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Abstract— We present a cloud-based human-robot interac-
tion system that automatically controls a humanoid robot to
mirror a human demonstrator performing flag semaphores.
We use a cloud-based framework called Human Augmented
Robotic Intelligence (HARI) to perform gesture recognition
of the human demonstrator and gesture control of a local
humanoid robot, named Pepper. To ensure that the system
is real-time, we design a system to maximize cloud compu-
tation contribution to the deep-neural-network-based gesture
recognition system, OpenPose, and to minimize communication
costs between the cloud and the robot. A hybrid control system
is used to hide latency caused by either routing or physical
distances. We conducted real-time semaphore mirroring exper-
iments in which both the robots and the demonstrator were
located in Tokyo, Japan, whereas the cloud server was deployed
in the United States. The total latency was 400ms for the video
streaming to the cloud and 108ms for the robot commanding
from the cloud. Further, we measured the reliability of our
gesture-based semaphore recognition system with two human
subjects, and were able to achieve 90% and 76.7% recognition
accuracy, respectively, for the two subjects with open-loop
when the subjects were not allowed to see the recognition
results. We could achieve 100% recognition accuracy when both
subjects were allowed to adapt to the recognition system under
a closed-loop setting. Lastly, we showed that we can support
two humanoid robots with a single server at the same time.
With this real-time cloud-based HRI system, we illustrate that
we can deploy gesture-based human-robot globally and at scale.

I. INTRODUCTION

Humanoid social robots are available commercially, in-
cluding Softbank’s Pepper [1] and Nao [2], AvatarMind’s
iPal, and iCub from RobotCub [3]. These robots have similar
appearances as humans, and have potentials in professional
services, such as retail, hospitality, and educations. Pepper,
a humanoid social robot designed by Soft-bank [1], is well
liked because it has a human voice, Astro boy liked body
design, and generous full body movements. It is also well
equipped with cameras, LIDAR, ultrasound sensors, and a
chest input pad, integrated either through Pepper’s android
SDK or ROS based system.

In this work, we focus on using Pepper to mirror a person
performing semaphore, a hand-held flag language. It is a
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Fig. 1.  Block diagram: (Top) Architecture diagram of the cloud-based
semaphore mirroring system built on HARI, which supports AI assisted
teleoperation. We deploy semaphore recognition system in the cloud, and
used a discrete-continuous hybrid control system to control Pepper, a
humanoid robot, to imitate semaphore gestures. (Bottom) An example of
our system when the demonstrator performs semaphore ”R”, and the robot
imitate him

system conveying information at a distance by visual signals
with hand-held flags. Alphabetical letters are encoded by the
positions of the flags with respect to the body. It is still used
by lifeguards around the world.

To perform semaphore recognition, we use 2D video
stream that is common in low-cost humanoid robots. How-
ever, it is impossible to deploy a real-time gesture-based
recognition system locally on humanoid robots due to limited
computation power. Deep learning based gesture recognition
systems such as OpenPose [4] can only achieve real-time
performance on state-of-the-art deep learning GPU servers.
At the same time, compared to Microsoft Kinect based ges-
ture recognitions [5], OpenPose is preferable as it can work
outdoors, can track more people, and is camera agnostic. To
use OpenPose for robot gesture mirroring in real-time, one
option is to stream videos from local robots to the cloud
to perform OpenPose gesture recognition and send control
signals back to local robots.

To illustrate this concept, we use CloudMinds Inc. HARI,
Human Augmented Robot Intelligence, to support large-scale
cloud service robot deployment. HARI is a hybrid system
that combines the power of artificial intelligence (AI) and
human intelligence to control robots from the cloud.

Mitigating network latency is essential to make cloud-
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based motion control robust, because network latency is un-
avoidable at times due to routing and physical distance even
with a reliable network. We pre-generate semaphore motion
trajectories and store them in the local robot command unit
(RCU). We execute these trajectories based on commands
sent from the cloud. This way, the cloud Al only needs to use
alphabetical letters to control robots to perform semaphore,
which hides the network latency while the robot moves from
one semaphore to another.

To test network speeds, we conducted cross-Pacific experi-
ments to control a Pepper robot in Japan from a HARI server
located in the United States while the human subject was
standing in front of the robot in Japan. We further showed
that one HARI server could control two robots located in
two different locations simultaneously, which demonstrates
scalability.

II. RELATED WORK

An anthropomorphic robot, or humanoid robot, refers to
a robot whose shape resembles the human body. Many
famous robots are humanoids, including Atlas from Boston
Dynamics [6], Honda research’s Asimo [7], and the first
space humanoid robot-NASA’s Robonaut 2 [8], just to name
a few.

Socially interactive robots [9], though not necessarily
anthropomorphic, often take humanoid forms, since many
researchers believe humans must be able to interact with
robots naturally, or as human like as possible [10], [11].
Others find them easier to control by emulating natural
human robot interactions [9]. Therefore, many works have
been dedicated to imitating human gestures [12]—[17], human
demonstrations [14], [18] and human social interactions
[19], [20] using humanoid robots. There are also successful
works to learn human behavior policy to a virtual humanoids
from in simulation [21]

Imitating full body human gesture requires a 3D position-
ing camera like Microsoft Kinect and a gesture recognition
system such as Kinect SDK [5] or deep neural network based
OpenPose [4]. The imitating controller maps position and
orientation estimation of human joints into a series of robot
joint angles—trajectory. These generated gesture trojectories
are then used to control humanoids directly [5], indirectly
after editing [22], or with a model learned from machine
learning [12], [14]. More recent work also used videos from
multiple 2D camera views, to train a control policy to imitate
human motions directly from 2D video stream rather than
from 3D video stream [23]

In Goodrich’s HRI survey [24], he separates HRI into
two types: remote interaction and proximate interaction. In
either case, perception feedback—visual, audio, verbal, or
even tactile—is important to control and program robot for
interaction. In this work, we focus on large-scale cloud-
based social human robot interaction using a humanoid robot,
named Pepper [1]. We enabled both remote interaction—
teleoperation—and proximate interaction by deploying both
visual perception—gesture recognition, and high-level robot
command—semaphore—in the cloud. A similar cloud robotic
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Fig.2. Programming Single Side Semaphore: (A) Semaphore positions
(Top) Seven different positions—cross up, cross down, top, up, flat, down,
home—demonstrated with cartons. (Bottom) Selected examples of single
side semaphore positions implemented on Pepper. (B) Semaphore Motion
Motion trajectories in between different semaphore positons are generated
first using MOVEIT! and OMPL in ROS, and then stored on local RCU.

system was built by Kehoe, et. al. before [25] when an object
recognition system was deployed in the cloud to support the
PR2 robot grasping system.

James Kuffner coined the term “Cloud Robotics” to de-
scribe the increasing number of robotics or automation sys-
tems that rely on remote data or code for effective operation
[26]. A wide variety of models for connecting robots to the
cloud have been developed [27]. Some studies have used
an SaaS model that moves a robot motion controller entirely
into the cloud and used it for manipulation planning [28],
while others, such as RoboEarth’s Rapyuta system [29],
follow a Platform as a Service (PaaS) such that others would
easily program on the platform. A third kind of cloud robotic
system, aiming for a more energy efficient robot system,
distributes the computation of robot motion plannings to
both robot’s embedded computer and a cloud-based compute
service [30]. Some view such model as combination of cloud
and edge computing systems for robotics [31], [32]. HARI
is a combination of the three and aims at providing both
Al and human intelligence control for large deployment of
service type robots.

ITII. SYSTEM DESIGN

We describe three basic components of our cloud-based
semaphore mirroring system: humanoid robot, robot com-
mand unit, and cloud intelligent HARI; and explain how
cloud-based semaphore system was implemented, including
semaphore motion generation in ROS, trajectory execution at
RCU, command line interface on HARI, semaphore recog-
nition, and semaphore mirroring with hybrid control.
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Fig. 3. Selected Example of Semaphore Performed by both Arms
of Pepper Combination of the seven positions of each arm can be used
to generate the full alphabet with 26 letters. The “HARI® sequence was
teleoperated via command line interface on HARI, (video: https://
youtu.be/X0eiDrG4sAQ)

A. Humanoid Robot Pepper

We use Pepper, a humanoid social robot designed by Soft-
bank, for all implementation. Pepper has two arms. Each arm
has five degrees of freedom (DoF), with one more degree of
freedom for hand closing and opening. Further, Pepper has
two DoFs for head movements, two DoFs for hip movements,
and one additional DoF for knee movements.

The robot is natively controlled through an on-board Atom
E3845 CPU card. This is where robot sensors and motion
commands are integrated. An experimental ROS node is
available to control Pepper directly via the CPU over a
wireless network.

B. Robot Command Unit (RCU)

The Pepper robot has a smart input pad with an Android
based system on its chest. We refer to this smart device as
robot command unit (RCU). The smart device communicates
with the CPU to integrate sensor information and send
robot commands via hardwired connections. It serves as the
primary central control of the robot. The robot manufacturer
allows the user to program the RCU directly with Android
API. The user can alternatively program Pepper from another
PC via WiFi using ROS, which can be convenient for
roboticists.

However, we chose to directly program the robot
semaphore execution on RCU rather than over WiFi with
ROS for the following reasons. First, a hardwired connection
is fast, reliable, and free from any interruption caused by
poor WiFi connections. Further, the smart device has wireless
connectives, for both indoors or outdoors using WiFi or
mobile LTE, and it can act as a natural connection to
the cloud services. Additionally, touch-screen-based GUIs
are easy to use for local users. Finally, onboard sensors,
especially cameras, can be used as perception inputs for
the robot. Therefore, we position the RCU as a local robot
controller as well as the local network gateway from cloud
robotic services. This is illustrated in Figure

C. Cloud Intelligence HARI

Currently, HARI has three major modules: (1) cloud-
based Al engine and HI teleoperation interface, (2) RCU
in the form of smart devices as WiFi and mobile LTE
gateway to cloud services, and as mid-level controller for
local robot, and (3) a high bandwidth, reliable, secure private-
LTE network connecting the cloud Al directly to local robot
via RCU (see figure 1).

As mentioned before, the key idea in building a real-
time, scalable cloud application with wide geological cov-
erage is to maximize the cloud computation for valuable
Al services and minimize the communication costs for each
robot via RCU. We use semaphore mirroring robotic task
as an example to demonstrate how to use these ideas to
build such cloud-based applications in real life. First, we
move the deep learning based gesture recognition system,
OpenPose, entirely to HARI’s cloud AI GPU servers. The
GPU server includes four Nvidia Titan Xp graphics cards.
Second, to minimize the communication costs, we stream
320x320 videos with highly efficient video compression
standard H.264 from RCU to Cloud HARI through private
LTE.

Third, mitigating the network latency is important to
ensure a robust motion control over long-range commu-
nication, because network latency is unavoidable at times
due to routing and physical distances even with a reliable
LTE network. Therefore, we store pre-generated semaphore
motion trajectories in the local RCU, and execute these
trajectories based on commands sent from the cloud. This
way, we hide the network latency caused by video streaming
and cloud control during the trajectory execution when the
robot is moving from one semaphore to another. (Fig. [3).
Additionally, the cloud AI only needs to send intermittent
alphabetical letters to control robots to perform semaphore.
Please refer to Section IV and V for an exposition of these
three design decisions.

D. Semaphore Motion Generation in ROS

Semaphore is the telegraphy system conveying information
at a distance using visual signals with hand-held flags. Flags
encode alphabet information with positions of both arms.
Each of the two arms has the same set of different arm
positions: home, down, flat, up, top, cross down, and cross
up (see Fig. 2JA). The combination of these seven positions
using two arms forms 49 possible stationary positions. These
positions are used to represent the alphabet (Fig. BA), and
additional symbols such as home, space, etc. (Fig. §[C, @D).

Based on the above definition, we first program the seven
different positions of each arm for the Pepper robot (fig. 2JA).
We then use the Pepper’s ROS interface to generate trajecto-
ries that would move each of the Pepper’s arms between any
two of these seven positions. (fig. 2B) We use SBL, short for
Single-Query Bi-Directional Probabilistic Roadmap Planner
[33], to generate these trajectories in MOVEIT! using OMPL.
We record the resulting trajectories to ROS bags, and convert
them into Android readable format.
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No Detect

Fig. 4. Semaphore Recognition using Openpose: (A) Single Side Position Recognition Seven positions are recognized based on a unit circle centered
at the shoulder joint; the angle between the line formed by the hand and the shoulder and a horizontal line is used to recognize the seven positions of
a single arm. Light zones indicate the detection zones, whereas dark zones are ”"No Detect” zones. No detect zones are used to avoid false detection
between two neighboring positions. We can reliably recognize the full semaphore alphabet in real-time (video: https://youtu.be/arC60ZGgkgE).
(B) the user spells out “POSE* and the semaphore recognition system recognizes the letters. (C) “Space* is represented by both arms rest in the “home*
position. (D) “No Detect* is recognized because the left arm of the demonstrator is in the dark "No Detect” zone.

E. Trajectory Execution at RCU

We store pre-generated trajectories in RCU. Upon receiv-
ing an alphabetical letter command, RCU on Pepper would
look up the trajectory that corresponds to the current hand
position as start and the received semaphore letter position
as goal. It will then execute this trajectory locally until the
robot arms stop at the expected commanding positions. This
is programmed using Pepper’s Android APIL

Note that the execution is a blocking function. The robot
arm would not change its execution trajectory or take any
other command until the motion is finished. We later take
advantage of this feature to hide the network latency for
responsive user experiences.

F. Command Line Interface on HARI

We test this local robot semaphore controller through a
command line interface in HARI. In this interface, a cloud
operator would input a letter command via HARI. When
RCU receives the letter, it performs semaphore as described
above.

We further modified this command line interface so that
a word or a sequence of letters can act as a command
to Pepper. When a word is sent, Pepper will perform
semaphore for each of the letters in sequence. It would
also spell out the letters as it moves and pronounces the
word at the end of the sequence. Fig. [3] illustrates Pepper
performing “HARI in sequence. This demonstrates a form
of Al-assisted teleoperation in which a cloud operator can
communicate to the person in front of the robot in the
form of combined semaphore motion and spoken word by
using Pepper as the media. (see supplemental video for
a demonstration: https://youtu.be/X0eiDrG4sAQ)

This interface becomes a part of HARI teleoperation module
during the developments (Fig [T[Top).

G. Semaphore Recognition

Semaphore mirroring is built on top of the OpenPose based
semaphore recognition system and the command line tele-
operation system mentioned above. To program semaphore
recognition, we use only the largest skeleton extracted from
OpenPose. This skeleton corresponds to the person standing
in front of the robot. All other skeletons in the background
are filtered out. Based on this skeleton, we measure the
relative angle from the left-hand position to the horizontal
line crossing the right shoulder. If this angle falls into the
perspective gray detection zone (Fig. [4A), then the left arm’s
semaphore position is recognized. Note that the black area
indicates a “no-detect” zone. We setup the no-detect zone
to prevent false detections between the two neighboring
positions since the skeleton extracted by OpenPose can be
noisy and the detected hand position can easily cross the
border at times.

The right-hand semaphore recognition is programmed
the same way, except that the detection zone map was
horizontally flipped from the one illustrated in figure FA.
Combination of the detected left-and-right-hand position is
used to infer semaphore based on its alphabet. In Figure
MB, we show that the system could detect multiple letters
of the alphabet, and the subject spells out the word “POSE”
using semaphore. Figure fiC shows the home position which
corresponds to a “space” in the alphabet, and Figure @D
shows a case of “no-detect” because the left hand of the
subject is in the “no-detect” zone.
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H. Semaphore Mirroring with Hybrid Control

When the cloud Al detects a change in the human gesture
in semaphore, HARI will use the command line interface
to send a letter to Pepper’s RCU. RCU takes this letter
command and move the robot arms to that semaphore po-
sition. This completes the semaphore mirroring pipeline. To
minimize communications, HARI will not send in semaphore
command at every frame of semaphore detection. It only
sends a command to RCU when it detects a change in
semaphore letter recognition, see fig. [5]

However, there is a problem if we use the raw command
signal sequence sent from HARI. The semaphore motion
executed by RCU is a blocking function. The RCU would
not process the command buffer during the motion. If we
choose to program the receiving buffer at RCU using a stack,
the original command sequence were to be reserved. So
when multiple semaphore changes are to be detected during
the semaphore motion execution, then the letter representing
the “first” detection are executed first, then followed by the
other ones, until the most “current” semaphore command is
detected. It surprises many users as the robot executes several
semaphores before it starts to execute the semaphore they are
intended to demonstrate.

An alternative is to program the receiving buffer as a
queue, so that when a motion was finished, RCU jumps
to the most current semaphore gesture demonstrated by the
user. Users would feel more natural since they perceive the
robot is mirroring them faithfully. Therefore, the queue-based
receiving buffer is chosen.

The semaphore mirroring pipeline is a form of hybrid
control-Discrete, high level command is sent from the cloud
intermittently to a local RCU where continuous motion is
executed. As we will discuss later, this technique helps hide
latency between the cloud and the robot. It makes the cloud-
based real-time semaphore mirroring Pepper more natural to
interact with, even under extreme network conditions.

IV. EXPERIMENTS AND RESULTS
A. Cross Pacific Experiments

We conducted cross Pacific robot control experiments. We
used a US HARI server located in Oregon, United States to
control a Pepper robot located in Tokyo, Japan, with a human
subject standing in front of Pepper as a demonstrator. We
also performed the same test to a Pepper robot located in
Santa Clara, United States, with the same HARI server in
the United States (see video illustrates US-to-US test case:
https://youtu.be/NXrdoSXXxqY). Furthermore, to
show scalability, we successfully used the US based HARI
server to support both Peppers at the same time, one in Japan
and the other in the United States.

B. Reliability of the Cloud Semaphore Recognition System

We first performed reliability tests of semaphore recog-
nition system in the United States. To test reliability, we
randomly showed a semaphore position for the demonstrator
to perform, and check the recognized semaphore results
obtained from the cloud server. We conducted two sets of

experiments with two different demonstrators with thirty
experiments each. We positioned the robot camera in such
a way that both shoulders of the subject were at the center
horizontal line of the image. Further, no arm, when fully
stretched, should go out of the camera’s frame. The back-
ground of the demonstrators were uniformly white, and the
experiments were conducted in a well-lit room.

During the first set of experiments, we hid the real-time
recognition results from the demonstrator. The recognition
accuracy was 90.0% (27/30) for subject one, and 76.7%
(23/30) for subject two. (see the first row of table [I) The
accuracy were high, but not reliable, and not consistent
across subjects.

However, we noticed that all of the failures were caused
by “No Detect error, meaning one or both of subject’s hand
was in the no detect zone. None of these recognition errors
was due to confusion between two different semaphores. This
made us think that the failed trails were caused by habits
of different person when performing semaphore rather than
system errors such as a high noises level of OpenPose’s
recognized joints positions. The actual recognition accuracy
can be significantly higher if the demonstrators were trained,
or if the real-time results were shown to the demonstrators.

Therefore, we conducted a second set of experiments for
the same subjects by allowing them to look at the semaphore
recognition screen to adjust their pose for a better recognition
result. However, they could not adjust their arm so that
their arms moves outside the quadrant they were in. A
quadrant was defined as the uni-circle made by the vertical
and horizontal lines in these experiments.

We obtained perfect accuracy of 100% for both subjects
in the second set of experiments. (see the second row of
table ED Therefore, it can be concluded that the semaphore
recognition system is highly reliable for the purpose of
remotely teleoperating a robot to perform semaphore mir-
roring (see video demonstration: https://youtu.be/
arCo60ZGgkgE).

TABLE I
OPENPOSE SEMAPHORE RECOGNITION ACCURACY (%)

Subject 1 Subject 2
Open Loop 27/30 23/30
with Feedback 30/30 30/30

C. Real-Time performance of the Cloud Semaphore Recog-
nition System

We used semaphore mirroring as an example to demon-
strate the benefit of using a cloud-based Al platform. We
measured the real-time performance of the cloud-based
OpenPose system. We used a single Titan Xp GPU with
a single thread to launch OpenPose in the cloud. We fed a
local video stream with resolutions of 640x480 to OpenPose.
We observed 10-12 fps (frames per second) inferencing
framerate while using a pre-trained 320x320 neural network
model provided by OpenPose.
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Fig. 5. A Hybrid System Hide the Network Latency: (A) Timing Diagrams of the Hybrid System The diagram shows that, starting from the actual
human gesture in Japan, the video latency and latency of sending in a command after recognition are consecutive. The sum of the two forms of latencies is
marked in red. The total latency is hidden inside motion A, but occurs before the start of motion B. (B) Timing Comparison Robot semaphore execution
time is much higher than either the US-to-US network latency or the US-to-Japan network latency.

The resolution parameter on the neural network model
indicates the picture resolution of the dataset that was used to
train the neural network. The video stream fed into the neural
network should be as similar to this resolution to guarantee
gesture positional accuracy. Resolutions of 640x480 is the
minimum resolution on HARI, therefore, we used it for the
latency benchmark later. A neural network model trained
on larger resolution pictures, such as 640x640, can be
used. However, larger picture size requires neural network
model with more weights, thus more computation during
inferencing, which affected the real-time performances of
the OpenPose system. Only 5-6 fps can be achieved with a
640x640 neural network model while we gain little accuracy
via the change. Therefore, we chose to only benchmark
network performance of the case when 640x480 video stream
and 320x320 neural network model were used.

We measured the communication costs to stream video to
HARI. To minimize communication costs, we streamed in a
640x480 resolution with a highly efficient video compression
standard H.264 from RCU to Cloud HARI through private
LTE. We measured consistent 22-30 frames per second video
stream both from the US-to-US test case and from Japan-to-
US test case. The difference between the two cases are video
streaming latency. There is around 100 ms latency for the the
US-to-US case, and around 400 ms latency for the Japan-to-
US case (Table [[)

This suggests that semaphore recognition is the bottleneck
for the cloud-based recognition system, which still provides
10-12 fps real-time performances even if we stream video
from Japan to the US. The cloud-based OpenPose system
has an order of magnitude better performances compared to
OpenPose on an iPad 2017, which can only process a little
more than one frame per second or less [4].

The results from these experiments support our claim that

communication costs are lower compared to the benefits
gained from using a cloud robotic Al framework, in our
semaphore mirroring system.

D. Hybrid System Design Hides Network Latency

A hybrid system can hide the network latency in the
robot motion in this cloud-based system. The mechanism is
illustrated in Fig. 5. The semaphore motion time average
is 3.4 seconds. It is long compared to the total latency
contributed by video streaming and robot commanding ( Fig.
5B). After the demonstrators are used to the system, they
tend to start the next semaphore demonstration before the
robot finishes executing the last semaphore. The semaphore
recognition system in the cloud would recognize any change
of gesture earlier despite the delay from video streaming.
The change in gesture would trigger HARI to send the next
semaphore command, which can be delivered to RCU before
the end of the last semaphore execution. Therefore, the next
command would sit in RCU’s receiving buffer until the end
of the last motion, so that the next command is executed
immediately after the end of the last motion.

TABLE 11
NETWORK LATENCY (MS)

Video Robot Command Total
Japan to US 400 108 508
US to US 98 31 129

E. Compared to a Local Full Gesture Imitation System

We also built a general gesture imitation system for Pepper
using a 3D Kinect camera with a local PC in ROS (see video:
https://youtu.be/fPgFlxwgRcY. To compare this


https://youtu.be/fPqF1xwqRcY

local general gesture imitation system and our cloud-based
semaphore mirroring system, we performed semaphore mir-
roring using both systems.

The general gesture imitation system finishes a semaphore
within 5-10 seconds which is slower but close to the perfor-
mance of our cloud-based system. However, it failed when
the human demonstrator drove Pepper into unreachiable
areas in its arm. This failure cases happens more often when
the start and goal positions of the robot is far away, for exam-
ple from home to top, or when any of the cross positions are
involved. In these cases, Pepper would stuck in those places
for a while and the user would need to find a way to drive
the arm out via demonstration. There are also times when
the user drives two arms to collide to each other, though
this does not happen often during semaphore demonstrations.
In contrast, the cloud-based semaphore system never failed
because the trajectory was generated from an automatic
path planning algorithm. The system checks for kinematic
constrains and self collisions during the generation. We will
discuss the trade-offs between the two systems next.

V. DISCUSSION AND FUTURE WORK

We showed that, with a private-LTE network and a highly
compressed video stream, we can achieve a 22-30 fps
video streaming rate even if we stream from Japan to the
United States. This is faster than the cloud-based gesture
recognition rate—10-12 fps, therefore, the current state of
the art network is sufficient to support real-time perception
even across long distance. This confirmed our hypothesis
that the value of running a more powerful Al service in the
cloud would reduce the communication costs, as even better
and cheaper communication technologies, such as 5G LTE
network, would become available in the future.

In the HARI cloud-based hybrid system, discrete com-
mand is sent from the cloud and the robot performs pre-
generated motion upon receiving the command. Therefore,
only a robot control unit (RCU), not a full motion planner,
is necessary at the local robot, dramatically reducing the
computation requirements for a low-budget robot. Further,
we only send a semaphore command when there is a change
in semaphore recognition, makes the communication highly
compact. As we illustrate in Fig. 5A, the hybrid system help
hide network latency during robot motion, making the human
robot interaction responsive even if the cloud server is far
away.

Such cloud-based hybrid system would help scalability in
two ways. One, it scales up the number of robots that can
be controlled by a single server. By leveraging the latency
hiding phenomenon and sending compact robot commands,
multiple robots at different locations can be controlled
in real-time for responsive interaction with humans. Two,
by putting perception and control into the cloud, we can
duplicate the servers easily and deploy them on a large
scale, theoretically, over different continents across the globe.
These perception and control services can be updated and
managed in a centralized fashion, and can be scaled up or
scaled down based on demand.

There are, however, limitations of the current hybrid, cloud
based, gesture imitating system. It can only imitate a discrete
set of 2D gestures, semaphore, which is a sub-set of general
human gesture. It also requires roboticist to program and
generate these motions before-hands and store them in the
RCU, which can be labor intensive if more general gestures
are needed. Further, the number of pre-generated motion
grow quadratically in respect to the number of discrete
gestures needed. When the set of discrete gestures becomes
large, true in the case of general gesture followings, the
memory requirements on a local robot grows significantly,
which is less ideal for a low-budget design.

As future work, we aim to generalize the semaphore
mirroring system so that general gesture following can be
achieved with such cloud-based hybrid system. It is desirable
to create discrete gesture segments from a large human
activity database using machine learning techniques, which
obviates the needs for explicitly programming poses and
gestures by hand. This can also help reduce local robot
storage needed to save pre-generated motion. A promising
gesture imitation system from annotated human gesture data
is recently explored in physical simulation [21]. We would
want to extending these simulated results for a physical
humanoid robot for similar performance. Furthermore, it is
important to explore human robot interaction rather than
gesture imitating with human compliance hardware.
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