A 40Gb/s PAM-4 Transmitter Based on a Ring-Resonator Optical DAC in 45nm SOI CMOS

Sajjad Moazeni1, Sen Lin1, Mark T. Wade2, Luca Alloatti3, Rajeev J. Ram4, Milos A. Popovic5, Vladimir Stojanovic1

1University of California, Berkeley, CA
2Ayar Labs, San Francisco, CA
3ETH Zurich, Zurich, Switzerland
4Massachusetts Institute of Technology, Cambridge, MA
5Boston University, Boston, MA
HPC/Datacenters Interconnects

Demand for higher data-rates!

- **Within the Data Center Rack**
 10G → 25G → 50G

- **Between Data Center Racks**
 10/40G → 100G → 200/400G

- **Long Spans/Inter-Data Centers & WAN**
 40/100G → 400G → 1Tb/s

[Finisar]
Choosing The Right Modulation

NRZ vs. PAM4 @50Gb/s:

- Compare at fixed laser energy per bit
- PAM4 eye 2/3 of optical energy at Rx compared to NRZ
- Conversion to digital is not ideal ...!
Potential Solution: PAM4

• Considering non-idealities:
 – Noise
 – Samplers’ swing requirement
 – Non-linearity

• Trade-offs between NRZ & PAM4 energy-efficiency

• Proposed 400G long-reach standards:
 400G-DR4 (4x100G PAM4)
 400G-FR8 (8x50G PAM4 WDM)
 400G-LR8 (8x50G PAM4 WDM)

This work: How to efficiently generate PAM4 optical signals?
Prior Optical PAM4 Transmitters

- **Segmented Mach-Zehnder interferometer (MZI)**
 - Large footprint (~mm2)
 - High optical insertion loss (>5dB)
 - Poor energy-efficiency (>1pJ/b)
 - Requires Mux/DeMux for WDM

[CISCO ISSCC 13]
Prior Optical PAM4 Transmitters

• Electrical DAC driven ring-modulator
 ✓ Small footprint and energy-efficient
 – Extra non-linearity/bandwidth limits of the DAC
 – Lateral PN junctions require custom photonics processes
 – Interconnect between CMOS and photonics diminishes efficiency!

[Image of electrical DAC driven ring-modulator]

[Roshan-Zamir OI 2016]
IBM/GF 12SOI (45nm) CMOS

- 300mm wafer, commercial process
- MOSIS and TAPO MPW access
- Advanced process used in microprocessors
- Photonic enhancement enables VLSI photonic systems
“Zero-Change” Optics in 45nm

- Photonics for free! (No modification to the process)
- Closest proximity of electronics and photonics
- Single substrate removal post-processing step

Monolithic photonics platform with the fastest transistors
Large Scale Integration

Millions of transistors + Hundreds of photonic devices

[C. Sun, Nature 2015]
Ring-resonator based Optical Links

- Ring-resonator Lorentzian transfer function
- Modulation Scheme:
 1. Deplete/Inject carriers using PN junctions
 2. Δfree carriers \rightarrow Δindex of refraction
 3. On-Off Keying (OOK) modulation in frequency domain

[Courtesy of C. Sun]
“Spoked-ring” Resonators

- <100nm crystalline Silicon layer (MOS body layer)
- Interleaved planar PN junctions
- Enabled by advanced lithography of this process
- Spoked-shape contacts to avoid optical loss
- Q-factor > 10K

“Spoked-ring” 3D and 2D layouts [M. Wade, OFC 2014]
• Drive each segment independently
• Control resonance shift by depleting a portion of segments
• **PAM4 Transmitter**: Map each symbol to a different number of segments getting depleted
Transmission Characteristic

\[\Delta N_e = \Delta N_h \alpha M \times \left(\sqrt{V + V_b} - \sqrt{V_b} \right) \]

\[\Delta n = k_e \Delta N_e + k_h \Delta N_h \]

\[\lambda_{\text{Shift}} \propto \Delta n \]

\[T(\lambda) = 1 - \frac{A}{1 + 4 \left(\frac{\lambda - \lambda_{\text{Shift}} - \lambda_0}{\text{FWHM}} \right)^2} \]
Linearity Comparison

- Improved linearity compared to electrical DAC drive
- Eliminates the need for high-speed electrical DAC
- Higher Q-factor \(\Rightarrow \) More nonlinearity

Wavelength Shift = 20pm/V

\[Q = 7.5K, \ \text{ER}_i = 10\text{dB} \]
Transmitter Data-path

- 16 Anode Segments (Shared cathode connected to V_{bias})
- Thermometer Coding (equivalent to 4-bit binary DAC)
- Extra 2 bits used to pre-equalize ring non-linearity

![Diagram showing data path from PAM4 Symbols to Anode[i]]

- **Binary Symbols** → **2b**
- **Thermometer Codes** → **16b**
- **Programmable LUT**
- **16 x Final Serializer and inverter-based driver slice**
- **Slice[i]** → **Anode[i]**
Thermal Sensitivity

- **10GHz/K** resonance thermal sensitivity!
- Temperature variation sources:
 - Circuits, Optical power inside the ring, ...
- **Necessity of having thermal tuning feedback**
Thermal Tuning for PAM4

- Optimizes eye-opening and tune the ring constantly
- Modified controller equations for PAM4
- Symbol-Statistical (Independent of data encoding)
- Potentially can be used to adaptively set DAC codes

[C. Sun, JSSC 2016]
Clocking Scheme

- Fully digital loop [J. Crossley, CICC 2010]
- Custom designed inductor to adjust for the substrate removal
- Measured locking range: 16-22 GHz
Full Transmitter Architecture

Direct Digital-to-Optical Conversion!
Packaging & Test Setup

- Flip-chip packaged
- Single step post-processing
 - Substrate removal
- Grating coupler loss: 3.5dB
DAC Static Measurement

- Measured spectrum at low optical power ($P_L=-15\text{dBm}$)
- Measured $Q=7.5\text{K}$ (over-coupled @1280nm)
40Gb/s PAM4 Transmit-eye

- Extinction ratio (ER): 3dB, Insertion loss (IL): 5.5dB
- Laser Power: 5.5dBm
- PAM4 coding used: (0,5,10,15)
- \(42fJ/b\) driver energy efficiency
Area/Energy Breakdown

Area Breakdown
Total Transmitter Area = 0.06 mm²

- Photonics: 16%
- Dig. Backend (PRBS, Serializers, Thermal Tuning): 46%
- DPLL: 35%
- Modulator Drivers and LUT: 2%
- Thermal Tuning: 1%

Energy Breakdown (in fJ/b)
Total Transmitter Energy = 685fJ/b

- DPLL: 375
- Serializers & Backend: 250
- Thermal Tuning: 18
- Modulator Drivers: 42
Performance Summary

<table>
<thead>
<tr>
<th>Reference</th>
<th>Wu ISSCC 13</th>
<th>Xiong OI 15</th>
<th>Roshan-Zamir OI 16</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration</td>
<td>Hybrid</td>
<td>Monolithic</td>
<td>Hybrid</td>
<td>Monolithic</td>
</tr>
<tr>
<td>CMOS Technology</td>
<td>40nm</td>
<td>90nm</td>
<td>65nm</td>
<td>45nm</td>
</tr>
<tr>
<td>Driver Supply (V)</td>
<td>1</td>
<td>1.1</td>
<td>2.4</td>
<td>1.55</td>
</tr>
<tr>
<td>ER/IL (dB)</td>
<td>-</td>
<td>6.3/5</td>
<td>7/5</td>
<td>3/5.5</td>
</tr>
<tr>
<td>PAM4 Data-rate (Gb/s)</td>
<td>20</td>
<td>56</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Modulator and Driver</td>
<td>0.29</td>
<td>4.8</td>
<td>3.04</td>
<td>0.042</td>
</tr>
<tr>
<td>Energy Efficiency (pJ/b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photonics Area (mm²)</td>
<td>0.18</td>
<td>1.5*</td>
<td>0.01*</td>
<td>0.01</td>
</tr>
<tr>
<td>Driver Area (mm²)</td>
<td>0.2*</td>
<td>0.075*</td>
<td>0.07*</td>
<td>0.001</td>
</tr>
<tr>
<td>Modulator and Driver</td>
<td>0.053</td>
<td>0.036</td>
<td>0.5</td>
<td>3.6</td>
</tr>
<tr>
<td>BW Density (Tb/s/mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- “Zero-change” 12SOI platform provides low cost & energy-efficient solution for silicon photonic links

- A 40Gb/s PAM-4 transmitter based on segmented ring-resonator optical DAC demonstrated

- 42fJ/b driver energy-efficiency (100x improvement over MZI-based PAM-4 transmitters!)

- This approach can be extended for higher order modulations (PAM-8/16)
Acknowledgment

• Taehwan Kim, Nandish Mehta, Pavan Bhargava and the Berkeley Wireless Research Center (BWRC) staff
• This work was supported in part by DARPA (POEM Program), NSF and the BWRC.