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Abstract— Understanding an electric power system’s topol-
ogy, including both its nodal connectivity and physical parame-
ters, is critically important to the reliable operation and control
of the power grid. In cases where this power system topology
may be unavailable, due to data collection deficiencies, real-
time line switching, or intentional cyberattacks, it is important
to be able to estimate the real power system topology with
high accuracy. In this paper, we propose a new data-driven
constrained support vector regression (SVR) method that aims
to map voltage data collected from phasor measurement units
(PMUs) to data collected by Supervisory Data Acquisition and
Control (SCADA) systems. We show that the dual of the con-
strained SVR model can be formulated as a quadratic program
(QP) and solved efficiently with off-the-shelf solvers. Testing our
method on standard IEEE test cases, we demonstrate that our
proposed method significantly outperforms existing state-of-the-
art SVR methods in learning the true network topology, even in
the presence of measurement noise, outliers, and missing data.

I. INTRODUCTION

With the adoption of new smart grid technologies such as
smart meters, distributed and renewable generation, and an
increased prevalence of phasor measurement units (PMUs) in
power networks, the optimization and monitoring methods of
legacy power systems will need to evolve [1]. Additionally,
as the risk of cyberattacks grows, many of the classical
optimization problems such as state estimation (SE) take on
increased importance in ensuring the reliability of the electric
grid [2], [3]. The safe and effective operation of the power
grid depends on solving a variety of optimization and control
problems, including SE, power flow (PF), optimal power flow
(OPF), unit commitment (UC), false data detection (FDD),
and voltage control [4]. The fundamental bases for many of
these problems are the nonlinear AC power flow equations,
which define the physics of power flow in a network. Using
the power flow equations in most applications relies on an
awareness of the power network topology and line parame-
ters. However, knowledge of the network topology and/or the
line parameters can be limited due to cyberattacks, real-time
topology switching, or other data collection deficiencies and
inaccuracies [5]. In order to deal with these uncertainties,
we consider a system identification problem that aims to
learn the power flow mapping. By learning the power flow

Elizabeth Glista is with Lawrence Livermore National Laboratory
(LLNL), and Somayeh Sojoudi is with the Department of Mechan-
ical Engineering at the University of California, Berkeley. Emails:
glista1@llnl.gov, sojoudi@berkeley.edu.

This work was supported by grants from NSF, AFOSR and ONR.

mapping, the goal is to recover the true system parameters
and topology.

A variety of machine learning and optimization methods
have been proposed to learn the power flow mapping in
a generic network, including neural networks (NN) [6],
[7], graph neural networks (GNNs) [8], and support vector
regression (SVR) [5], [9]. Many of these data-driven methods
exploit the abundance of power system data from both
traditional SCADA measurements and PMUs to learn the
mapping [7]. However, these black- and gray-box methods
suffer from overfitting and lack a physical representation in
the power network. These methods do not explicitly make
use of the sparsity inherent in power networks, which has
been effectively exploited in other power applications such
as OPF to efficiently solve hard, nonconvex problems [10].

While recent papers show that SVR can be effective
at learning forward and inverse mappings between power
system inputs and outputs, these papers apply classic SVR
methods that fail to recover the true system parameters
because they do not account for power network sparsity [5],
[9]. In [5], it is shown that the power flow equations can be
exactly written as a quadratic kernel within the reproducing
kernel Hilbert space (RKHS). However, we will demonstrate
later that the feature vector corresponding this RKHS con-
tains many features that do not contribute to the power flow
equations and should be associated with parameters equal to
zero. However, in [5] and [9], the authors’ methods do not
ensure that these parameters are zero and will thus recover a
dense parameter set that has no realistic physical meaning. In
this paper, we fix these shortcomings in the existing literature
by proposing a new constrained SVR method that considers
the actual power network sparsity. We show that this method
can recover the true physical parameters and topology of a
power system with high accuracy.

A. Support Vector Regression (SVR) and Prior Knowledge

SVR was developed in the 1990s as an extension of
the support vector machine (SVM) classification learning
algorithm [11], [12]. The idea of SVM is to find a hyperplane
decision boundary that maximizes the margin between dif-
ferently classified sets of data [11]. The fast implementation
of SVM in nonlinear settings relies on the kernel trick which
maps nonlinear features into a high-dimensional space that
corresponds to a linear classifier. SVR is the regression
extension of SVM. While SVM aims to find a classification
hyperplane that minimizes data proximity to the plane, SVR



aims to find a linear estimator that maximizes data proximity
around the estimator, penalizing data points outside of an ϵ-
tube around the estimator [13]. Like SVM, SVR makes use
of the kernel trick to efficiently estimate nonlinear functions.

SVM and SVR have been shown to be effective in a variety
of nonlinear applications, including image classification and
load forecasting [14], [15]. However, these methods do
not make use of prior information known about the space
of the estimator, which may result in estimators that do
not accurately represent the corresponding systems. Recent
research has considered a constrained SVR problem in the
case where both the kernel and the constraints are linear
[16]. The authors of [16] show that their constrained SVR
method can recover better estimators in terms of root-mean-
square error (RMSE) compared to both classic SVR and
other constrained regression methods, such as constrained
least squares, in various biomedical and weather data settings
where information is known a priori about the space of
the estimator. Building on the work in [16], we extend the
constrained SVR method to a nonlinear kernel, which allows
for the use of constrained SVR in a much broader range of
realistic applications. While our main focus is the power
flow mapping application, the proposed constrained SVR
methodology could be applied to other network mapping
problems as well as more general supervised learning settings
in which information is known a priori about the system.

B. Notations

The symbols R and C denote the sets of real and complex
numbers, respectively. RN and CN denote the spaces of
N -dimensional real and complex vectors, respectively. The
symbol RN

+ denotes the space of real vectors with non-
negative entries. The symbol SN denotes the space of N×N
symmetric real matrices. The symbols (·)T and (·)∗ denote
the transpose and conjugate transpose of a vector or matrix.
Re{·} and Im{·} denote the real and imaginary part of a
given scalar or matrix. The symbol | · | is the absolute
value operator if the argument is a scalar, vector, or matrix;
otherwise, it is the cardinality of a measurable set. The
imaginary unit is denoted by j =

√
−1.

II. PROBLEM BACKGROUND

In this section, we present the mathematical formulation
of the power flow mapping problem.

A. Alternating Current (AC) Power Flow Mapping

Let the power network be defined by a graph (B,L), where
B is the set of buses and L is the set of transmission or
distribution lines. Let G ⊆ B be the buses that are attached
to generators. The equations that govern AC power flow
between buses in the network are given as:

pij = |vi||vj |
(
Gij cos θij +Bij sin θij

)
∀(i, j) ∈ L (1a)

qij = |vi||vj |
(
Gij sin θij −Bij cos θij

)
∀(i, j) ∈ L (1b)

where the complex voltage at each bus i is given as vi ≜
|vi|ejθi ∈ C. The expressions pij and qij respectively
represent the real and reactive power flows between buses

i and j. The expression θij is the difference in voltage angle
between buses i and j, given as θij ≜ θi − θj . The network
parameters Gij and Bij are respectively the conductance and
susceptance for the line between buses i and j, where the
complex admittance is given as Yij = Gij + jBij .

In the power flow mapping problem, the conductance Gij

and susceptance Bij are taken to be part of the unknown
parameter set, and some subset of possible SCADA measure-
ments M are assumed to be available. These measurements
can consist of real power flows pij , reactive power flows
qij , real power injections pi, and reactive power injections
qi. Additionally, we have PMU readings at some buses that
provide estimates for voltage magnitudes |vi| and voltage
angles θi. We allow for the case where the network may be
only partially observable as discussed in Section IV-B.

Note that while this formulation does assume some aware-
ness of the power network topology, provided by the graph
(B,L), we can model uncertainty in some portion of the
topology using only the line parameters. To accomplish this,
we consider L to include all possible connected lines in
the network. If the line (i, j) is switched off or does not
actually exist in the network, the line parameters Gij and
Bij will be zero. Thus, we can model uncertainty in the
network topology by considering only the line parameters
as unknowns. However, we will assume that there is some
baseline understanding of the network topology, including
some awareness of the number of buses in the network and
how they are interconnected. This is a reasonable assumption
for most realistic test cases in which a system operator would
have full understanding of the baseline network topology but
might not be aware of lines that have switched open or closed
due to information delay or cyberattacks.

In order to formulate the power flow equations (1) as
a kernel within the RKHS so that the kernel trick can be
used for SVR, we introduce new variables di ≜ |vi| cos θi
and ei ≜ |vi| sin θi for all i ∈ B that correspond to
the rectangular coordinates of the complex voltage. Then,
using trigonometric identities, we can rewrite the power flow
equations as:

pij = Gij(didj + eiej) +Bij(eidj − diej) (2a)
qij = Gij(eidj − diej)−Bij(didj + eiej) (2b)

∀(i, j) ∈ L
We can do the same for real and reactive power injections

to get the following relations:

pi = Giid
2
i +Giie

2
i

+
∑

j ̸=i Gij(didj + eiej) +Bij(eidj − diej) (3a)

qi = −Biid
2
i −Biie

2
i

+
∑

j ̸=i Gij(eidj − diej)−Bij(didj + eiej) (3b)

where Gii is the self conductance at bus i, composed of
the shunt conductance Gsh

i and line conductances Gij as
Gii = Gsh

i −
∑

j ̸=i Gij . Similarly, Bii is the self susceptance
at bus i, composed of the shunt susceptance Bsh

i and
line susceptances Bij as Bii = Bsh

i −
∑

j ̸=i Bij . These
parameters are also assumed to be unknown for the network.



B. Availability of PMU Data

There is strong interest in using increasingly available
PMU data in state estimation and false data detection [17]–
[19]. PMUs provide measurements of voltage and current
phasors and have been shown to be helpful in improving the
reliability of grid monitoring and detection tools [17]. While
PMU penetration in the grid is growing but still somewhat
limited due to high PMU installation costs, PMUs provide
a larger quantity of real-time data than existing SCADA
systems. While SCADA systems collect samples about every
4 seconds, PMUs typically collect about 30-60 samples per
second [17], [20]. The large amount of PMU is well-suited
for machine learning applications such as the power flow
mapping problem presented in the preceding section.

We consider the case where we obtain voltage magnitude
|vi| and angle data θi from PMUs on some subset of buses
in the network. The PMU data serve as the input data for our
mapping problem (appearing as x in Equation (12)), and the
SCADA data serve as the output (appearing as y in Equation
(12)). In order to reconcile the synchronization gap between
PMU and SCADA data, we associate some set of PMU data
to each SCADA measurement, i.e. we take 10 PMU samples
collected both before and after a given SCADA measurement
and associate those to the SCADA measurement. Thus, for
one time step of SCADA data, we have created duplicate
yt SCADA measurements corresponding to each xt PMU
measurement. Other types of time synchronization smoothing
methods could also be used to reconcile the PMU and
SCADA datasets such as averaging the PMU data or the
estimation fusion approach in [21].

III. CONSTRAINED SVR PROBLEM FORMULATION

In this section, we present the primal SVR formulation of
the power system mapping problem and show how sparsity-
enforcing constraints can be added to the classic SVR
problem. Then, we find the dual of this constrained SVR
problem and show that it is a convex quadratic program.

A. Power Flow as Represented by the Quadratic Kernel

In [5], it was shown that AC power flow can be represented
exactly by the quadratic kernel, which is given as:

K(x1, x2) = (⟨x1, x2⟩)2 ∀x ∈ X = R2n (4)

where n ≤ |B| corresponds to the number of buses in
the network where PMU data is available and x ∈ R2n

corresponds to the real and reactive components in the
complex voltage vector v ∈ Cn, where x is given as:

x ≜
[
d1 d2 . . . dn e1 e2 . . . en

]T
(5)

Then, the feature mapping corresponding to the quadratic
kernel ϕ(x) ∈ RD is given by:

ϕ(x) = [d21 . . . d2n e21 . . . e2n
√
2d1d2 . . .

. . .
√
2d1e2 . . .

√
2en−1en]

T (6)

where we have that D =
(
2n+1

2

)
= 2n2+n. By construction,

we have that K(x1, x2) = ϕ(x1)
Tϕ(x2), a relation that

allows for the kernel trick in the dual SVR formulation, i.e.
the replacement of ϕ(x1)Tϕ(x2) terms by K(x1, x2).

Based on this formulation, we can rewrite each of the real
and reactive power flow and injection measurement relations
given by Equations (2) and (3) as a dot product of the
quadratic feature mapping ϕ(x) given in (6) and a specific
parameter vector with known structure and unknown values.
The power flow measurement equations (2a) and (2b) can be
written as:

pij = ⟨µpij , ϕ(x)⟩, ∀(i, j) ∈ L (7a)
qij = ⟨µqij , ϕ(x)⟩, ∀(i, j) ∈ L (7b)

where µpij
, µqij ∈ RD with the kth entries of µpij

and µqij

are defined as:

(µpij )k ≜


Gij , if ϕ(xij)k =

√
2didj or

√
2eiej

Bij , if ϕ(xij)k =
√
2eidj

−Bij , if ϕ(xij)k =
√
2diej

0, otherwise

(8a)

(µqij )k ≜


−Bij , if ϕ(xij)k =

√
2didj or

√
2eiej

Gij , if ϕ(xij)k =
√
2eidj

−Gij , if ϕ(xij)k =
√
2diej

0, otherwise

(8b)

Similarly, the power injection measurement equations (3a)
and (3b) can be written as:

pi = ⟨µpi , ϕ(x)⟩, ∀i ∈ B (9a)
qi = ⟨µqi , ϕ(x)⟩, ∀i ∈ B (9b)

where µpi
, µqi ∈ RD with the kth entries µpi

and µqi are
defined as:

(µpi
)k ≜

{
Gii, if ϕ(x)k = d2i or e2i
(µpij

)k, otherwise
(10a)

(µqi)k ≜

{
−Bii, if ϕ(x)k = d2i or e2i
(µpij

)k, otherwise
(10b)

The dot product relations (7) and (9) can be shown to
be respectively equivalent to (2) and (3) by expanding the
equations (7) and (9) with the defined µ-parameters given by
(8) and (10) and using trigonometric relations to simplify the
equations. Note that the Gij and Bij entries should be equal
to zero in the case where there is no line that connects buses
i and j. However, in the case where the line topology is only
partially known, we can associate Gij and Bij parameters
to any possible line in the network.

We can observe that due to the sparsity inherent in power
networks [10], most of the entries in the µ-parameters should
be zero. We formalize this observation in the following
lemma.

Lemma 1. The maximum ratio of non-zero entries to zero
entries in µpij or µqij is 4 : 2n2 + n− 4, and the maximum
ratio of non-zero entries to zero entries in µpi or µqi is
4|L(i)|+ 2 : 2n2 + n− 4|L(i)| − 2 where L(i) is the set of
lines attached to bus i.



Proof: In the case of real (or reactive) power flows,
only 4 of the entries in each µpij (or µqij ) could possibly
be non-zero by definition in (8). Similarly, in the case of
real (or reactive) power injections, only 4|L(i)| + 2 of the
entries in each µpi

or µqi could possibly be non-zero by
definition in (10). The minimum number of zero entries is
found by subtracting these from the number of features, given
by D = 2n2 + n.

We will exploit the inherent sparsity of the µ-parameters in
order to learn the network line parameters and topology via
a constrained SVR method described in the sections below.

B. Constrained SVR with Multiple Measurement Types

For a complete background on support vector regression
methods, see [13]. Most of the SVR methods in the literature
try to learn a mapping between vectors xt and scalars yt,
for multiple time steps t = 1, . . . , T . However, for power
flow mapping, we want to learn the relationship between
vectors xt ∈ R2n and vectors yt ∈ RM , for multiple time
steps t = 1, . . . , T , where the vector yt contains multiple
types of pij , qij , pi, and qi SCADA measurements and the
mapping xt → yt is given by the equations (7) and (9).
Given a set of measurements M, where M ≜ |M|, and a
set of data collection time steps 1, . . . , T , we can write the
corresponding state equation model in concise form as:

yt = Wϕ(xt) ∀t ∈ {1, . . . , T} (11)

where the weight matrix W ∈ RM×D relates the features
corresponding to PMU voltage measurements to the SCADA
measurements in M. Each row in matrix W corresponds to
a µ-parameter defined in Equations (8) and (10). In Lemma
1, we observed that these µ-parameters are very sparse,
which translates to W having this same sparse structure.
We will take this sparsity pattern to be E ∈ RM×D, which
is composed of a sparse set of variables as defined in the
next section, noting that E corresponds to the baseline
grid model that is flexible enough to allow for unknown
topology as discussed in Section II-A. We want to enforce
this sparsity pattern on the weight matrix W , which provides
the constraint W − E = 0. Combining this constraint with
the SVR model, we arrive at the primal version of the
constrained SVR problem:

min
W,ξ,E

1

2
||W ||2F + C

∑M
m=1

∑T
t=1(ξm,t + ξ∗m,t) (12a)

s.t. yt −Wϕ(xt) ≤ ϵ+ ξt, ∀t ∈ {1, . . . , T} (12b)
Wϕ(xt)− yt ≤ ϵ+ ξ∗t , ∀t ∈ {1, . . . , T} (12c)
ξt, ξ

∗
t ≥ 0, ∀t ∈ {1, . . . , T} (12d)

W − E = 0 (12e)

where ϵ ∈ RM , ϵi ≥ 0 for all i ∈ {1, . . . ,M} defines
the ϵ-tube around the estimator inside which errors are
not penalized. The variables ξt, ξ

∗
t ∈ RM defined for all

t ∈ {1, . . . , T} are the penalty terms for violating the state
equations (11) outside of the ϵ-tube. A linear penalty on these
errors, scaled by the hyperparameter C > 0, is added to the
Frobenius norm of the weight matrix W to form the objective

function. The inclusion of the Frobenius norm in the objec-
tive serves to encourage flatness in the weight parameters,
thus promoting parameters that are physically realistic. The
hyperparameter C determines the trade-off between the bi-
objectives of promoting flatness and minimizing violations
of the state equations.

Our modification from the classical SVR problem that
maps xt to yt ∈ R is that the weight vector becomes a matrix
given by W and ξt, ξ∗t and ϵ are now vectors in RM . If we
ignore the sparsity constraint (12e), we can decouple this
matrix version of the SVR problem (12) into the standard
vector-version SVR problems for each measurement type
ym, for all m = 1, . . . ,M . Thus, the matrix E ∈ RM×D

serves to couple the different SVR problems that correspond
to each measurement type in the vector yt. Intuitively, this
matrix E allows us to use information obtained about the
parameters corresponding to one measurement type to learn
the parameters corresponding to a different measurement
type. For example, the line conductance Gij of some line
(i, j) ∈ L appears in the measurement equations for both
pij and qi (as well as qij and pi), thus its predicted value
should be the same whether we predict the mapping from x
to pij or from x to qi.

C. Defining the Sparsity Pattern on a Two-Bus Network

To define structure of the sparsity pattern E, let us first
consider a two-bus network, with one line connecting buses
1 and 2. We consider the case where yt ∈ RM with M = 4
that corresponds to the following measurement vectors for
each time step t ∈ {1, . . . , T}:

y =
[
p12 q12 p1 q1

]T
(13)

Using the quadratic feature vector given by (6), where
ϕ(x) ∈ RD with D = 10 corresponding to the two-bus
network, and the sparse relations for the µ-parameters given
by (8) and (10), we know that W will have the following
sparsity pattern E:

E ≜


0 0 0 0 G12 0 B12 −B12 0 G12

0 0 0 0 B12 0 −G12 G12 0 B12

G11 0 G11 0 G12 0 B12 −B12 0 G12

−B11 0 −B11 0 B12 0 −G12 G12 0 B12

 (14)

We have used Equations (8a), (8b), (10a), and (10b) to
respectively construct rows 1, 2, 3, and 4 of matrix E
corresponding to the measurements p12, q12, p1, and q1.
Construction of the matrix E depends solely on the choice
of measurement set and the baseline network topology, both
of which are known a priori. Note that all the G and
B terms in matrix E are unknown parameters. Using this
example definition of E, we can formulate the dual of (12)
for the two-bus network example. We will then generalize
our formulation to larger networks.

D. Formulating the Dual of the Constrained SVR Problem

In the primal constrained SVR problem (12), the con-
straints (12b) and (12c) will slow down a generic quadratic
program solver due to the high dimension of the feature



vector ϕ(x), which scales with n2. Thus, it is more compu-
tationally useful to consider the dual form of (12), making
use of the kernel trick to eliminate most instances of ϕ(x).

In order to take the dual of (12), we introduce the Lagrange
multipliers αt, α

∗
t ∈ RM

+ corresponding to the (12b) and
(12c) inequality constraints, βt, β

∗
t ∈ RM

+ corresponding to
the (12d) inequality constraints, and λ ∈ RM×D correspond-
ing to the (12e) equality constraints. Then, the Lagrangian
of (12) can be written as:

L =
1

2
||W ||2F + C

M∑
m=1

T∑
t=1

(ξm,t + ξ∗m,t)−
T∑

t=1

(αt + α∗
t )

T ϵ

+

T∑
t=1

(αt − α∗
t )

T (yt −Wϕ(xt)) + trace{λT (E −W )}

−
T∑

t=1

(
αT
t ξt + βt

T ξt + (α∗
t )

T ξ∗t + (β∗
t )

T ξ∗t

)
(15)

For the two-bus network example, given Equation (14)
defining E, we can expand the trace{λTE} term as:

trace{λTE} = λ1,5G12 + λ1,7B12 − λ1,8B12 + λ1,10G12

+ λ2,5B12 − λ2,7G12 + λ2,8G12 + λ2,10B12

+ λ3,1G11 + λ3,3G11 + λ3,5G12 + λ3,7B12

− λ3,8B12 + λ3,10G12 − λ4,1B11 − λ4,3B11

+ λ4,5B12 − λ4,7G12 + λ4,8G12 + λ4,10B12 (16)

The equations ensuring stationarity of the Lagrangian (15)
with respect to the G and B unknown parameters are:

∂L/∂G11 = λ3,1 + λ3,3 = 0 (17a)
∂L/∂B11 = −λ4,1 − λ4,3 = 0 (17b)
∂L/∂G12 = λ1,5 + λ1,10 − λ2,7 + λ2,8

+ λ3,5 + λ3,10 − λ4,7 + λ4,8 = 0 (17c)
∂L/∂B12 = λ1,7 − λ1,8 + λ2,5 + λ2,10

+ λ3,7 − λ3,8 + λ4,5 + λ4,10 = 0 (17d)

The equations (17) can be written in more concise form
as:

trace{λTLr} = 0, ∀r ∈ {1, . . . , R} (18)

where R = 4 for the given two-bus example and measure-
ment set. More generally, R is a known integer corresponding
to the number of unique unknown line parameters in the
network, as defined by the chosen measurement set M and
the given baseline network topology. The matrices Lr ∈
RM×D for all r ∈ {1, . . . , R} are also explicitly known
given the chosen measurement set and line topology.

For example, on the given two-bus example, Equation
(17c) corresponding to the stationarity of the Lagrangian
with respect to G12 can be written as trace{λTL3} = 0
by defining L3 as:

L3 ≜


0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 −1 1 0 0

 (19)

The equations ensuring stationarity of the Lagrangian (15)
with respect to the error penalty variables ξt, and ξ∗t for all
t ∈ {1, . . . , T} are:

∂L/∂ξm,t = C − αm,t − βm,t = 0 (20a)
∂L/∂ξ∗m,t = C − α∗

m,t − β∗
m,t = 0 (20b)

Finding the stationarity of the Lagrangian (15) with respect
to the weight matrix W yields the relationship between the
primal weight matrix W and the dual support vectors αt and
α∗
t for all t ∈ {1, . . . , T}:

W =
∑T

t=1(αt − α∗
t )ϕ(xt)

T + λ (21)

Combining these constraints and plugging the definition
of W in (21) back into the Lagrangian (15), we arrive at
the dual form of the constrained SVR problem, given in the
theorem below.

Theorem 1. The dual of the constrained SVR problem (12)
corresponding to the power mapping problem can be written
as the convex quadratic program:

min
α,α∗,λ

f(α, α∗, λ) (22a)

s.t. αm,t, α
∗
m,t ∈ [0, C], ∀m ∈ {1, . . . ,M}

∀t ∈ {1, . . . , T} (22b)

trace{λTLr} = 0, ∀r ∈ {1, . . . , R} (22c)

where we have α, α∗ ∈ RM×T , λ ∈ RM×D, and the
objective function:

f(αt, α
∗
t , λ) =

1

2

T∑
t=1

T∑
s=1

(αt − α∗
t )

T (αs − α∗
s)K(xs, xt)

+

T∑
t=1

(αt + α∗
t )

T ϵ−
T∑

t=1

(αt − α∗
t )

T yt +
1

2
||λ||2F

+

T∑
t=1

(αt − α∗
t )

Tλϕ(xt) (23)

Proof: The dual objective is given by expanding (15)
using (20) and (21), observing that (18) cancels out the
trace{λTE} term, and by substituting K(xs, xt) for the
ϕ(xs)

Tϕ(xt) terms for all s, t ∈ {1, . . . , T} using the kernel
trick. The (22b) constraints of the dual problem follow
from the stationarity relations (20) plus the dual feasibility
constraints αm,t, α

∗
m,t, βm,t, β

∗
m,t ≥ 0 for all t ∈ {1, . . . , T},

m ∈ {1, . . . ,M}.
In order to show that the dual problem (22) is a con-

vex quadratic program, we introduce the variable Z ≜[
α α∗ λ

]T ∈ R(2T+D)×M and rewrite the problem in
stacked form as:

min
Z

1

2
trace{ZTA0Z}+ trace{AT

1 Z} (24a)

subject to: Z ≤ Z ≤ Z (24b)

trace{ZT L̃r} = 0, ∀r = 1, . . . , R (24c)

where the lower and upper bounds Z and Z follow from
(22b) and the matrices L̃r are expanded versions of Lr such



that trace{ZT L̃r} = trace{λTLr} for all r ∈ {1, . . . , R}.
Additionally, we define the matrices A0 ∈ S(2T+D) and
A1 ∈ R(2T+D)×M as:

A0 ≜

 Q −Q ΦT

−Q Q −ΦT

Φ −Φ ID

 , A1 ≜

[(ϵT )×T ]− Y T

[(ϵT )×T ] + Y T

0D×M

 (25)

where we have Φ ∈ RD×T as the matrix composed of
columns ϕ(xt) ∈ RD and Y ∈ RM×T as the matrix
composed of columns yt ∈ RD for all t ∈ {1, . . . , T}.
We define the kernel matrix Q ∈ RT×T as having entries
Qs,t = K(xs, xt) for all s, t ∈ {1, . . . , T}, noting that
Q = ΦTΦ. The notation [(ϵT )×T ] indicates a T × M
matrix where every row equals ϵT , and the notation 0D×M

indicates a D × M matrix composed of all zeros. In this
stacked formulation, we can observe that A0 = aaT where
a ≜

[
Φ −Φ ID

]T
, thus A0 ⪰ 0 and the program is

convex.

IV. ANALYSIS OF CONSTRAINED SVR APPROACH

A. Strong Duality of Constrained SVR Problem

Similar to the classic SVR approach where the dual
problem is used as a solution for the primal, we show that
the proposed dual of the constrained SVR problem can also
be used as a solution to the primal.

Theorem 2. The dual of the constrained SVR problem given
by (22) is exact. Therefore, solving (22) will recover the
solution to (12).

Proof: Since the primal problem (12) is a convex
quadratic program, we just need to show that it satisfies the
weak Slater’s condition to prove strong duality. To show that
there exists some point strictly within the feasible space of
(12), we can set W = E = 0 and ξm,t > max{0, (yt− ϵ)m}
and ξ∗m,t > max{0, (−yt − ϵ)m} for all t ∈ {1, . . . , T},
m ∈ {1, . . . ,M}. Then, we can see that the inequality
constraints (12b),(12c), and (12d) are all strictly feasible for
this point and weak Slater’s holds.

B. Effect of Measurement Availability on Constrained SVR

The availability of measurements, both in terms of
SCADA measurements and PMU measurements, directly
affects which line parameters we are able to accurately
learn with the constrained SVR method. For example, in
the case where two buses i and j both have PMUs and the
SCADA measurements pij and qij are the only available
measurements, we are able to exactly recover Gij and Bij

when there is no measurement noise and are able to recover
good estimates for these parameters when there is noise.
This is evident by considering Equations (8a) and (8b) in
relation to the constrained SVR problem (12) where C is
sufficiently high. Similarly, if we have all possible PMU
and SCADA measurements available in the network, we can
recover all the exact G and B parameters in the network
when there is no measurement noise and good estimates
when there is noise. However, in the more realistic case
where PMU measurements are not available at every bus,

the formulation (12) attributes the discrepancy due observed
and unobserved PMU measurements to the penalty terms
ξ and ξ∗. When there is no available PMU at bus i, it
will be impossible to recover the parameters Gij , Bij , Gii

and Bii since the features d2i , e2i ,
√
2didj ,

√
2eidj ,

√
2diej ,

and
√
2eiej do not appear in the feature vector ϕ(x). Thus,

SCADA measurements pij and qij are not helpful to learn
Gij and Bij if either bus i or bus j is not equipped with a
PMU. On the contrary, the real and reactive power injection
measurements at bus i can still be useful to learn some
parameters even if not all buses attached to bus i are equipped
with PMUs.

While limited access to PMU measurements does prevent
the constrained SVR problem from accurately learning all
the network parameters, there are many realistic cases where
most of network parameters and topology are known but
there is some uncertainty in parts of the network. For
example, some line (i, j) ∈ L might often switch from
open to closed in real-time such that its status is often
unknown. By placing PMUs at buses i and j and solving
the constrained SVR problem, this method could accurately
recover Gij and Bij for the line and thus determine the status
of the line. Future work should consider how strategic PMU
placement can improve power flow mapping recovery.

V. SIMULATIONS

The simulations are run on a standard laptop (2.6 GHz
6-Core Intel Core i7 with 16 GB 2400MHz RAM). The
software MATPOWER is used to import test networks,
formulate admittance matrices, and generate sample data
points based on solving power flow problems with the known
system parameters [22]. Then, the constrained SVR model
is formulated using the Pyomo modeling language in Python
3.8. The convex quadratic program (22) is solved with the
Gurobi solver.

In the following simulations, we test our method on cases
with various signal-to-noise (SNR) ratios in the SCADA
measurements, cases with outliers in the SCADA or PMU
measurements, and networks where measurements are only
partially observed. For all of these test cases, we assume
that the noise in PMU magnitude measurements follows a
zero-mean Gaussian distribution with 0.005 p.u. standard
deviation (SNR of 46 dB) and that the noise in PMU angle
measurements follows a zero-mean Gaussian distribution
with a SNR of 40 dB. These values are consistent with the
existing literature on PMU errors [23]. For these simulations,
we consider the case where we have 10 PMU measurements
associated to each SCADA measurement at any time step,
as discussed in Section II-B.

A. Performance Metrics

We compare the proposed constrained SVR method with
the classic SVR methods in [5] and [9], which were
shown to outperform various NN-based methods in [9]. For
this comparison, we consider the following performance
metrics. Root-mean-square error (RMSE) measures how
well the estimator fits the SCADA measurements y by



penalizing the squared error discrepancy, i.e. RMSE =√
1

MT

∑T
t=1

∑M
i=1(ym,t − ŷm,t)2 , where ŷm,t is output

predicted by the estimator for some time step t and mea-
surement type m. Mean absolute error (MAE) measures
how well the estimator fits the SCADA measurements y
by penalizing the absolute error discrepancy, i.e. MAE =
1

MT

∑T
t=1

∑M
i=1 |ym,t − ŷm,t|. In terms of RMSE and MAE,

the classic SVR method has been shown to perform well in
the power flow mapping problem [5], [9]. This is because
the classic SVR method has good performance learning the
overall mapping between xt’s and yt’s, and RMSE and MAE
do not penalize overfitting. Thus, a more useful metric to
see if the method really learns the true line parameters is to
consider the error between the actual line parameters and
the estimated line parameters. Note that the classic SVR
method could be coupled with a post-processing estimation
step to get a better estimation of the line parameters, such
as using a least-squares estimator to find a set of sparse line
parameters consistent with the expected mapping. However,
this would involve solving a second optimization problem,
further increasing the solution time for large systems. In
these results we consider only a single-stage classic SVR
problem, thus the results presented below are just used as a
baseline.

In the case of line conductance, denoted by the subscript
LC, we take GLC to be the vector of true line conductances
Gij for all lines (i, j) where we have obtained estimates Ĝij

using the SVR method and take ĜLC to be the corresponding
vector of Ĝij’s. Then, the normalized estimation error for
line conductance over all estimated lines is given by:

ΓLC ≜
||GLC − ĜLC||2

||GLC||2
(26)

We have similar normalized error relations for the line
susceptances (given as ΓLS), self conductances (given as
ΓSC), and self susceptances (given as ΓSS).

B. Effectiveness in the Presence of Noise

We start with the case that all buses are equipped with
PMUs so that the voltages in the network are fully ob-
servable. For the IEEE 14-bus test case, we generate PMU
measurements based on the initial voltage state of the
MATPOWER case file, adding Gaussian-distributed random
noise as described in the methodology above. We consider a
SCADA measurement set that consists of all real and reactive
power flow measurements as well as real and reactive power
injection measurements at buses 2 and 3. For this test
case setup, we consider the scenario where we have zero
noise (SNR=∞) and 50 simulations at various SNRs from
45 to 0 dB. The results of these experiments are given
in Table I. Note that the normalized estimation errors for
line conductance and self conductance, i.e. ΓLC and ΓSC,
are omitted from Table I for concision. These experiments
demonstrate that the constrained SVR method outperforms
the classic SVR method in terms of both line parameter
recovery and solution speed and has similar performance to
the classic SVR method in terms of RMSE and MAE. In

TABLE I
COMPARISON OF METHODS ON 14-BUS NETWORK WITH NOISE

Model SNR Avg. Avg. Avg. solve Avg. Avg.
RMSE MAE time (s) ΓLS ΓSS

∞ 0.0013 0.0010 46.86 1.0004 1.0000
Classic 45 0.0009 0.0009 44.26 1.0004 1.0000
SVR 30 0.0009 0.0008 44.49 1.0004 1.0000

15 0.0009 0.0009 45.25 1.0004 1.0000
0 0.0001 0.0009 42.71 1.0004 1.0000
∞ 0.0535 0.0272 5.25 0.0020 0.0051

Constr. 45 0.0535 0.0272 5.21 0.0048 0.0052
SVR 30 0.0536 0.0272 5.17 0.0249 0.0141

15 0.0539 0.0273 5.19 0.1392 0.0672
0 0.0664 0.0346 5.24 0.7952 0.4202

Fig. 1. The normalized estimation error for line susceptance (Bij ’s) as
a function of signal-to-noise ratio (SNR) is presented for the 14-bus test
case. Each box plot corresponds to 50 simulations of Gaussian-distributed
random noise added to the SCADA measurements of this test case. The red
lines are box plots of normalized estimation errors ΓLS for the classic SVR
method, and the blue box plots correspond to the normalized estimation
errors ΓLS for our proposed constrained SVR method.

Figure 1, we have plotted ΓLS as a function of the SNR of
the SCADA measurements, noting that similar plots were
obtained for the normalized estimation errors of the other
line parameters (omitted for concision). Even when SCADA
measurement errors are present, the constrained SVR method
can recover decent estimates for the line parameters (within
14% of the true values on average) as long as the SNR in the
measurements is greater than or equal to 15 dB. Conversely,
the classic SVR method consistently fails to recover the true
line parameters even when no noise is present in the SCADA
measurements.

C. Robustness in the Case of Outliers

Next, we consider the same 14-bus test case as above
with a SNR of 40 dB in the SCADA measurements but
allow for outliers to be present in 0 to 8% in some of
the PMU or SCADA measurement data. The subset of
outlier-affected measurements within the PMU and SCADA
datasets is chosen on a uniform distribution over all possible
measurements, and the values of the outlier-affected mea-
surements are chosen on a uniform distribution from [−2, 2]
per unit, scaled in relation to the chosen measurement type.
In practice, outlier values may be arbitrarily large, so we



TABLE II
COMPARISON OF METHODS ON 14-BUS NETWORK WITH OUTLIERS

Model % Avg. sol. Avg. Avg. Avg. Avg.
outlier time (s) ΓLC ΓSC ΓLS ΓSS

0.00 43.42 0.9906 1.0003 1.0005 1.0000
Classic 2.04 47.46 0.9914 1.0004 1.0004 1.0000
SVR 4.08 48.21 0.9922 1.0003 1.0003 1.0000

6.12 47.74 0.9917 1.0004 1.0004 1.0000
8.16 47.79 0.9925 0.9999 1.0002 0.9999
0.00 5.31 0.0089 0.0064 0.0083 0.0049

Constr. 2.04 5.89 0.6211 0.2000 0.4078 0.0853
SVR 4.08 5.84 0.9450 0.3332 0.3823 0.1284

6.12 5.80 1.8727 0.5187 0.8018 0.2609
8.16 5.87 2.0223 0.5204 0.9563 0.2962

Fig. 2. The average normalized estimation error of line conductance and
line susceptance parameters for the 30-bus network, with varying amounts
of PMU penetration in the network. During each simulation, some subset
of buses is randomly selected to be equipped with PMUs. Each data point
corresponds to the average over 20 random simulations.

take this outlier distribution simply as an assumption used
to compare our model performance with classic SVR. The
results from these simulations are given in Table II.

D. Effectiveness in Partially-Observable Networks

Finally, we consider the case where only a subset of
buses in the network are equipped with PMUs. For these
simulations, we consider the IEEE 30-bus network and
perform a sweep over varying PMU penetration levels in
the network. For these simulations, we take the SNR of the
SCADA noise as 40 dB with no outliers. Some results from
these simulations are given in Figure 2. We see that the sparse
SVR model provides better average normalized estimation
error at all PMU penetration levels than the classic SVR
method but that its benefits are more apparent at higher PMU
penetrations.

VI. CONCLUSIONS

In this paper, we proposed a new constrained SVR method
that can learn the true power network topology of a network.
Based on simulations on IEEE test cases, we showed that
the proposed constrained SVR method is much better at

recovering the true line parameters of a network, even in
the presence of SCADA measurement noise, outliers, and
missing data, than existing SVR methods.
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