=1(Xuj)+αj , where X ∈ Rn×d

is the input data matrix with n data points in Rd and ŷ ∈ Rn
is the corresponding output vector. We denote the target
output used for training as y ∈ Rn. u1, . . . , um ∈ Rd are the
weight vectors of the m neurons in the hidden layer while
α1, . . . , αm ∈ R are the weights of the output layer. The
symbol (·)+ = max{0, ·} indicates the ReLU activation.

Furthermore, let ‖·‖p denote the `p-norm within Rn and
� denote the Hadamard product. For P ∈ N+, we define
[P] as the set {a ∈ N+|a ≤ P}, where N+ is the positive
integer set. For q ∈ Rn, sgn(q) ∈ Rn denotes the sign of each
entry of q and [q ≥ 0] denotes a boolean vector in {0, 1}n
that represents the non-negativeness of each entry of q. The
symbol diag(q) denotes a diagonal matrix Q ∈ Rn×n, where
Qii = qi for all i, and Qij = 0 for all i 6= j. The symbol 1
defines a column vector with all entries being 1. For a ∈ Rn
and b ∈ R, the inequality a ≥ b means ai ≥ b for all i. The
notation ΠS(·) denotes the projection onto the set S and |S|
denotes the cardinality of the set. For r ∈ Rn, r ∼ N (0, In)
indicates that r is a standard normal random vector.

B. Adversarial training

Adversarial training is the main problem under study in this
paper. We now formally introduce this problem. A classifier
is considered adversarially robust if it assigns the same label
to all inputs within an `∞ bound with radius ε [3]. The
perturbation set can be defined formally as

X =
{
X + ∆ ∈ Rn×d

∣∣∣ (1)

∆ = [δ1, . . . , δn]>, δk ∈ Rd, ‖δk‖∞ ≤ ε,∀k ∈ [n]
}
.

One standard method for training robust classifiers mini-
mizes the “robust cost”, defined as the maximum loss within
the perturbation. The process of “training with adversarial
data” is often referred to as “adversarial training”, as opposed
to “standard training” that trains on clean data. Formally, this

method solves the minimax problem

min
(uj ,αj)mj=1

 max
∆:X+∆∈X

`

(m∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+β

2

∑m
j=1

(
‖uj‖22 + α2

j

)
 (2)

(see [11] for more details). In the prior literature, Fast
Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD) are commonly used to numerically solve the
inner maximization of (2) and generate adversarial examples
[11]. The outer minimization of (2) is still solved with SGD
back-propagation. We abbreviate these traditional methods as
GD-FGSM and GD-PGD. More specifically, PGD generates
adversarial examples x̃ by running the iterations

x̃t+1 = ΠX

(
x̃t + γ · sgn

(
∇x`

(m∑
j=1

(x>uj)+αj , y
)))

(3)

for t = 0, 1, . . . , where xt is the perturbed data vector at
iteration t, the initial vector x̃0 is the unperturbed data x,
ΠX denotes the projection onto the set X , and γ > 0 is the
step size. The projection step can be performed by simply
clipping the coordinates that deviate more than ε from x.
FGSM can be regarded as running PGD for a single step
with a large step size.

In the previous literature, GD-FGSM and GD-PGD have
demonstrated their capabilities of training robust networks
in various settings [3], [10], [11], [22]. However, they suffer
from major issues:
• Poor interpretability: With GD-PGD and GD-FGSM,

it is hard to monitor the training status. For example,
when the training loss is high, it is unclear whether a
satisfactory robustness has been achieved (the inner max-
imization works well) or the training was unsuccessful
(the outer minimization fails).

• Sensitivity to hyperparameters: The hyperparameters
of GD-PGD include the number of epochs, batch size,
and step size of SGD back-propagation (for outer
minimization), and the step size and the number of steps
of PGD (for inner maximization). Although the value of
each parameter directly affects the the performance, it is
challenging to design them. The method is also sensitive
to the initializations.

• Lack of optimality guarantees: The inner maximiza-
tion problem of (2) is non-concave, and the outer
minimization is non-convex in general. Convergence
guarantees are lacking for both subproblems.

• Vanishing / exploding gradients: For back-propagation,
the gradient at shallower layers depends on the deeper
layers, thus susceptible to vanishing or exploding gradi-
ents.

Moreover, iteratively solving the bi-level optimization (2)
requires an algorithm with a computationally cumbersome
nested loop structure.

C. Convex training

Here, we introduce our main analysis framework – convex
training. Consider the optimization for training a one-hidden-

layer network with a regularized convex loss `(ŷ, y):

min
(uj ,αj)mj=1

`

(m∑
j=1

(Xuj)+αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 +α2

j

)
, (4)

where β > 0 is a regularization parameter. Consider a set of
diagonal matrices {diag([Xu ≥ 0]) | u ∈ Rd}, and denote
the distinct elements of this set as D1, . . . , DP . The constant
P is the total number of partitions of Rd by hyperplanes
passing through the origin that are also perpendicular to the
rows of X [21]. Intuitively, the Di matrices represent the
ReLU activation patterns associated with X .

Consider the convex optimization problem

min
(vi,wi)Pi=1

`

(P∑
i=1

DiX(vi − wi), y
)

+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P]

(5)

and its dual formulation

max
v
−`∗(v) s. t. |v>(Xu)+| ≤ β, ∀u : ‖u‖2 ≤ 1, (6)

where `∗(v) = maxz z
>v − `(z, y) is the Fenchel conjugate

function. Note that (6) is a convex semi-infinite program. The
next theorem borrowed from [21, Theorem 6] explains the
relationship between the non-convex training problem (4),
the convex problem (5), and the dual problem (6) when the
neural network is sufficiently wide.

Theorem 1. Let (v?i , w
?
i)Pi=1 denote a solution of (5) and

define m? as |{i : v?i 6= 0}| + |{i : w?i 6= 0}|. Suppose that
the neural network width m is at least m?, where m? is
upper-bounded by n+ 1. If the loss function `(·, y) is convex,
then (4), (5), and (6) share the same optimal objective. The
optimal network weights (u?j , α

?
j)
m
j=1 can be recovered using

the formulas

(u?j1i , α
?
j1i) =

(v?i√
‖v?i ‖2

,
√
‖v?i ‖2

)
if v?i 6= 0;

(u?j2i , α
?
j2i) =

(w?i√
‖w?i ‖2

,−
√
‖w?i ‖2

)
if w?i 6= 0.

(7)

where the remaining m −m? neurons are chosen to have
zero weights.

While Theorem 1 requires an over-parameterized neural
network, convex training can be applied to networks much
narrower than m?, as will be shown in Algorithm 1.

III. PRACTICAL CONVEX TRAINING

Unfortunately, the worst-case computational complexity
of solving (5) is O

(
d3r3(nr)3r

)
using standard interior-point

solvers [21], prohibitively high for many practical applications.
Here, r is the rank of the data matrix X and in many cases r =
d. This high complexity makes convex training impractical.
Before we use this framework to address the problems of
adversarial training, we need to break down the complexity
bottleneck of convex training.

The high complexity arises because the total number of
Di matrices is upper-bounded by min

{
2n, 2r

(e(n−1)
r

)r}
. To

Algorithm 1 Practical convex training
1: Via Di ← diag([Xai ≥ 0]) where ai ∼ N (0, Id) i.i.d.

for all i, generate Ps distinct diagonal matrices.
2: Solve

p?s1 = min
(vi,wi)

Ps
i=1

(
`
(∑Ps

i=1DiX(vi − wi), y
)

+β
∑Ps

i=1

(
‖vi‖2 + ‖wi‖2

)) (8)

s. t. (2Di − In)Xvi ≥ 0, ∀i ∈ [Ps],

(2Di − In)Xwi ≥ 0, ∀i ∈ [Ps];

3: Recover u1, . . . , ums and α1, . . . , αms from the
solution (v?si , w

?
si)

Ps
i=1 of (8) using (7).

reduce this number, [21, Remark 3.3] introduced Algorithm
1. Algorithm 1 approximately solves (5) by independently
sampling a subset of the Di matrices. However, [21] did
not provide theoretical insights regarding the approximation
quality, and therefore the approximation remains a heuristic.
The following theorem bridges this gap by providing a
probabilistic bound on the suboptimality of the neural network
trained with Algorithm 1.

Theorem 2. Consider an additional diagonal matrix DPs+1

uniformly sampled, and then construct

p?s2 = min
(vi,wi)

Ps+1
i=1

(
`
(∑Ps+1

i=1 DiX(vi − wi), y
)

+β
∑Ps+1
i=1

(
‖vi‖2 + ‖wi‖2

)
)

(9)

s. t. (2Di − In)Xvi ≥ 0, ∀i ∈ [Ps + 1],

(2Di − In)Xwi ≥ 0, ∀i ∈ [Ps + 1].

It holds that p?s2 ≤ p?s1. Furthermore, if Ps ≥ n+1
ψξ − 1,

where ψ and ξ are preset confidence level constants between
0 and 1, then with probability at least 1 − ξ, it holds that
P{p?s2 < p?s1} ≤ ψ.

Proof sketch: It can be shown that a dual problem of (5) is
an instance of “uncertain convex program (UCP)”. Similarly,
it can be shown that a dual problem of the approximation
(8) is a “sampled convex program (SCP)”, which relaxes the
UCP by randomly dropping some of the constraints. The
quality of the SCP relaxation can then be bounded using the
result presented in [23]. �

The formal proof is presented in Appendix VIII-B. In-
tuitively, Theorem 2 states that independently sampling an
additional DPs+1 matrix will not reduce the training cost
with high probability. One can recursively apply this bound
T times to show that when Ps is large, the solution with Ps
matrices is close to the solution with Ps + T matrices for an
arbitrary number T . So, the optimality gap due to sampling
will be small, and the trained network is nearly optimal.

Compared with P , which is exponential in r, Ps is on the
order of n

ξφ , linear in n and independent of r. When r is large,
solving the approximated formulation (8) is exponentially
more efficient than solving (5). On the other hand, Algorithm
1 is no longer deterministic due to the stochastic sampling
of the Di matrices, and yields upper bounds to the global
optimum of (5). We have verified empirically (shown in

Section VII-A) that even when Ps is much smaller than P ,
Algorithm 1 still reliably returns a low training cost.

IV. CONVEX ADVERSARIAL TRAINING

To conquer the drawbacks of traditional adversarial training,
we leverage Theorem 1 to recast (2) as robust, convex upper
bound problems that can be efficiently minimized globally.
We first develop a result about adversarial training involving
general convex loss functions.

The connection between the convex training objective (5)
and the non-convex true training cost (4) holds only when the
linear constraints in (5) are satisfied. For adversarial training,
we need this connection to hold at all perturbed data matrices
X + ∆ ∈ X . Otherwise, if some matrix X + ∆ violates
the constraints, then this perturbation ∆ can correspond to a
low convex objective but a high actual loss. To ensure the
meaningfulness of the convex reformulation throughout X ,
we introduce the robust constraints (10b) and (10c).

Since the Di matrices in (5) reflect the ReLU patterns of X ,
the Di matrices can change as X is perturbed. Therefore, we
include all distinct diagonal matrices diag([(X + ∆)u ≥ 0])
that can be obtained for all u ∈ Rd and all ∆ : X + ∆ ∈ U ,
denoted as D1, . . . , DP̂ , where P̂ is the total number of such
matrices. Since D1, . . . , DP̂ include D1, . . . , DP in (5), we
have P̂ ≥ P . While P̂ is at most 2n in the worst case, since
ε is often small, we expect P̂ to be relatively close to P ,
where P ≤ 2r

(e(n−1)
r

)r
as discussed above.

Finally, we replace the objective of (5) with its robust
counterpart, giving rise to the optimization

min
(vi,wi)P̂i=1

 max
∆:X+∆∈U

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)


(10a)

s. t. min
∆:X+∆∈U

(2Di − In)(X + ∆)vi ≥ 0, ∀i ∈ [P̂], (10b)

min
∆:X+∆∈U

(2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂], (10c)

where U is any convex additive perturbation set. The next
theorem shows that (10) is an upper bound to the robust loss
function (2).

Theorem 3. Let (v?robi , w
?
robi)

P̂
i=1 denote a solution of (10)

and define m̂? as |{i : v?robi 6= 0}| + |{i : w?robi 6=
0}|. When the network width m satisfies m ≥ m̂?, the
optimization (10) provides an upper bound on the non-convex
adversarial training problem (2). The robust network weights
(u?robj , α

?
robj)m̂j=1 can be recovered using (7). Moreover, if ∆?

rob
denotes a solution to the inner maximization in (10a), then
X + ∆?

rob corresponds to the worst-case adversarial inputs
for the recovered neural network.

Proof sketch: Since the linear constraints in (5) are
satisfied by all matrices X + ∆, the relationship between (5)
and (4) holds for all matrices X + ∆. Thus, ∆?

rob is optimal
for the inner maximization of (4). Since (u?robj , α

?
robj)m̂j=1 may

not be optimal for the outer minimization of (4), (10) is an
upper bound. �

Algorithm 2 Practical convex adversarial training
1: for i = 1 to Pa do
2: ai ∼ N (0, Id) i.i.d.
3: Di1 ← diag([Xai ≥ 0])
4: for j = 2 to S do
5: Rij ← [r1, . . . , rd], where rh ∼ N (0, In),∀h
6: Dij ← diag([Xijai ≥ 0]), where Xij ← X + ε ·

sgn(Rij)
7: Discard repeated Dij matrices
8: break if Ps distinct Dij matrices have been sampled
9: end for

10: end for
11: Solve

min
(vi,wi)P̂i=1

 max
∆:X+∆∈U

`

(Ps∑
i=1

Di(X + ∆)(vi − wi), y
)

+β
∑Ps

i=1

(
‖vi‖2 + ‖wi‖2

)


s. t. min
∆:X+∆∈U

(2Di − In)(X + ∆)vi ≥ 0, ∀i ∈ [Ps]

min
∆:X+∆∈U

(2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [Ps]

(12)
12: Recover u1, . . . , ums

and α1, . . . , αms
from the solution

(v?robsi , w
?
robsi)

Ps
i=1 of (12) using (7).

The formal proof provided in Appendix VIII-C. When the
perturbation set is zero, Theorem 3 reduces to Theorem
1. Rather than an exact reformulation, (10) is an upper
bound problem because the robust constraints (10b) and (10c)
enforce that the ReLU activation pattern of the perturbed data
X + ∆ remains the same within X , effectively reducing the
feasible space of neural networks and causing suboptimality.
The optimality gap between (10) and (2) is solely due to this
suboptimality of the outer minimization, whereas the inner
maximization is exact.

In light of Theorem 3, we use optimization (10) as a
surrogate for optimization (2) to train the neural network. We
will show that the new problem can be efficiently solved in
important cases.

For the `∞ perturbation set X , the constraints in (10b) and
(10c) can be equivalently replaced by the algebraic constraints

(2Di − In)Xvi ≥ ε‖vi‖1, ∀i ∈ [P̂],

(2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂].
(11)

To understand this, observe that for the `∞ set, (10b) and
(10c) become linear programming (LP) subproblems. Solving
the LPs in closed forms yields (11). The detailed derivation
is provided in Appendix VIII-D.

A. Practical algorithm for convex adversarial training

Since Theorem 2 does not rely on any assumption on
the matrix X , it applies to an arbitrary matrix X + ∆,
and naturally extends to the convex adversarial training
formulation (10). Therefore, an approximation to (10) can
be applied to train robust neural networks with widths
much less than m̂?. Similar to the strategy rendered in

Algorithm 1, we use a subset of the Di matrices for practical
adversarial training. Since the Di matrices depend on the
perturbation ∆, we also add randomness to the data matrix
X in the sampling process to cover Di matrices associated
with different perturbations, leading to Algorithm 2. Pa and
S are preset parameters that control the number of times we
run the random weight sampling procedure, with Pa ·S ≥ Ps.

V. CONVEX HINGE LOSS ADVERSARIAL TRAINING

While the inner maximization of the robust problem (10)
is still hard to solve in general, it is tractable for some loss
functions. The simplest case is the piecewise-linear hinge loss
`(ŷ, y) = (1−ŷ�y)+, which is widely used for classification.
Here, we focus on binary classification with y ∈ {−1, 1}n.

Consider the adversarial training problem for a one-hidden-
layer neural network with `2 regularized hinge loss:

min
(uj ,αj)mj=1

(13) max
∆:X+∆∈X

1

n
· 1>

(
1− y �

m∑
j=1

(
(X + ∆)uj

)
+
αj

)
+

+β
2

∑m
j=1

(
‖uj‖22 + α2

j

)


Applying Theorem 3 leads to the following formulation as
an upper bound on (13):

min
(vi,wi)P̂i=1 max

∆:X+∆∈X

1

n
· 1>

(
1− y �

P̂∑
i=1

Di(X + ∆)(vi − wi)
)

+

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)


s. t. (2Di − In)Xvi ≥ ε‖vi‖1, ∀i ∈ [P̂], (14)

(2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂].

When generating the Di matrices, instead of enumerating
an infinite number of points in X as suggested in Theorem 3,
we only need to enumerate all vertices of X , which is finite.
This is because the solution ∆?

hinge to the inner maximum is
always at a vertex of X , as will be shown in Theorem 4.

Theorem 4. For binary classification, the inner maximum of
(14) is attained at ∆?

hinge = −ε · sgn
(∑P̂

i=1Diy(vi−wi)>
)

,
and the bi-level optimization problem (14) is equivalent to
the classic convex optimization

min
(vi,wi)P̂i=1


1

n

n∑
k=1

(
1− yk

∑P̂
i=1 dikx

>
k (vi − wi)

+ε
∥∥∑P̂

i=1 dik(vi − wi)
∥∥

1

)
+

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)


s. t. (2Di − In)Xvi ≥ ε‖vi‖1, ∀i ∈ [P̂],

(2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂], (15)

where dik denotes the kth diagonal element of Di.

Proof sketch: Observe that the regularizations in (14)
are independent from ∆ and the rest of the objective is
piecewise linear. Using the fact that max∆(·)+ is equivalent
to (max∆ ·)+, one can reform the inner maximization of (14)

into an LP. The optimal ∆?
hinge is then obtained by solving

the LP in closed form. Plugging ∆?
hinge back yields (15). �

The formal proof is provided in Appendix VIII-E. The
problem (15) is a finite-dimensional convex program that
provides an upper bound on (13). We can thus solve (15) to
robustly train the neural network. The `1 norm term in (15)
explains the regularization effect of adversarial training.

VI. CONVEX SQUARED LOSS ADVERSARIAL TRAINING

The squared loss `(ŷ, y) = 1
2‖ŷ−y‖

2
2 is another commonly

used loss function in machine learning. It is widely used for
regression tasks, but can also be used for classification.

Consider the non-convex adversarial training problem of
a one-hidden-layer ReLU neural network trained with the
`2-regularized squared loss:

min
(uj ,αj)mj=1

 max
∆:X+∆∈X

1

2

∥∥∥∥ m∑
j=1

(
(X + ∆)uj

)
+
αj − y

∥∥∥∥2

2

+β
2

∑m
j=1

(
‖uj‖22 + α2

j

)
 .

(16)

Applying Theorem 3 leads to the following formulation as
an upper bound on (16):

min
(vi,wi)P̂i=1

 max
∆:X+∆∈X

1

2

∥∥∥∥ P̂∑
i=1

Di(X + ∆)(vi − wi)− y
∥∥∥∥2

2

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)


s. t. (2Di − In)Xvi ≥ ε‖vi‖1, ∀i ∈ [P̂], (17)

(2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂].

Theorem 5. The optimization problem (17) is equivalent to
the convex program:

min
(vi,wi,bi,ci)P̂i=1,a,z

a+ β

P̂∑
i=1

(bi + ci) (18)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, ∀i ∈ [P̂],

(2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂],

‖vi‖2 ≤ bi, ‖wi‖2 ≤ ci, ∀i ∈ [P̂]

zn+1 ≥
∣∣2a− 1

4

∣∣, ‖z‖2 ≤ 2a+ 1
4

zk ≥
∣∣∣∣ P̂∑
i=1

Dikx
T
k (vi − wi)− yk

∣∣∣∣+ ε

∥∥∥∥ P̂∑
i=1

Dik(vi − wi)
∥∥∥∥

1

,

∀k ∈ [n].

Proof sketch: We rewrite (17) in the form of a robust
second-order cone program (SOCP) and show that the robust
SOCP is equivalent to the classic convex optimization (18)
using the procedures outlined in [24]. �

The formal proof is provided in Appendix VIII-F. Problem
(18) is a convex optimization that can train robust neural
networks. However, directly using (18) for adversarial training
can be intractable due to the large number of constraints
that arise when we include all D matrices associated with
all ∆ such that X + ∆ ∈ X . To this end, we can use
the approximation in Algorithm 2 and sample a subset of
the diagonal matrices. The optimality gap again can be
characterized with Theorem 2.

4 8 16 32 64 128 256 512 1024 2048

Number of D Matrices

10
-1

10
-0.5

10
0

10
0.5

10
1

L
o
s
s

Fig. 1: The left figure is a randomized 2-dimensional dataset. The red crosses are positive training points and the white circles
are negative points. The region classified as positive is in blue, whereas the negative region is in black. The right figure is the
optimized training loss for each Ps. When Ps reaches 128, the mean and variance of the optimized loss become very small.

Standard Training (Alg 1) Adversarial Training (Alg 2)

Fig. 2: Visualization of binary decision boundaries in 2-dimensional space. The red crosses × are positive training points
while the red circles ◦ are negative points. The region classified as positive is in blue, whereas the negative region is in
black. The white box around each training data is the `∞ perturbation bound. The white dot at a vertex of each box is the
worst-case perturbation. Algorithm 2 fitted the perturbation boxes, while the standard training fitted the points.

VII. NUMERICAL EXPERIMENTS

In this section, we focus on experimenting with the
hinge loss. The experiment results with the squared loss
convex adversarial training formulation (18) are provided in
Appendix VIII-A.1. For all experiments, CVX [25] with the
MOSEK [26] solver were used for solving the optimizations
in Algorithm 1 and Algorithm 2 on a laptop computer.

A. Approximation quality of Algorithm 1

We use numerical experiments to demonstrate the quality of
the neural networks trained using the convex standard training
algorithm (Algorithm 1). The experiment was performed on
a randomly-generated dataset with n = 40 and d = 2. The
upper bound on the number of ReLU activation patterns
is P ≤ 4

(e(39)
2

)2
= 11239. We ran Algorithm 1 to train

neural networks using the hinge loss with the number of Di

matrices equal to 4, 8, 16, . . . , 2048, and with β chosen as a
commonly-used value 10−4. We repeated this experiment 15
times for each setting, and plotted the mean optimized loss
in Figure 1. The error bars show the loss achieved in the best

and the worst runs. When there are more than 128 matrices
(much less than the theoretical bound on P), Algorithm 1
yields consistent and favorable results. Further increasing
the number of Di matrices does not produce a significantly
lower loss. This result supports the findings of Theorem 2.
By Theorem 2, Ps = 128 corresponds to a confidence level
of ψξ = 0.318.

B. Convex adversarial training on 2-dimensional data

To analyze the decision boundaries obtained from convex
adversarial training, we ran Algorithm 1 and Algorithm
2 on 34 random points in 2-dimensional space for binary
classification. The algorithms were run with the parameters
β = 10−9, Ps = 360 and ε = 0.08. A bias term was included
by concatenating a column of ones to the data matrix X .
The decision boundaries shown in Figure 2 confirm that
Algorithm 2 fits the perturbation boxes as designed, coinciding
with the theoretical prediction [11, Figure 3]. For illustration
purposes, the regularization parameter β is small to reduce
the smoothing of `2 regularization. Experiments with different

Fig. 3: `convex − `nonconvex for ‖δ‖∞ ≤ 0.3 (left) and zoomed in to ‖δ‖∞ ≤ 0.08 (right).

TABLE I: Mean optimal objective and accuracy on clean and adversarial data (PGD and FGSM) over seven runs on the
CIFAR-10 database. The numbers in the parentheses are the standard deviations over the seven runs.

METHOD CLEAN FGSM ADV. PGD ADV. OBJECTIVE

GD-STD 79.56 % (.4138%) 47.09 % (.4290%) 45.60 % (.4796%) .3146 (.01101)

GD-FGSM 75.30 % (3.104%) 61.03 % (4.763%) 60.99 % (4.769%) .8370 (6.681 × 10−2)

GD-PGD 76.56 % (.6038%) 62.48 % (.2215%) 62.44 % (.1988%) .8220 (3.933 × 10−3)

ALGORITHM 1 81.01 % (.8090%) .4857 % (.1842%) .3571 % (.1239%) 6.910× 10−3
(3.020 × 10−4)

ALGORITHM 2 78.36 % (.3250%) 66.95 % (.4564%) 66.81 % (0.4862%) .6511 (6.903 × 10−3)

choices of β (presented in Appendix VIII-A.2) show that
larger β values yield similar behaviors, and that the decision
boundaries by Algorithm 2 are more robust than GD-PGD
boundaries.

C. Convex adversarial training – the optimization landscape

This subsection visualizes that for a neural network trained
with Algorithm 2, the convex landscape and the non-convex
landscape overlap for an `∞-norm bounded perturbation δ
with radius ε added upon a training point xk. We use the
same data and parameters as in Section VII-B to train a neural
network. We then randomly pick one of the training points
xk, and plot the loss around xk for the convex objective (10a)
and the non-convex objective (2). Specifically, we define

`convex =
(

1− yk ·
P∑
i=1

dik(xk + δ)>(v?i − w?i)
)

;

`nonconvex =
(

1− yk ·
m∑
j=1

(
(xk + δ)>u?j

)
+
α?j

)
,

where dik is the kth entry of Di, yk is the training label
corresponding to xk, and v?i , w?i are the optimizers returned
by Algorithm 2. Moreover, u?j and α?j are the neural network
weights recovered from v?i and w?i with (7).

We plot `convex − `nonconvex for ‖δ‖∞ ≤ 0.3 and zoom in
to ‖δ‖∞ ≤ 0.08 in Figure 3. When `convex − `nonconvex is
zero, the convex objective provides an exact certificate for
the non-convex loss function. The right figure shows that the
difference is zero for ‖δ‖∞ ≤ 0.08, and thereby verify that

the convex objective (10a) provides an exact certification of
the non-convex loss function (2) around the training points.

D. Convex adversarial training on CIFAR-10

We then verified the real-world performance of the pro-
posed convex training methods on a subset of the CIFAR-
10 image classification dataset [27] for binary classification
between the second class and the eighth class. The subset
consists of 600 images downsampled to d = 147. The
parameters were chosen as ε = 10, β = 10−4, and Ps = 36,
so the widths of the recovered neural networks were at most
72. For back-propagation methods, the network width m was
set to 72.

The hinge loss has a flat part with zero gradient. To generate
adversarial examples even in this part, we treat it as “leaky
hinge loss”: max(ζ(1 − ŷ · y), 1 − ŷ · y), where ζ → 0+.
Hence, the FGSM calculation evaluates to

x̃ = x− ε · sgn
(
y ·
∑
j: x>uj≥0

(
ujαj

))
.

and the PGD iterations (3) evaluates to

x̃t+1 = ΠX

(
x̃t−γ ·sgn

(
y ·
∑
j: x>uj≥0(ujαj)

))
, x̃0 = x.

Algorithm 1 and Algorithm 2 are compared with traditional
back-propagation methods GD-FGSM and GD-PGD. For GD-
PGD, we used γ = ε/30 and ran PGD for 40 steps.

Table I presents the CIFAR-10 experiment results. Algo-
rithm 1 achieved a slightly higher clean accuracy compared
with GD-std, and returned a much lower training cost. Such
behavior supports the findings of Theorem 2. The convex

adversarial training algorithm (Algorithm 2) achieved better
accuracies on clean data and adversarial data compared with
GD-FGSM and GD-PGD. While Algorithm 2 solves the upper
bound problem (15), it returned a lower training objective
compared with GD-FGSM and GD-PGD, showing that the
back-propagation methods failed to find the optimal network.
Moreover, the back-propagation methods are highly sensitive
to initializations and hyperparameter choices. In contrast,
since Algorithm 1 and Algorithm 2 solve convex programs,
they are much less sensitive and guarantee to converge to
their global optima. Compared with Algorithm 1, Algorithm 2
retains the advantage in the absence of spurious local minima
while vastly improving adversarial robustness.

VIII. CONCLUSION

In this work, we proposed a novel “convex adversarial
training” method that solves convex optimizations to train ad-
versarially robust neural networks. Compared with traditional
adversarial training methods, including GD-FGSM and GD-
PGD, the favorable properties of convex optimization endow
convex adversarial training with the following advantages:
• Global convergence to an upper bound: For the

case of hinge loss and squared loss, convex adversarial
training provably converges to an upper bound to the
globally optimal cost, offering superior interpretability.

• Guaranteed adversarial robustness on training data:
As shown in Theorem 4, the inner maximization over
the robust loss function is solved exactly.

• Hyperparameter-free: In practice, Algorithm 2 can
automatically determine its step size with line search,
not requiring any preset parameters.

• Immune to vanishing / exploding gradients: The
convex training method avoids this problem completely
because it does not rely on back-propagation.

Overall, convex adversarial training makes it easier to
train robust and interpretable neural networks, potentially
facilitating their applications in the control of safety-critical
systems. While this work explicitly focuses on one-hidden-
layer fully-connected networks, the same robust optimization
analysis extends to more sophisticated architectures, as deeper
networks [28], vector-output networks [29], and certain
ConvNets [30] also have their convex training representations.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in 2nd International Conference on Learning Representations, 2014.

[2] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations (ICLR), 2015.

[4] W. Miller, R. Sutton, and P. Werbos, Neural networks for control. MIT
Press, 1995.

[5] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in 4th International Conference on Learning Representations, 2016.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, pp. 39:1–39:40, 2016.

[7] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” in 5th International
Conference on Learning Representations (ICLR), 2017.

[8] B. G. Anderson, Z. Ma, J. Li, and S. Sojoudi, “Tightened convex
relaxations for neural network robustness certification,” in 59th IEEE
Conference on Decision and Control (CDC), 2020.

[9] Z. Ma and S. Sojoudi, “Strengthened SDP verification of neural
network robustness via non-convex cuts,” CoRR, vol. abs/2010.08603,
2020. [Online]. Available: https://arxiv.org/abs/2010.08603

[10] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” in 5th International Conference on Learning
Representations (ICLR), 2017.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations (ICLR), 2018.

[12] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in Proceedings of the 35th International Conference on Machine
Learning (ICML), 2018.

[13] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019.

[14] A. Blum, T. Dick, N. Manoj, and H. Zhang, “Random smoothing might
be unable to certify `∞ robustness for high-dimensional images,” J.
Mach. Learn. Res., vol. 21, no. 211, pp. 1–21, 2020.

[15] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses
against adversarial examples,” in International Conference on Learning
Representations (ICLR), 2018.

[16] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in Proceedings of the 35th
International Conference on Machine Learning (ICML), 2018.

[17] J. Lacotte and M. Pilanci, “All local minima are global for two-layer relu
neural networks: The hidden convex optimization landscape,” CoRR,
vol. abs/2006.05900, 2020.

[18] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent prov-
ably optimizes over-parameterized neural networks,” in International
Conference on Learning Representations (ICLR), 2019.

[19] F. Bach, “Breaking the curse of dimensionality with convex neural
networks,” Journal of Machine Learning Research, vol. 18, no. 19, pp.
1–53, 2017.

[20] Y. Bengio, N. Roux, P. Vincent, O. Delalleau, and P. Marcotte, “Convex
neural networks,” in Advances in Neural Information Processing
Systems, 2006.

[21] M. Pilanci and T. Ergen, “Neural networks are convex regularizers:
Exact polynomial-time convex optimization formulations for two-layer
networks,” in Proceedings of the 37th International Conference on
Machine Learning (ICML), 2020.

[22] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning with
a strong adversary,” CoRR, vol. abs/1511.03034, 2015.

[23] G. Calafiore and M. C. Campi, “Uncertain convex programs: random-
ized solutions and confidence levels,” Mathematical Programming, vol.
102, no. 1, pp. 25–46, 2005.

[24] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[25] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” Mar. 2014.

[26] M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 9.0., 2019.

[27] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[28] T. Ergen and M. Pilanci, “Global optimality beyond two layers: Training
deep relu networks via convex programs,” in Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

[29] A. Sahiner, T. Ergen, J. M. Pauly, and M. Pilanci, “Vector-output relu
neural network problems are copositive programs: Convex analysis of
two layer networks and polynomial-time algorithms,” in International
Conference on Learning Representations (ICLR), 2021.

[30] T. Ergen and M. Pilanci, “Implicit convex regularizers of cnn archi-
tectures: Convex optimization of two- and three-layer networks in
polynomial time,” in International Conference on Learning Represen-
tations (ICLR), 2021.

https://arxiv.org/abs/2010.08603

0 0.5 1 1.5 2 2.5 3 3.5 4

x

1

1.5

2

2.5

3

3.5

4

y
Illustrative Example: True Distribution

Fig. 4: True relationship between data (x) and target
(y) used in the illustrative example in Section VIII-A.1.
Training (with n = 8 points) and test (with n = 100
points) sets are uniformly sampled from the distribution.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 Value

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 M

S
E

 o
n

 T
e
s
t

S
e

t

Nominal v Adversarial Training applied to Illustrative Example

Robust Training

Nominal Training

Fig. 5: This plot shows that the robust training approach (18)
outperforms the standard approach for different ε ∈ {0.1, ..., 0.9}
on the dataset studied in Section VIII-A.1.

APPENDIX

A. Additional experiments

1) Experiments with squared loss adversarial training: In this part of the appendix, the performance of the developed
problem (18) was compared with the standard training problem (5) on a contrived 1-dimensional dataset. Figure 4 shows
the true relationship between the data vector X and the target output y. Throughout this experiment, training data were
constructed by uniformly sampling 8 points from this distribution and test data were similarly constructed by uniformly
sampling 100 points. A bias term was included by concatenating a column of ones to X .

The training and test procedure was repeated for 100 trials with standard training (Algorithm 1). For the adversarial
training (Algorithm 2), we varied the perturbation radius ε = 0.1, . . . , 0.9. The training and test procedure was carried out
for ten trials for each ε. Figure 5 reports the average test mean square error (MSE) for each setup.

The adversarial training procedure outperforms standard training for all ε choices. We further observe that the average
MSE is the lowest at ε ≈ 0.3. This behavior arises as the robust problem attempts to account for all points within the
uncertainty interval around the sampled training points. When ε is too small, the robust problem approaches the standard
training problem. Larger values of ε cause the uncertainty interval to overestimate the constant regions of the true distribution,
increasing the MSE.

2) Additional experiments on 2-D illustrative data: The decision boundaries obtained from various methods with different
regularization strengths are shown in Figure 6. The two standard training methods (Algorithm 1 and GD-std) learned decision
boundaries that separated the training points but fail to separate the perturbation boxes. Note that Algorithm 1 learned slightly
more sophisticated boundaries while GD-std learned almost-linear boundaries that were very close to one of the positive
training points ×.

The convex adversarial training method Algorithm 2 learned boundaries that separated all perturbation boxes when β is
10−3, 10−6, or 10−9. This behavior matches the theoretical illustration of adversarial training [11, Figure 3], and verifies that
Algorithm 2 works as intended. When the regularization is too strong (β = 10−2), the robust boundary becomes smoothed out
and very similar to the standard training boundaries. The traditional adversarial training method GD-PGD learned boundaries
that separated most perturbation boxes. However, the boundaries cut through the box at approximately (1,−1) when β is
10−3, 10−6, or 10−9. This behavior is likely caused by SGD back-propagation’s the worse convergence due to non-convexity.
When β is too large, the GD-PGD boundaries also become smoothed out.

3) Additional experiments on the CIFAR-10 dataset: In this section, we repeat the experiments on the CIFAR-10 dataset
with different numbers of sampled Di matrices. Compared with Table I, which used ε = 10, β = 10−4, and Ps = 36, these
additional experiments keep the same ε and β settings but reduce Ps to 24 and 18. For fair comparisons, we set the neural
network width m equal to 2Ps for back-propagation implementations in all experiments. Each experiment was repeated seven
times and the results are shown in Table II.

Table II shows that the effect of the neural network width on the prediction performance is not significant for all methods,
but Algorithm 1 and Algorithm 2 are affected more: when Ps is 36 or 24, Algorithm 2 outperforms GD-FGSM and GD-PGD,
but when Ps is 18, Algorithm 2 achieves worse FGSM and PGD accuracies. Our explanation is that the constraints in the
convex training formulations become more restrictive when Ps is small, worsening the suboptimalities of the solutions.
Therefore, Algorithm 1 and Algorithm 2 are more suitable for neural networks that are not too narrow.

Fig. 6: Decision boundaries obtained from various methods with β set to 10−9, 10−6, 10−3, and 10−2

B. Proof of Theorem 2

We start by recasting the constraint of (6) as max‖u‖2≤1 |v>(Xu)+| ≤ β, and obtain

max
‖u‖2≤1

∣∣v>(Xu)+

∣∣ = max
‖u‖2≤1

∣∣v> diag([Xu ≥ 0])Xu
∣∣ = max

i∈[P]

(
max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣),

where the last equality holds by the definition of the Di matrices: D1 . . . , DP are all distinct matrices that can be formed by
diag([Xu ≥ 0]) for some u ∈ Rd. The constraint (2Di − In)Xu ≥ 0 is equivalent to DiXu ≥ 0 and (In −Di)Xu ≤ 0,
which forces Di = diag([Xu ≥ 0]) to hold.

Therefore, (6) can be recast as

max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [P]. (19)

To form a tractable convex program that provides an approximation to (19), one can independently sample a subset of
the diagonal matrices. One possible sampling procedure is presented in Algorithm 1. The sampled matrices, denoted as

TABLE II: Optimal objective, CPU time, and test accuracy on clean and adversarial data with different neural network widths
on the CIFAR-10 dataset.

Ps = 24 AND m = 48

METHOD CLEAN FGSM ADV. PGD ADV. OBJECTIVE

GD-STD 81.40 % 54.72 % 54.66 % .1486
GD-FGSM 77.75 % 64.53 % 64.46 % .7038
GD-PGD 76.49 % 64.70 % 64.64 % .7363
ALGORITHM 1 80.51 % .2500 % .1357 % .007516
ALGORITHM 2 78.54 % 66.91 % 66.75 % .7123

Ps = 18 AND m = 36

METHOD CLEAN FGSM ADV. PGD ADV. OBJECTIVE

GD-STD 81.04 % 54.86 % 54.82 % .1550
GD-FGSM 77.29 % 64.69 % 64.56 % .7131
GD-PGD 76.44 % 64.76 % 64.74 % .7365
ALGORITHM 1 79.71 % .3571 % .2714 % .008953
ALGORITHM 2 78.71 % 63.89 % 63.67 % .8049

D1, . . . , DPs
, can be used to construct the relaxed problem:

d?s1 = max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [Ps]. (20)

The optimization problem (20) is convex with respect to v. [21] has shown that (19) has the same optimal objective as its
dual problem (5). By following precisely the same derivation, it can be shown that (20) has the same optimal objective as (8)
and p?s1 = d?s1. Moreover, if an additional diagonal matrix DPs+1 is independently randomly sampled to form (9), then we
also have p?s2 = d?s2, where

d?s2 = max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [Ps + 1].

Thus, the level of suboptimality of (20) compared with (19) is the level of suboptimality of (8) compared with (5). Notice
that by introducing a slack variable w ∈ R, (19) can be represented as an instance of the uncertain convex program (UCP)
with n+ 1 optimization variables, defined in [23]:

max
v,w: w≤−`∗(v)

w s. t.
max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [P].

The relaxed problem (20) can be regarded as a corresponding sampled convex program (SCP). Suppose w?, v? is a solution
to the sampled convex problem (20). It can be concluded from [23, Theorem 1] that if Ps ≥ n+1

ψξ − 1, then v? satisfies the
original constraints of the UCP (19) with high probability. Specifically, with probability no smaller than 1− ξ,

P
{
D ∈ D :

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v?>DXu∣∣ > β
}
≤ ψ.

where D denotes the set of all diagonal matrices that can be formed by diag([Xu ≥ 0]) for some u ∈ Rd, which is the set
formed by D1, . . . , DP .

Since DPs+1 is randomly sampled from D, we have

P
{
D ∈ D :

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v?>DXu∣∣ > β
}

= P
{ max

‖u‖2≤1
(2DPs+1−In)Xu≥0

∣∣v?>DPs+1Xu
∣∣ > β

}
Thus, with probability no smaller than 1− ξ,

P
{ max

‖u‖2≤1
(2DPs+1−In)Xu≥0

∣∣v?>DPs+1Xu
∣∣ > β

}
≤ ψ.

Moreover, d?s2 < d?s1 if and only if
∣∣v?>DPs+1Xu

∣∣ > β with d?s2 = d?s1 otherwise. The proof is completed by noting that
p?s1 = d?s1 and p?s2 = d?s2. �

C. Proof of Theorem 3

Before proceeding with the proof, we first present the following result borrowed from [21].

Lemma 6. For a given data matrix X and (vi, wi)
P
i=1, if (2Di− In)Xvi ≥ 0 and (2Di− In)Xwi ≥ 0 for all i ∈ [P], then

we can recover the corresponding neural network weights (uv,wj , αv,wj)m
?

j=1 using the formulas in (7), and it holds that

`

(P∑
i=1

DiX(vi − wi), y
)

+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
= `

(m?∑
j=1

(Xuv,wj
)+αv,wj

, y

)
+
β

2

m?∑
j=1

(
‖uv,wj

‖22 + α2
v,wj

)
. (21)

Theorem 1 implies that the non-convex cost function (4) has the same objective value as the following finite-dimensional
convex optimization problem:

q? = min
(vi,wi)Pi=1

`

(P∑
i=1

DiX(vi − wi), y
)

+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P]

(22)

where D1, . . . , DP are all of the matrices in the set of matrices D, which is defined as the set of all distinct diagonal matrices
diag([Xu ≥ 0]) that can be obtained for all possible u ∈ Rd. We recall that the optimal neural network weights can be
recovered using (7).

Consider the following optimization problem:

q̃? = min
(vi,wi)P̃i=1

`

(P̃∑
i=1

DiX(vi − wi), y
)

+ β

P̃∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P̃]

(23)

where additional D matrices, denoted as DP+1, . . . , DP̃ , are introduced. These additional matrices are still diagonal with
each entry being either 0 or 1, while they do not belong to D. They represent “infeasible hyperplanes” that cannot be
achieved by the sign pattern of Xu for any u ∈ Rd.

Lemma 7. It holds that q̃? = q?, meaning that the optimization problem (23) has the same optimal objective as (22).

The proof of Lemma 7 is given in Appendix VIII-G.
The robust minimax training problem (2) considers an uncertain data matrix X + ∆. Different values of X + ∆ within the

perturbation set U can result in different D matrices. Now, we define D̂ =
⋃

∆D∆, where D∆ is the set of diagonal matrices
for a particular ∆ such that X + ∆ ∈ U . By construction, we have D∆ ⊆ D̂ for every ∆ such that X + ∆ ∈ U . Thus, if we
define D1, . . . , DP̂ as all matrices in D̂, then for every ∆ with the property X + ∆ ∈ U , the optimization problem

min
(vi,wi)P̂i=1

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(‖vi‖2 + ‖wi‖2)

s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

(24)

is equivalent to

min
(uj ,αj)mj=1

`

(m∑
j=1

((X + ∆)uj)+αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
as long as m ≥ m̂? with m̂? = |{i : v?i (∆) 6= 0}|+ |{i : w?i (∆) 6= 0}|, where (v?i (∆), w?i (∆))P̂i=1 denotes an optimal point
to (24).

Now, we focus on the minimax training problem with a convex objective given by

min
(vi,wi)P̂i=1∈F

 max
∆:X+∆∈U

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

 , (25)

where F is defined as:{
(vi, wi)

P̂
i=1

∣∣∣∣ ∃∆ : X + ∆ ∈ U
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

}
.

The introduction of the feasible set F is to avoid the situation where the inner maximization over ∆ is infeasible and the
objective becomes −∞, leaving the outer minimization problem unbounded.

Moreover, consider the following problem:

min
(vi,wi)P̂i=1

(
`

(P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

))
s. t. (2Di − In)(X + ∆?

v,w)vi ≥ 0, (2Di − In)(X + ∆?
v,w)wi ≥ 0, ∀i ∈ [P̂]

(26)

where ∆?
v,w is the optimal point for max

∆:X+∆∈U
`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

. Note that the inequality constraints are

dropped for the maximization here compared to (25).
The optimization problem (25) gives a lower bound on (26). To prove this, we first rewrite (26) as:

min
(vi,wi)P̂i=1

f
(
(vi, wi)

P̂
i=1

)
, where f

(
(vi, wi)

P̂
i=1

)
=

`
(∑P̂

i=1Di(X + ∆?
v,w)(vi − wi), y

)
(2Di − In)(X + ∆?

v,w)vi ≥ 0, ∀i ∈ [P̂]

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
, (2Di − In)(X + ∆?

v,w)wi ≥ 0, ∀i ∈ [P̂]

+∞, otherwise.

Now, we analyze (25). Consider three cases:
Case 1: For some (vi, wi)

P̂
i=1, ∆?

v,w is optimal for the inner maximization of (25) and the inequality constraints are inactive.
This happens whenever ∆?

v,w is feasible for the particular choice of (vi, wi)
P̂
i=1. In other words, (2Di−In)(X+∆?

v,w)vi ≥ 0

and (2Di − In)(X + ∆?
v,w)wi ≥ 0 hold true for all i ∈ [P̂]. For these (vi, wi)

P̂
i=1, we have:

 max
∆:X+∆∈U

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]


= `

(P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)

Case 2: For some (vi, wi)
P̂
i=1, ∆?

v,w is infeasible, while some ∆ within the perturbation bound satisfies the inequality
constraints. Suppose that among the feasible ∆’s,

∆̃?
v,w = arg max

∆:X+∆∈U
`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂].

In this case,  max
∆:X+∆∈U

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]


= `

(P̂∑
i=1

Di(X + ∆̃?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)

Case 3: For all other (vi, wi)
P̂
i=1, the objective value is +∞ since they do not belong to F .

Therefore, (25) can be rewritten as

min
(vi,wi)P̂i=1

g
(
(vi, wi)

P̂
i=1

)
, where g

(
(vi, wi)

P̂
i=1

)
=

`
(∑P̂

i=1Di(X + ∆?
v,w)(vi − wi), y

)
(2Di − In)(X + ∆?

v,w)vi ≥ 0, ∀i ∈ [P̂]

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
, (2Di − In)(X + ∆?

v,w)wi ≥ 0, ∀i ∈ [P̂]

∃j : (2Dj − In)(X + ∆?
v,w)vj < 0

`
(∑P̂

i=1Di(X + ∆̃?
v,w)(vi − wi), y

)
or (2Dj − In)(X + ∆?

v,w)wj < 0

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
, ∃∆ : (2Di − In)(X + ∆)vi ≥ 0, ∀i ∈ [P̂]

(2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

+∞, otherwise

Hence, g((vi, wi)
P̂
i=1) = f((vi, wi)

P̂
i=1) for all (vi, wi)

P̂
i=1 belonging to the first and the third cases.

g((vi, wi)
P̂
i=1) < f((vi, wi)

P̂
i=1) for all (vi, wi)

P̂
i=1 belonging to the second case. Thus, min

(vi,wi)P̂i=1
g((vi, wi)

P̂
i=1) ≤

min
(vi,wi)P̂i=1

f((vi, wi)
P̂
i=1). This concludes that (25) is a lower bound to (26).

Let (v?minimaxi , w
?
minimaxi)

P̂
i=1 denote an optimal point for (26). It is possible that for some ∆ : X + ∆ ∈ U , the constraints

(2Di − In)(X + ∆)v?minimaxi ≥ 0 and (2Di − In)(X + ∆)w?minimaxi ≥ 0 are not satisfied for all i ∈ [P̂]. In light of Lemma
6, at those ∆ where such constraints are violated, the convex problem (26) does not reflect the cost of the neural network.
For these infeasible ∆, the input-label pairs (X + ∆, y) can have a high cost in the neural network and potentially become
the worst-case adversary. However, these ∆ are ignored in (26) due to the infeasibility. Since adversarial training aims to
minimize the cost over the worst-case adversaries generated upon the training data whereas (26) may sometimes miss the
worst-case adversaries, (26) does not fully accomplish the task of adversarial training. In fact, by applying Theorem 1 and
Lemma 7, it can be verified that (25) and (26) are lower bounds to (2) as long as m ≥ m̂?:

min
(uj ,αj)mj=1

(
max

∆:X+∆∈U
`

(m∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))

≥ min
(uj ,αj)mj=1

`

(m∑
j=1

(
(X + ∆?

v,w)uj
)

+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)

=

 min
(vi,wi)P̂i=1

`

(P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆?

v,w)vi ≥ 0, (2Di − In)(X + ∆?
v,w)wi ≥ 0, ∀i ∈ [P̂]

 .

To address the feasibility issue, we can apply robust optimization techniques ([24] Section 4.4.2) and replace the constraints
in (26) with robust convex constraints, which will lead to (10). Let

(
(v?robi , w

?
robi)

P̂
i=1,∆

?
rob

)
denote an optimal point of (10)

and let (u?robj , α
?
robj)m̂

?

j=1 be the neural network weights recovered from (v?robi , w
?
robi)

P̂
i=1 with (7), where m̂? is the number of

nonzero weights. In light of Lemma 6, since the constraints (2Di − In)(X + ∆)v?robi ≥ 0 and (2Di − In)(X + ∆)w?robi ≥ 0

for all i ∈ [P̂] apply to all X + ∆ ∈ U , all X + ∆ ∈ U satisfy the equality

`

(P̂∑
i=1

Di(X + ∆)(v?robi − w
?
robi), y

)
+ β

P̂∑
i=1

(
‖v?robi‖2 + ‖w?robi‖2

)
= `

(m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
.

Thus, since

∆?
rob = arg max

∆:X+∆∈U
`

(P̂∑
i=1

Di(X + ∆)(v?robi − w
?
robi), y

)
+ β

P̂∑
i=1

(
‖v?robi‖2 + ‖w?robi‖2

)
= arg max

∆:X+∆∈U
`

(m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
,

giving rise:

`

(P̂∑
i=1

Di(X + ∆?
rob)(v?robi − w

?
robi), y

)
+ β

P̂∑
i=1

(
‖v?robi‖2 + ‖w?robi‖2

)
= `

(m̂?∑
j=1

(
(X + ∆?

rob)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
= max

∆:X+∆∈U
`

(m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
≥ min

(uj ,αj)m̂
?

j=1

(
max

∆:X+∆∈U
`

(m̂?∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m̂?∑
j=1

(
‖uj‖22 + α2

j

))
Therefore, (10) is an upper bound to (2). �

D. Proof of (11)

Define Ei = 2Di − In for all i ∈ [P̂]. Note that each Ei is a diagonal matrix, and its diagonal elements are either -1
or 1. Therefore, for each i ∈ [P̂], we can analyze the robust constraint min∆:X+∆∈U Ei(X + ∆)vi ≥ 0 element-wise (for
each data point). Let eik denote the kth diagonal element of Ei and δ>ik denote the kth element of ∆ that appears in the ith

constraint. We then have: (
min

‖δik‖∞≤ε
eik(x>k + δ>ik)vi

)
=
(
eikx

>
k vi + min

‖δik‖∞≤ε
eikδ

>
ikvi

)
≥ 0 (27)

The minima of the above optimization problems are achieved at δ??ik = ε · sgn(eikvi) = ε · eik · sgn(vi).
Note that as ε approaches 0, δ??ik and ∆?

rob in Theorem 3 both approach 0, which means that the gap between the convex
robust problem (15) and the non-convex adversarial training problem (13) diminishes. Plugging δ??k into (27) yields that(

eikx
>
k vi − ε‖eikvi‖1

)
=
(
eikx

>
k vi − ε‖vi‖1

)
≥ 0.

Vertically concatenating eikx>k vi − ε‖vi‖1 ≥ 0 for all i ∈ [P̂] gives the vectorized representation EiXvi − ε‖vi‖1 ≥ 0,
which leads to (11). Since the constraints on w are exactly the same, we also have that min∆:X+∆∈U Ei(X + ∆)wi ≥ 0 is
equivalent to EiXwi − ε‖wi‖1 ≥ 0 for every i ∈ [P̂].

E. Proof of Theorem 4

The regularization term is independent from ∆. Thus, it can be ignored for the purpose of analyzing the inner maximization.
Note that each Di is diagonal, and its diagonal elements are either 0 or 1. Therefore, the inner maximization of (14) can be
analyzed element-wise (cost of each data point).

The maximization problem of the loss at each data point is:

max
‖δk‖∞≤ε

(
1− yk

P∑
i=1

dik(x>k + δ>k)(vi − wi)
)

+

(28)

where dik is the kth diagonal element of Di and δ>k is the kth row of ∆. One can write:

max
‖δk‖∞≤ε

(
1− yk

P∑
i=1

dik(x>k + δ>k)(vi − wi)
)

+

=

(
max
‖δk‖∞≤ε

1− yk
P∑
i=1

dik(x>k + δ>k)(vi − wi)
)

+

=

(
1− yk

P∑
i=1

dikx
>
k (vi − wi)− min

‖δk‖∞≤ε
δ>k yk

P∑
i=1

dik(vi − wi)
)

+

.

The optimal solution to min
‖δk‖∞≤ε

δ>k yk

P∑
i=1

dik(vi − wi) is δ?hingek
= −ε · sgn

(
yk

P∑
i=1

dik(vi − wi)
>
)

, or equivalently,

∆?
hinge = −ε · sgn

(∑P
i=1Diy(vi − wi)>

)
.

By substituting δ?hingek
into (28), the optimization (28) reduces to:

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣∣∣yk P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

=

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε|yk|

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

.

Therefore, the overall loss function is:

1

n

n∑
k=1

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε|yk|

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

.

In the case of binary classification, y = {−1, 1}n, and thus |yk| = 1 for all k ∈ [n]. Therefore, the above is equivalent to

1

n

n∑
k=1

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

(29)

which is the objective of (15). This completes the proof.

F. Proof of Theorem 5

We first exploit the structure of (17) and reformulate it as the following robust second-order cone program (SOCP):

min
(vi,wi,bi,ci)P̂i=1,a

a+ β

P̂∑
i=1

(bi + ci) (30)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ‖vi‖2 ≤ bi, ‖wi‖2 ≤ ci, ∀i ∈ [P̂]

max
∆:X+∆∈X

∥∥∥∥∥
[∑P̂

i=1Di(X + ∆)(vi − wi)− y
2a− 1

4

]∥∥∥∥∥
2

≤ 2a+ 1
4 , ∀i ∈ [P̂].

Then, we need to establish the equivalence between (30) and (18). To this end, we consider the constraints of (30) and
argue that these can be recast as the constraints given in (18). One can write:

max
∆:X+∆∈X

∣∣∣∣∣
∣∣∣∣∣
[∑P̂

i=1Di(X + ∆)(vi − wi)− y
2a− 1

4

] ∣∣∣∣∣
∣∣∣∣∣
2

≤ 2a+
1

4

⇐⇒ max
‖δk‖∞≤ε, ∀k∈[n]

∥∥∥∥∥∥∥∥∥∥∥∥∥



∑P̂
i=1 di1(x>1 − δ>1)(vi − wi)− y1∑P̂
i=1 di2(x>2 − δ>2)(vi − wi)− y2

...∑P̂
i=1 din(x>n − δ>n)(vi − wi)− yn

2a− 1
4



∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ 2a+
1

4

⇐⇒ max
‖δk‖∞≤ε, ∀k∈[n]

(n∑
k=1

(P̂∑
i=1

dik(x>k − δ>k)(vi − wi)− yk
)2

+
(

2a− 1

4

)2
) 1

2

≤ 2a+
1

4

where dik is the kth diagonal element of Di and δ>k is the kth row of ∆. The above constraints can be rewritten by introducing
slack variables z ∈ Rn+1 as

zk ≥
∣∣∣∑P̂

i=1 dikx
>
k (vi − wi)− yk

∣∣∣+ ε
∣∣∣∣∣∣∑P̂

i=1 dik(vi − wi)
∣∣∣∣∣∣

1
, ∀k ∈ [n]

zn+1 ≥
∣∣2a− 1

4

∣∣, ‖z‖2 ≤ 2a+ 1
4 .

�

G. Proof of Lemma 7

According to [21], recovering the neural network weights by plugging (7) in (22) leads to

q? = min
(vi,wi)Pi=1

`

(
P∑
i=1

DiX(vi − wi), y

)
+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
= min

(uj ,αj)m
?

j=1

`

(
m?∑
j=1

(Xuj)+αj , y

)
+
β

2

m?∑
j=1

(
‖uj‖22 + α2

j

)
Similarly, we can recover the neural network weights from the solution (ṽ?i , w̃

?
i)P̃i=1 of (23) using:

(ũj1i , α̃j1i) =

(
ṽ?i√
‖ṽ?i ‖2

,
√
‖ṽ?i ‖2

)
, (ũj2i , α̃j2i) =

(
w̃?i√
‖w̃?i ‖2

,−
√
‖w̃?i ‖2

)
, ∀i ∈ [P̃]. (31)

Unlike in (7), zero weights are not discarded in (31). For simplicity, we use ũ1, . . . , ũm̃? to refer to the hidden layer
weights and use α̃1, . . . , α̃m̃? to refer to the output layer weights recovered using (31). Since (ṽ?i , w̃

?
i)P̃i=1 is a solution to

(23), it satisfies (2Di − In)Xṽ?i ≥ 0 and (2Di − In)Xw̃?i ≥ 0 for all i ∈ [P̃]. Thus, we can apply Lemma 6 to obtain:

q̃? =`

(P̃∑
i=1

DiX(ṽ?i − w̃?i), y

)
+ β

P̃∑
i=1

(
‖ṽ?i ‖2 + ‖w̃?i ‖2

)
=`

(m̃?∑
j=1

(Xũ?j)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖ũ?j‖22 + α̃?2j

)

≥ min
(uj ,αj)m̃

?
j=1

`

(m̃?∑
j=1

(Xuj)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖uj‖22 + α2

j

)
Since P̃ ≥ P , m? ≤ 2P and m̃? = 2P̃ , we have m̃? ≥ m?. Thus, according to Section 2 and Theorem 6 of [21], we have:

q? = min
(uj ,αj)m

?
j=1

`

(m?∑
j=1

(Xuj)+αj , y

)
+
β

2

m?∑
j=1

(
‖uj‖22 + α2

j

)

= min
(uj ,αj)m̃

?
j=1

`

(m̃?∑
j=1

(Xuj)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖uj‖22 + α2

j

)
≤ q̃?.

The above inequality q? ≤ q̃? shows that a neural network with more than m neurons in the hidden layer will yield the
same loss as the neural network with m neurons when optimized.

Note that (23) can always attain q? by simply plugging in the optimal solution of (22) and assigning 0 to all other additional
vi and wi, implying that q? ≥ q̃?. Since q? is both an upper bound and a lower bound on q̃?, we have q̃? = q?, proving that
as long as all matrices in D are included, the existence of redundant matrices does not change the optimal objective value. �

	Introduction
	Background
	Notations
	Adversarial training
	Convex training

	Practical Convex Training
	Convex Adversarial Training
	Practical algorithm for convex adversarial training

	Convex Hinge Loss Adversarial Training
	Convex Squared Loss Adversarial Training
	Numerical Experiments
	Approximation quality of Algorithm 1
	Convex adversarial training on 2-dimensional data
	Convex adversarial training – the optimization landscape
	Convex adversarial training on CIFAR-10

	Conclusion
	References
	Additional experiments
	Experiments with squared loss adversarial training
	Additional experiments on 2-D illustrative data
	Additional experiments on the CIFAR-10 dataset

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of (11)
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Lemma 7

