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Abstract— When using deep neural networks to operate
safety-critical systems, assessing the sensitivity of the network
outputs when subject to uncertain inputs is of paramount
importance. Such assessment is commonly done using reach-
ability analysis or robustness certification. However, certifica-
tion techniques typically ignore localization information, while
reachable set methods can fail to issue robustness guarantees.
Furthermore, many advanced methods are either computa-
tionally intractable in practice or restricted to very specific
models. In this paper, we develop a data-driven optimization-
based method capable of simultaneously certifying the safety
of network outputs and localizing them. The proposed method
provides a unified assessment framework, as it subsumes state-
of-the-art reachability analysis and robustness certification.
The method applies to deep neural networks of all sizes and
structures, and to random input uncertainty with a general
distribution. We develop sufficient conditions for the convexity
of the underlying optimization, and for the number of data
samples to certify and localize the outputs with overwhelming
probability. We experimentally demonstrate the efficacy and
tractability of the method on a deep ReLU network.

I. INTRODUCTION

Neural networks stand out for their high performance and
flexibility in making data-driven predictions and decisions.
However, researchers have shown that many networks are
highly sensitive to inputs altered by random or adversarial
perturbations [1], [2], [3]. This can result in misclassifica-
tions or outputs entering an unsafe region of the output space,
as well as a large uncertainty propagation from inputs to
outputs. When employing neural networks in safety-critical
systems, e.g., autonomous vehicles [4], [5], this sensitive
behavior is intolerable. Consequently, much effort has been
placed on localizing neural network outputs and certifying
their safety in the presence of input uncertainty.

In localization, one seeks to find a subset of the output
space that contains the possible outputs, whereas certification
is the decision problem of assessing whether the outputs
enter an unsafe region or not. These two problems are clearly
related: exact localization of the network outputs can be used
to certify their safety. However, this approach has two prob-
lems: 1) the output set is generally intractable to compute
[6], and 2) certification typically amounts to solving an NP-
hard, nonconvex optimization over the output set [7]. As a
result, these assessment methods have largely been treated
separately in the settings of output set estimation (see also,
reachability analysis) [6], [8], and robustness certification [9],
[10], [11], and these remain active areas of research.
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A. Related Works

In this paper, we consider random input uncertainty with a
known or sufficiently well-modeled probability distribution.
Despite the large body of work on assessing sensitivity to
adversarial inputs, random uncertainty often models reality
more accurately than worst-case uncertainty [12]. Various
methods to localize and certify outputs in the presence of
random inputs have been proposed [12], [13], [14], [15],
[16]. However, all these approaches rely on trading off
theoretical guarantees with computational complexity, and
on making restrictive assumptions about either the network
structure, e.g., ReLU activations, or the input distribution,
e.g., Gaussian or independent coordinates.

To overcome the above limitations, we develop a novel
method using a sampling-based approach called scenario
optimization, which is computationally tractable, provides
probabilistic guarantees, and can be applied to arbitrary
networks and input distributions. The scenario approach has
recently been used in both output set estimation [17] and in
robustness certification [18]; however, these methods alone
fail to completely assess network sensitivity. In particular,
[17] localizes outputs but may fail to determine their safety,
as we demonstrate in Section V-B. Furthermore, this method
is restricted to localizing outputs into a norm ball, lacking the
generality needed to well-approximate the more complicated
(and typically nonconvex) outputs sets of neural networks
in practice. On the other hand, [18] can efficiently issue
robustness certificates, but completely ignores the aspect of
localizing the outputs in order to do so.

B. Contributions

In this paper, we formulate a unified framework that
simultaneously localizes network outputs and certifies their
safety with high-probability guarantees. The assessment pro-
cedure is data-driven, and subsumes the output set estimation
method in [17] and the robustness certification method in
[18] as special cases. Our method is completely general: it
may be applied to any neural network and any input distribu-
tion. The outputs can be localized into a general class of sets,
not just norm balls, and we obtain sufficient conditions on
this class to ensure that the procedure amounts to a convex
scenario optimization problem. Furthermore, we show that
the resulting localization and robustness certification can be
made to hold with overwhelming probability upon using a
sufficient number of sampled data points in the scenario op-
timization. We illustrate the assessment procedure on a deep
ReLU network, demonstrating the user’s control over the
strength of the probabilistic guarantees and the varying levels
of certification and localization. Finally, we show that our
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unified approach of localizing and certifying simultaneously
can issue robustness certificates in cases where the two-step
process of localizing then certifying cannot.

C. Outline

Various notions of robustness are introduced and used to
formalize the problem in Section II. In Sections III and IV,
we connect the concepts of certification and localization of
network outputs, and show that both can be assessed with
guarantees using a single data-driven convex optimization
problem with sufficiently many samples. We illustrate the
results in Section V and conclude in Section VI.

D. Notations

The set of real numbers is denoted by R. Given a set X ,
we denote its power set (the set of all subsets of X ) by
P(X ). The Minkowski sum of sets X and Y is defined as
X + Y = {x+ y : x ∈ X , y ∈ Y}. Furthermore, we define
R++ = {x ∈ R : x > 0}. For a function f : Rn → Rm, we
write the image of a set X ⊆ Rn under f as f(X ) = {f(x) ∈
Rm : x ∈ X}. Finally, for a norm ‖ · ‖ on Rn we denote
its dual norm by ‖ · ‖∗, where ‖y‖∗ = sup‖x‖≤1 x

>y. We
assume throughout that optimization problems are attained
by a solution.

II. PROBLEM STATEMENT

A. Network Description, Safe Set, and Safety Level

In this paper, we consider a neural network f : Rnx →
Rny with arbitrary structure and parameters. We assume that
the input to the neural network is a random variable X with
a given distribution PX . The support of PX is called the
input set, which is denoted by X ⊆ Rnx . The output set of
the network is defined to be Y = f(X ) ⊆ Rny .

Next, consider a given convex polyhedral1 safe set S =
{y ∈ Rny : Ay + b ≥ 0}, where A ∈ Rns×ny and b ∈ Rns .
By applying the results of this paper to each row of A and b
individually, we may assume without loss of generality that
ns = 1, henceforth setting A = a> ∈ R1×ny and b ∈ R.
The elements of S are considered to be safe. For a point
y ∈ Rny , the value s(y) = a>y+ b is called the safety level
of y. The point y is safe if and only if its safety level is
nonnegative.

B. Various Notions of Robustness

We now use the safety level to define three notions of
robustness for the neural network.

1) Deterministic Robustness Level: The deterministic ro-
bustness level of the network is defined as

r∗ = inf
y∈Y

a>y + b. (1)

If the deterministic robustness level is nonnegative, then
Y ⊆ S, which implies that the random output Y = f(X) is

1The assumption of a polyhedral safe set is not restrictive. For instance,
the set of outputs assigned a given label by a classifier is commonly a
polyhedral set. Furthermore, when assessing network robustness using an
arbitrary safe set, one may always instead use a convex polyhedral inner-
approximation.

safe with probability one. This notion of robustness coincides
with that used when considering adversarial inputs [19], [10],
[11].

2) Approximate Robustness Level: Although the deter-
ministic robustness level (1) can issue strong guarantees
about the safety of the network output, computing its value
r∗ amounts to solving an intractable nonconvex optimization
problem, since Y is generally a nonconvex set. Instead of
computing r∗, we can consider approximating it by

r̂(Ŷ) = inf
y∈Ŷ

a>y + b, (2)

where Ŷ ⊆ Rny , termed the surrogate output set, is more
tractable than Y , and preferably convex. We call (2) the
approximate robustness level of the network. If Ŷ is chosen
to cover the output set Y , then r̂(Ŷ) ≤ r∗. In this case,
if the approximate robustness level is nonnegative, then the
random output Y = f(X) is safe with probability one.

3) Probabilistic Robustness Level: The notion of deter-
ministic robustness is too strong for many applications, par-
ticularly those with random input uncertainty [12]. Therefore,
for a prescribed probability level ε ∈ [0, 1] we define the
probabilistic robustness level of the network:

r̄(ε) = sup{r ∈ R : PX(a>f(X) + b ≥ r) ≥ 1− ε}. (3)

Intuitively, the condition PX(a>f(X)+b ≥ r) ≥ 1−ε states
that the random output Y = f(X) has safety level at least r,
with probability at least 1 − ε. The probabilistic robustness
level of the network is the largest such number r. We remark
that (3) is precisely the notion of probabilistic robustness
used in [18]. However, [18] only provides a method for
certifying that r̄(ε) ≥ 0, making no effort to localize the
random output Y = f(X) in the output space.

In this paper, we aim to localize the neural network output
while simultaneously certifying its safety. Mathematically,
this amounts to estimating Y as well as lower bounding
r̄(ε). However, as written, these two notions are seemingly
disjoint, as the probabilistic robustness level r̄(ε) encodes
no information about where in the output space the random
output can reach, and the output set Y cannot be tractably
used to ascertain robustness information due to its noncon-
vexity. In what follows, we bridge this gap by utilizing the
approximate robustness level to bound r̄(ε) and localize the
output with high probability.

III. CERTIFICATION WITH LOCALIZATION

A. Bounding the Probabilistic Robustness Level

We begin by considering the certification aspect of our
problem. It can be easily verified that the probabilistic robust-
ness level is lower bounded by the deterministic robustness
level; r∗ ≤ r̄(ε) for all ε ∈ [0, 1], and r∗ = r̄(0). Therefore,
a natural question is whether one can instead use the easier-
to-compute approximate robustness level to lower bound the
probabilistic robustness level. As it turns out, this is the case
so long as the surrogate output set has high coverage over



Y . Before proving this claim in Proposition 1, we formally
define this notion of coverage.

Definition 1 (ε-cover). Let Ŷ be a subset of Rny . For ε ∈
[0, 1], the set Ŷ is said to be an ε-cover of Y = f(X ) if

PX(f(X) ∈ Ŷ) ≥ 1− ε.

For small ε, Definition 1 says that Ŷ is an ε-cover of the
output set Y if Ŷ contains the random output Y = f(X)
with high probability. In particular, if we can compute an ε-
cover of Y , then we will have probabilistically localized the
output. By restricting the surrogate output set in (2) to be an
ε-cover of Y , we guarantee that the approximate robustness
level takes into account the safety of Y with high probability.
In this case, we suspect r̂(Ŷ) to well-approximate r∗ in a
probabilistic sense, thereby giving a lower bound on r̄(ε).
We formalize this conclusion as follows.

Proposition 1 (Lower bound from ε-cover). Let Ŷ be an
arbitrary subset of Rny . If Ŷ is an ε-cover of Y = f(X ),
then the approximate robustness level (2) lower bounds the
probabilistic robustness level (3), i.e.,

r̂(Ŷ) ≤ r̄(ε). (4)

Proof. Note that y ∈ Ŷ implies that a>y+ b ≥ r̂(Ŷ) by (2).
Therefore, it holds that PX(f(X) ∈ Ŷ) ≤ PX(a>f(X) +
b ≥ r̂(Ŷ)). Since Ŷ is an ε-cover of Y , we have that
PX(f(X) ∈ Ŷ) ≥ 1− ε. Hence,

1− ε ≤ PX(f(X) ∈ Ŷ) ≤ PX(a>f(X) + b ≥ r̂(Ŷ)).

This shows that r̂(Ŷ) is feasible for the optimization (3).
Therefore, r̂(Ŷ) ≤ r̄(ε), as desired.

Proposition 1 can be interpreted as follows. Suppose that
Ŷ is chosen to be an ε-cover of Y and the approximate
robustness level, r̂(Ŷ), is computed using Ŷ as the surrogate
output set. Then with high probability, the random output
Y = f(X) of the neural network has a safety level at least
r̂(Ŷ), and Y is contained in Ŷ . In particular, if r̂(Ŷ) ≥ 0,
then the random output Y is safe with probability at least
1 − ε. The proposition thereby shows that the approximate
robustness level can be used for certification and localization
of the output so long as the surrogate output set is chosen
appropriately.

B. Optimizing the Bound

From Proposition 1, we know that ε-covers constitute good
choices of the surrogate output set Ŷ used to compute the
approximate robustness level. This is because the random
output Y = f(X) of the neural network is guaranteed to have
safety level at least r̂(Ŷ) with high probability. However, it is
entirely possible that the choice of ε-cover results in r̂(Ŷ) <
0, even when the network is probabilistically robust, meaning
that r̄(ε) ≥ 0. In this case, the approximate robustness level
fails to issue a high-probability certificate for the safety of the
random output Y = f(X), despite Ŷ being able to localize
it.

To overcome the above problem, we turn our attention to
optimizing the lower bound (4). This amounts to finding an ε-
cover of Y that maximizes the approximate robustness level.
Since optimizing over all possible subsets of Rny is generally
intractable, we choose to restrict our search to sets within a
class H = {h(θ) : θ ∈ Θ} parameterized by a parameter
set Θ ⊆ Rp and a set-valued function h : Rp → P(Rny ). A
concrete example of one such class is given below.

Example 1 (Norm ball class). Let ‖ · ‖ be a fixed norm on
Rny and Θ = Rny×R++. Defining p = ny+1, let h : Rp →
P(Rny ) be defined by h(ȳ, r) = {y ∈ Rny : ‖y − ȳ‖ ≤ r}.
Then, Θ and h define the class of ‖ · ‖-norm balls:

H =

{
{y ∈ Rny : ‖y − ȳ‖ ≤ r} : r > 0, ȳ ∈ Rny

}
.

The problem of choosing h and Θ (and therefore also
H) is discussed in detail in Section IV. By restricting our
search for ε-covers to within the class H, our search reduces
to maximizing the approximate robustness level over the
parameter set Θ. By slightly abusing notation, we denote
the dependence of the approximate robustness level on the
parameter θ explicitly as

r̂(θ) = inf{a>y + b : y ∈ h(θ)}, (5)

and we formulate the following optimization problem:

maximize r̂(θ)− λv(θ)

subject to PX(f(X) ∈ h(θ)) ≥ 1− ε,
θ ∈ Θ,

(6)

where the optimization variable is the parameter θ ∈ Rp.
Here, λ ≥ 0, and v : Rp → R can be chosen to be any
nonnegative convex function on Θ that increases as the
volume of h(θ) increases.

The objective r̂(θ) in (6) is the approximate robustness
level computed using the set h(θ) as the surrogate output
set. The constraint PX(f(X) ∈ h(θ)) ≥ 1 − ε enforces
that we only consider parameters θ such that h(θ) is an ε-
cover of the output set Y . The regularization term −λv(θ)
penalizes the size of h(θ). This makes the set h(θ) as small
as possible while maintaining its ε-coverage, thereby yielding
the tightest high-probability localization of the output Y =
f(X). The regularization is done at the expense of a slightly
suboptimal bound (4), and can be eliminated by setting
λ = 0, if only certification is desired. On the other hand,
taking λ→∞ amounts to putting all assessment efforts into
localizing the output. This certification-localization tradeoff
is experimentally explored in Section V-A.

IV. DATA-DRIVEN REFORMULATION

Even when the set h(θ) is convex for all θ ∈ Θ, the
probabilistic constraint in (6) is in general nonconvex [20].
Constraints of this form are typically referred to as chance
constraints, and there exist various approaches to reformu-
lating and relaxing them into convex constraints. Since the
problem at hand considers neural networks with complicated
or possibly unknown models, we seek a data-driven approach



to approximately enforcing the chance constraint in (6), with-
out losing the certification and localization properties of the
solution. The scenario approach is a popular method within
the stochastic optimization and robust control communities
that replaces the chance constraint with hard constraints on
a number of randomly sampled data points [20], [21], [22],
[23]. As we will soon see, this sampling-based method fits
nicely into the framework of our problem, and maintains
a lower bound on the probabilistic robustness level with
high probability, provided that a sufficiently large number
of samples is used.

To implement the scenario approach, suppose that {xj :
j ∈ {1, 2, . . . , N}} is a set of N independent samples of
X . For each input xj , we compute its corresponding output
yj = f(xj). Then, replacing the chance constraint in (6) with
N hard constraints on the samples yj yields the following
scenario optimization problem:

maximize r̂(θ)− λv(θ)

subject to yj ∈ h(θ) for all j ∈ {1, 2, . . . , N},
θ ∈ Θ,

(7)

where the optimization variable is θ ∈ Rp. Note that
solutions to (7) are random due to the random data yj .

As mentioned in Section I-A, the scenario approach was
used recently in reachable set estimation for dynamical sys-
tems [17] and in neural network robustness certification [18].
We remark that these works are special cases of our proposed
problem (7). In particular, (7) recovers the optimization of
[17] in the special case that λ→∞, v(θ) equals the volume
of the set h(θ), and H is the norm ball class. On the other
hand, [18] is recovered in the special case that λ = 0 and
H is the class of all half-spaces in Rny . Consequently, (7)
subsumes these prior works, handling more general classes
H and regularizations v, and providing a unified framework
for simultaneous certification and localization of the random
output Y = f(X). In Section V-B, we demonstrate the
necessity for the more powerful formulation (7) by giving an
example where reducing to the special case of [17] causes
the robustness certification to fail.

Now, although the scenario approach has successfully
eliminated the chance constraint from (6), there remain two
issues to consider. First, it is not immediately clear whether
the scenario optimization problem is convex. In Section
IV-A, we leverage results from parametric optimization to
develop conditions on our choice of Θ and h to ensure that
the scenario problem (7) is convex. Second, the solution of
the scenario problem (7) gives a random approximation to
the solution of (6), which optimizes the bound (4) on the
probabilistic robustness level. In Section IV-B we develop
formal guarantees showing that the solution of (7) maintains
a lower bound on the probabilistic robustness level with high
probability, provided that the number of samples used is
sufficiently large.

A. Conditions for Convex Optimization

In this section, we consider the effect of Θ and h on
lower bounding the probabilistic robustness level of the

network, and on the tractability of the resulting scenario
optimization (7). A key insight is this: an ε-cover of the
output set may in general be much larger than the output
set itself. This is because regions of an ε-cover that do not
intersect with Y also do not count towards the coverage
proportion 1 − ε. Therefore, if the class H from which we
choose an ε-cover does not have high enough complexity,
then the ε-covers within H may need to be exceedingly
large in order to achieve ε-coverage. As an example, consider
covering a line segment in R2 first with an `2-norm ball,
and then, instead, with an ellipsoid. See Figure 1. Clearly,
the additional complexity of the ellipsoid allows for tighter
coverage of the line segment.

Fig. 1. Additional complexity of ellipsoid (green) compared to `2-norm
ball (red) allows for tighter coverage of line segment (blue).

The problem with unnecessarily large ε-covers is that
the feasible set in (5) includes many vectors y that may
not be actual outputs in Y . In this case, the approximate
robustness level r̂(θ) is small, even though the probabilistic
robustness level r̄(ε) may be high. To avoid this problem,
our choice of Θ and h should ensure that the class H has
high enough complexity. However, our choices should also
yield a scenario problem (7) that is convex. Indeed, Theorem
1 gives sufficient conditions for the convexity of the scenario
optimization. Before presenting these conditions, let us recall
a fundamental definition for set-valued functions.

Definition 2 (Convexity of set-valued functions). Consider a
set-valued function h : Rp → P(Rny ) defined on the convex
set Θ ⊆ Rp. The function h is said to be convex on Θ if(

λh(θ1) + (1− λ)h(θ2)
)
⊆ h(λθ1 + (1− λ)θ2)

for all θ1, θ2 ∈ Θ and all λ ∈ [0, 1]. The function h is said
to be concave on Θ if

h(λθ1 + (1− λ)θ2) ⊆
(
λh(θ1) + (1− λ)h(θ2)

)
for all θ1, θ2 ∈ Θ and all λ ∈ [0, 1]. Finally, the function h
on Θ is said to be affine if it is both convex and concave.

Remark 1. The definitions of convexity and concavity for
a set-valued function appear to be opposite of those for
scalar-valued and vector-valued functions. However, these
definitions are consistent with those used in set-valued opti-
mization and coincide with the traditional definition of cone-
convexity. In particular, a convex cone C ⊆ Rny defines
an order relation on P(Rny ); A,B ∈ P(Rny ) are ordered
as A ≤C B if and only if B ⊆ A + C [24]. Taking
C = {0} yields the familiar partial order of subset inclusion,



and Definition 2 amounts to the usual definition of cone-
convexity with respect to the order ≤{0}.

Example 2 (Norm ball functions are affine). Consider again
the norm ball classH given in Example 1. It is easily verified
by Definition 2 that the set-valued function h defining the
class H is both convex and concave on Θ = Rny × R++.
Therefore, h is an affine set-valued function.

With tools for defining and proving convexity of set-valued
functions now in place, we can present conditions under
which the scenario optimization (7) is convex, and therefore
easily solvable.

Theorem 1 (Convex scenario optimization). Consider the
scenario optimization problem (7). Suppose Θ takes the form

Θ = {θ ∈ Rp : gi(θ) ≤ 0 for all i ∈ {1, 2, . . . ,m}},

where the functions gi : Rp → R are convex. Furthermore,
suppose h is a concave set-valued function that takes the
form

h(θ) = {y ∈ Rny : hi(y, θ) ≤ 0 for all i ∈ {1, 2, . . . , n}},

where hi : Rny × Rp → R and hi(y, ·) is convex for all
y ∈ Rny . Then, (7) is a convex optimization problem.

Proof. Since (7) is a maximization problem, we must show
that under the assumptions on Θ and h, the objective is
concave on Θ and the constraints are convex.

Let us first consider the objective r̂(θ) − λv(θ), where
r̂(θ) = inf{a>y + b : y ∈ h(θ)}. Since

1) g(y, θ) := a>y + b is jointly concave on Rny ×Θ;
2) h is a concave set-valued function on Θ;
3) and Θ is a convex set;

Proposition 3.1 of [25] gives that r̂ is a concave function on
Θ. Since v is assumed to be convex on Θ and λ ≥ 0, we
conclude that the objective is concave.

Now, let us consider the constraints. The constraints
gi(θ) ≤ 0 are convex, so θ ∈ Θ is a convex constraint.
Next, the random constraint yj ∈ h(θ) is equivalent to the
constraint on θ that hi(yj , θ) ≤ 0 for all i. Since hi(yj , ·) is a
convex function, the constraint is convex. Since this holds for
all i ∈ {1, 2, . . . , n} and all j ∈ {1, 2, . . . , N}, we conclude
that all of the constraints in (7) are convex.

Remark 2. Theorem 1 is easily extended to include affine
equality constraints in the forms taken by Θ and h(θ).
Additionally, if the functions hi in Theorem 1 are jointly
convex, one can show that h is an affine set-valued function,
and therefore r̂ in (7) is affine (by applying Proposition 4.2
of [25]). Therefore, if v is also affine, the scenario problem
(7) has an affine objective.

Theorem 1 precisely answers our earlier inquiry: the class
H should be complex enough to contain ε-covers of the
output set Y that are not unnecessarily large, but at the same
time Θ should be defined by convex constraints and h should
be taken as a concave set-valued function also defined by
convex constraints. Note that these conditions on h are not

as restrictive as they may seem. In particular, Example 2
shows for the norm ball class that h is affine (and therefore
concave) and defined by convex constraints, and that this
holds for all norms on Rny , even though norm functions
themselves are not affine. Therefore, Theorem 1 guarantees
that the scenario optimization (7) using the norm ball class
is a convex problem, and its objective r̂ is affine per Remark
2. We verify this fact in the following example.

Example 3 (Scenario optimization with norm ball class).
Recall the norm ball class and its corresponding set-valued
function defined on Θ = Rny × R++ given by

h(ȳ, r) = {y ∈ Rny : ‖y − ȳ‖ ≤ r}.

We show that (7) using this class is convex. Indeed, the
approximate robustness level is

r̂(ȳ, r) = inf
‖y−ȳ‖≤r

a>y + b

= b− sup
‖z‖≤1

−a>(rz + ȳ)

= b+ a>ȳ − r‖a‖∗,

which is affine in the optimization variable θ = (ȳ, r). Hence,
the scenario problem reduces to

maximize b+ a>ȳ − r‖a‖∗ − λv(ȳ, r)

subject to ‖yj − ȳ‖ ≤ r for all j ∈ {1, 2, . . . , N},
r > 0,

(8)

which is a convex problem since v is convex.

B. High-Probability Guarantees

We now turn to consider the randomness of the scenario
problem’s optimal value. In particular, we ask the following
question: can the random scenario problem (7) be used to
accurately lower bound the probabilistic robustness level and
localize the random output Y = f(X)? In Theorem 2, we
show that the answer is affirmative with high probability,
provided that the problem is convex and a large enough
number of samples is used.

Theorem 2 (High-probability guarantees). Let ε, δ ∈ [0, 1].
Assume that the scenario optimization (7) is convex and is
attained by a solution θ∗ ∈ Rp. If

N ≥ 2

ε

(
log

1

δ
+ p

)
,

then the following events hold with probability at least 1−δ:
1) h(θ∗) is an ε-cover;
2) r̂(θ∗) ≤ r̄(ε).

Proof. Since the scenario problem is convex and N ≥
2
ε

(
log 1

δ + p
)
, Theorem 1 of [22] gives that, with probability

at least 1− δ, we have

PX(f(X) ∈ h(θ∗)) ≥ 1− ε.

By Definition 1, this implies that h(θ∗) is an ε-cover of Y .
By Proposition 1, this further implies that r̂(θ∗) ≤ r̄(ε).



In Theorem 2, randomness of a solution θ∗ to the scenario
problem (7) is taken care of by the 1−δ probability bound. In
particular, h(θ∗) may not actually be an ε-cover, albeit with
probability at most δ. This added randomness is precisely the
price paid for replacing the intractable chance-constrained
problem (6) with the tractable scenario problem (7). How-
ever, as Theorem 2 shows, the additional randomness is not
a problem, since the requirement on N scales like log 1

δ .
Therefore, we can take δ very small and still maintain a
reasonable sample size N . In doing so, the scenario problem
can be used in place of the chance-constrained problem to
compute the maximum approximate robustness level and
lower bound the probabilistic robustness level of the neural
network. The resulting certification and localization hold
with a probability that can be made arbitrarily close to one.
For this reason, we slightly abuse terminology and call h(θ∗)
in the scenario problem (7) the optimal ε-cover.

C. Procedural Outline

Before demonstrating our theoretical developments in
Section V, we briefly recapitulate our proposed assessment
method, and note the procedure’s remarkable generality. The
procedure amounts to three steps:

1) Choose the parameter set Θ ⊆ Rp and concave
set-valued function h : Rp → P(Rny ) according to
Theorem 1 with sufficiently high complexity (e.g.,
moderately large p).

2) Choose probability levels ε, δ ∈ [0, 1] close to zero.
Independently sample N ≥ 2

ε

(
log 1

δ + p
)

inputs xj
from the distribution PX over the support X , and then
compute yj = f(xj).

3) Choose a regularization parameter λ ≥ 0 and nonneg-
ative convex function v : Rp → R. Solve the scenario
optimization problem (7). Theorem 1 guarantees that
the problem is convex, and Theorem 2 guarantees with
probability 1− δ that the solution r̂(θ∗) lower bounds
the probabilistic robustness level r̄(ε) and that h(θ∗)
is an ε-cover of Y .

We now remark the high generality of our procedure. First,
the procedure does not require knowledge of the model
of the network f or its internal structures. Indeed, the
only characteristics of the network that affect the above
computation are the input and output dimensions, nx and
ny . Therefore, this procedure is effectively invariant to the
number and width of hidden layers, making it particularly
powerful in assessing the probabilistic robustness of deep
neural networks. Furthermore, the procedure makes no as-
sumptions on the differentiability, continuity, or nonlinearity
type of the network’s activation functions.

Another remarkable generality of the proposed approach
is that it applies to any input probability distribution PX .
The support of the distribution, i.e., the input set X , can
be nonconvex, and our procedure still reduces to solving a
convex optimization problem.

Finally, we remark the personalization granted to the user.
Specifically, the user has the freedom to choose ε, δ, Θ, h, λ,
and v. These choices correspond to trading off computational

cost with the tightness of the high-probability guarantees
and with the tightness of the resulting bound on the prob-
abilistic robustness level. Thus, the procedure can always
be tailored to the user’s individual resources and desires.
In particular, computational resources permitting, our data-
driven approach can make the certification and localization
hold with arbitrarily high probability by choosing ε and δ
small enough. Finally, by varying λ, the user can choose the
amount of importance they place on robustness certification
versus on output localization. In particular, taking λ = 0
reduces to pure certification, whereas λ → ∞ reduces to
pure localization. This effect of varying λ is empirically
demonstrated in Section V-A.

V. NUMERICAL EXPERIMENTS

A. Illustrative Example

Consider a 5 × 35 × 30 × 2 neural network f with
ReLU activations and randomly designed weights. In our
computations, we treat the weights and network structure as
unknown, but assume that for x ∈ X ⊆ R5 we may compute
y = f(x) ∈ R2. The input X is distributed uniformly on
the input set X = {x ∈ R5 : ‖x − x̄‖∞ ≤ εx}, where
εx = 0.1 and x̄ = (1, 1, . . . , 1) ∈ R5. We consider the safe
set S = {y ∈ R2 : a>y + b ≥ 0}, where a ∈ R2 and b ∈ R
are chosen randomly for the purpose of this experiment.

We now follow our procedural outline given in Section IV-
C to localize the output Y = f(X) and assess its safety. We
start by selecting the set Θ = R2 ×R++ and the set-valued
function h : R3 → P(R2) defined by

h(ȳ, r) = {y ∈ R2 : ‖y − ȳ‖Q ≤ r},

where ‖·‖Q is a norm on R2 defined by ‖y‖Q =
√
y>Qy =

‖Q 1
2 y‖2 for a fixed symmetric positive definite matrix Q ∈

R2×2. It is easily shown that the dual norm of ‖·‖Q takes the
form ‖y‖Q∗ = ‖y‖Q−1 = ‖Q− 1

2 y‖2. As shown in Example
2, h is an affine set-valued function, and therefore Θ and h
satisfy the conditions of Theorem 1.

The probability levels are chosen as ε = 0.1 and δ =
10−5. We set N =

⌈
2
ε (log 1

δ + p)
⌉

= 291, then uniformly
sample N inputs xj from X and compute their corresponding
random outputs yj . We compute the (symmetric positive
definite) sample covariance matrix Σ ∈ R2×2 of the data
{yj}Nj=1 and use it to define ‖·‖Q. Namely, we set Q = Σ−1.
By doing so, we take our class H to be the set of ellipsoids
with axes scaled and oriented according to the principal
components of the sampled output data.

As shown in Example 3, the scenario problem of interest
takes the form

maximize b+ a>ȳ − r‖a‖Q∗ − λv(ȳ, r)

subject to ‖yj − ȳ‖Q ≤ r for all j ∈ {1, 2, . . . , N},
r > 0,

where the optimization variable is θ = (ȳ, r) ∈ R3. We
choose the regularizer to be the square of the norm ball
radius, i.e., v(ȳ, r) = r2. The optimization problem is convex
as guaranteed by Theorem 1.



We solve the scenario problem first without regularization,
and then with two different levels of reguarization: λ1 =
0.0001 and λ2 = 1. The respective solutions are denoted
by θ∗, θ∗λ1

, and θ∗λ2
. Each instance takes approximately 15

seconds to solve using CVX in MATLAB on a standard
laptop with a 2.9 GHz quad-core i7 processor. The result-
ing approximate robustness levels are r̂(θ∗) = 42.7190,
r̂(θ∗λ1

) = 42.7101, and r̂(θ∗λ2
) = 42.4788. In each instance,

Theorem 2 guarantees that the probabilistic robustness level
r̄(0.1) is at least 42 with probability at least 0.99999. In other
words, the random output Y = f(X) has a safety level of
42 with high probability, showing that the neural network is
probabilistically robust.

The optimal ε-covers, h(θ∗), h(θ∗λ1
), and h(θ∗λ2

), contain
Y = f(X) with probability at least 0.9 (disregarding 1−δ =
0.99999 ≈ 1), and are shown in Figures 2 and 3. The set
h(θ∗) is massively over-conservative due to the choice λ = 0,
which corresponds to pure robustness certification. In the
cases of λ = λ1 and λ = λ2, the optimal ε-covers give
much tighter localizations of the output Y = f(X). The
approximate robustness levels with regularization are only
slightly lower than the unregularized value. Yet, the most
regularized ε-cover, h(θ∗λ2

), clearly provides much tighter
approximation to Y = f(X ), and still guarantees with high
probability that Y ∈ h(θ∗λ2

). Despite the clear success of
regularization in this example, it is important to remark that
when the norm ball is not chosen to align with the data,
the effect of regularization on the approximate robustness
level can be more dramatic, and may cause the approximate
robustness level to be negative even when the unregularized
value is nonnegative.

Fig. 2. Optimal ε-covers amongst ‖ · ‖Q-norm balls. The sets h(θ∗),
h(θ∗λ1

), and h(θ∗λ2
) all issue high-probability certificates of robustness for

the neural network since they are contained in the safe set S. This is even
true for the unregularized h(θ∗), despite its poor localization.

B. Comparison to Output Set Estimation
In this example, we compare our proposed assessment

method to an alternate approach. In the second approach,

Fig. 3. Close-up view of the optimal ε-covers. Increased regularization
makes the ε-cover fit the output set tighter, at the expense of losing some
robustness margin. Although they are smaller, the regularized sets have extra
area that lies closer to the boundary of the safe set S towards the top-right
of the figure.

we first estimate the output set of the neural network using
the scenario-based reachability analysis in [17]. We then use
the resulting output set estimate to assess the robustness of
the network. Recall that our proposed scenario optimization
(7) generalizes the reachability analysis of [17]. In addition
to localizing the network outputs, our approach directly takes
the goal of robustness certification into account, whereas the
estimation technique of [17] does not.

To illustrate our comparison, consider a simple ReLU
neural network given by f : R2 → R2, where fi(x) =
max{0, xi} for i ∈ {1, 2}. The input X is distributed
uniformly on the input set X = {x ∈ R2 : ‖x − x̄‖1 ≤ 1},
where x̄ = (1, 0). The safe set is given as S = {y ∈
R2 : a>y + b ≥ 0}, where a = (0, 1) and b = 0.5. It is
straightforward to show that the output set is the top-half of
the input set, namely, Y = X ∩ {y ∈ R2 : y2 ≥ 0}. Hence,
if y ∈ Y then a>y+ b = y2 + b ≥ b ≥ 0. Therefore, Y ⊆ S,
and so the random output Y = f(X) is safe with probability
one. The network is deterministically robust (and therefore
has nonnegative probabilistic robustness level as well).

We now perform the two assessments at hand, computing
our proposed solution first. We choose the `2-norm ball class
for our candidate ε-covers and draw sufficiently many output
samples {yj}Nj=1 according to Theorem 2 with ε = 0.1 and
δ = 10−5. Next, we choose the regularizer v(ȳ, r) = r2

and regularization parameter λ = 0.1, and then solve our
proposed scenario problem (8) for the `2-norm ball class.
The solution correctly certifies that network outputs are safe
with high probability; see the blue set in Figure 4.

We now turn to the alternative method using the reachabil-
ity analysis proposed in [17]. We use the same `2-norm ball
class as above and solve for the minimum volume ε-cover us-
ing the same N sampled outputs. The estimated output set is
shown in red in Figure 4. Despite being a tighter localization,



a substantial portion of the estimated output set exits the safe
set, meaning this approach cannot certify the robustness of
the network, even though the random output is truly safe with
probability one. This comparison illustrates the fundamental
difference between the problems of output set estimation and
robustness certification. In particular, a good estimate of the
output set of the network may not be the most informative set
to use for robustness certification. This observation endorses
our proposed method, which simultaneously encodes both
goals of certification and localization.

Fig. 4. The red set is the tightest ε-cover of the output set from the
class H, but it does not correctly certify the true robustness of the network.
On the other hand, the ε-cover computed using our approach, shown in
blue, correctly certifies the robustness of the network while maintaining
reasonably tight localization of the output.

VI. CONCLUSIONS
In this paper, we propose a data-driven method for as-

sessing the robustness of a general deep neural network to
an input with random uncertainty. We introduce an intuitive
notion of probabilistic robustness based on the safety level of
the random output, and we relate this to the more common
definition of deterministic robustness. We show that by
approximating the deterministic robustness level using ε-
covers of the output set, the probabilistic robustness level can
be lower bounded while simultaneously localizing the output.
We provide conditions to ensure that optimizing the lower
bound amounts to a tractable convex optimization problem.
The optimization’s solution issues formal guarantees on the
safety and localization of the random output that can be made
to hold with overwhelming probability.
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