
Optimal Speedup of Las Vegas Algorithms

y

Michael Luby

z

Alistair Sinclair

x

David Zuckerman

{

February 1993 (revised June 1993)

Abstract

Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm

that always produces the correct answer when it stops but whose run-

ning time is a random variable. We consider the problem of minimizing

the expected time required to obtain an answer from A using strate-

gies which simulate A as follows: run A for a �xed amount of time

t

1

, then run A independently for a �xed amount of time t

2

, etc. The

simulation stops if A completes its execution during any of the runs.

Let S = (t

1

; t

2

; : : :) be a strategy, and let `

A

= inf

S

T (A;S), where

T (A;S) is the expected value of the running time of the simulation of

A under strategy S .

We describe a simple universal strategy S

univ

, with the property

that, for any algorithm A , T (A;S

univ

) = O(`

A

log(`

A

)). Further-

more, we show that this is the best performance that can be achieved,

up to a constant factor, by any universal strategy.

Keywords: Design of algorithms, randomized algorithms, Las Ve-

gas algorithms, expected running time, optimal strategy, proof search,

theorem-proving.

y

A preliminary version of this paper appeared in Proceedings of the 2nd Israel Sympo-

sium on Theory of Computing and Systems, Jerusalem, June 1993.

z

ICSI and UC Berkeley. Current address: International Computer Science Institute,

1947 Center Street, Berkeley CA 94704, luby@icsi.berkeley.edu. Research supported in

part by NSF Grant CCR-9016468 and grant No. 89-00312 from the United States-Israel

Binational Science Foundation (BSF), Jerusalem, Israel.

x

ICSI, Berkeley and University of Edinburgh, Scotland. Current address: Inter-

national Computer Science Institute, 1947 Center Street, Berkeley CA 94704, sin-

clair@icsi.berkeley.edu. Research supported in part by grant GR/F 90363 of the UK

Science and Engineering Research Council and by Esprit Working Group \RAND."

{

Laboratory for Computer Science, MIT. Current address: MIT Laboratory for Com-

puter Science, 545 Technology Square, Cambridge MA 02139, diz@theory.lcs.mit.edu. Re-

search supported by an NSF Postdoctoral Fellowship.

1 Introduction

Let A(x) be a randomized algorithm of the Las Vegas type, by which we

mean that, on any input x , the output of A is always correct but its running

time, T

A

(x), is a random variable. Our task is to minimize, for each input x ,

the expected time required to get an answer from A . In doing so we are

viewing A(x) as a black box, so the only experiments we are allowed to

perform are of the following kind: run A(x) for some number t

1

of steps;

if A(x) halts during this time then we are done, otherwise restart A(x)

from the beginning (using an independent sequence of random bits) and

run it for t

2

steps, and so on. Any such experiment can be described by a

strategy S = (t

1

; t

2

; t

3

; : : :), which is just an in�nite sequence of values from

the set Z

+

[f1g . We will also consider rather more general strategies, in

which the running times t

i

are themselves random variables and runs may

be suspended and then restarted at a later time.

If full knowledge is available about the distribution of T

A

(x), then it is

possible to design a strategy that is optimal, in the sense that it achieves

the minimum expected running time amongst all strategies for A(x). We

describe such a strategy in Section 2, and prove its optimality; it has the

form (t

�

; t

�

; t

�

; : : :) for a carefully chosen value t

�

that depends on the entire

distribution of T

A

(x). The expected running time of this optimal strategy,

which we denote `

A

(x), is a natural and easily characterized quantity asso-

ciated with the distribution of T

A

(x).

While the existence of an optimal strategy is an interesting theoretical

observation, it is of little value in practice because it requires for its imple-

mentation detailed information about the distribution of T

A

(x). In practical

applications, very little, if any, a priori information is available about this

distribution, and its shape may vary wildly with x . Furthermore, since we

only want the answer once for any x , there is no point in running exper-

iments to gather information about the distribution: the only information

that could be gathered from such a run is that A(x) stops, in which case we

also obtain the answer. Thus, the problem we address is that of designing

an e�cient universal strategy, i.e., one that is to be used for all distributions

on running times.

In Section 3 we describe a simple universal strategy. As is natural, we

measure the performance of this strategy in terms of `

A

(x), the expected

running time of the optimal strategy described above. We show that the

expected running time of the universal strategy is O(`

A

(x) log(`

A

(x)), which

is only a logarithmic factor slower than the optimal strategy that assumes

1

full information about the distribution. For a wide variety of distributions,

this represents a dramatic speedup over the na��ve strategy of running the

algorithm till termination. We go on to show that this bound is optimal,

i.e., for any universal strategy there is a distribution for which the expected

running time of the strategy is slower by a logarithmic factor than that of

the optimal strategy.

Our interest in these questions was stimulated by the practical appli-

cation to theorem proving described in [2]. In this case, the Las Vegas

algorithm A(x) consists of random search of a (highly unbalanced) tree to

�nd a proof of a conjectured theorem x . [2] describes some real-life ex-

amples of such searches, in which the distribution of the running time of

A(x) is wildly erratic. In many of these examples, it turns out that the

work expended in �nding the proof can be substantially reduced by using

the strategy of running many random tree searches in parallel. (Here the

work is measured as the total number of steps performed by all the parallel

searches.) Using the strategy we develop in this paper, close to optimal

speedup can be achieved for any search tree without any a priori knowledge

of the shape of the tree. Of course, our results apply equally to any Las

Vegas algorithm.

This paper is similar in spirit to recent work of Alt et al [1], who consider

simulation strategies for Las Vegas algorithms with the goal of minimizing

the tail probability of the simulation, i.e., the probability that the simula-

tion runs for more than t steps. Although tail probabilities are not the

main focus of this paper, it turns out that our universal strategy achieves

tail probabilities that are in many cases stronger than those obtained in [1],

and in no case qualitatively weaker. In both papers, the tail probability

is essentially of the form exp(�t=�), but in [1] � is given in terms of the

expectation E[T

A

(x)], whereas in our paper it is given in terms of the quan-

tity `

A

(x), which is never larger than E[T

A

(x)]. (For the precise bounds, see

Theorem 6 in Section 3.) In many cases our bound is considerably sharper,

since for many distributions `

A

(x) � E[T

A

(x)], and it is even possible for

E[T

A

(x)] to be in�nite while `

A

(x) is very small. The worst situation from

our point of view is when `

A

(x) � E[T

A

(x)], in which case the bounds in the

two papers are similar. Thus, our universal strategy achieves both optimal

expected running time and small tail probabilities.

All logarithms in this paper are base 2.

2

2 An optimal strategy when the distribution is

known

In the remainder of this paper, we identify a Las Vegas algorithm A , to-

gether with an input x , with the probability distribution p on its running

time T

A

(x). Thus p is a probability distribution over Z

+

[f1g , and p(t)

denotes the probability that A(x) stops after exactly t steps. We will al-

ways assume that p is non-trivial in the sense that p(1) < 1, so that there

exists a �nite earliest time, t = t

min

say, for which p(t) > 0. Our main

focus of attention is the expected running time of S when applied to an

algorithm A(x) described by distribution p , which we denote T (S; p). In

this section we will be considering a �xed distribution p , so we abbreviate

T (S; p) to T (S).

The �rst question we ask is the following. Suppose that we have full

knowledge of the distribution p ; is there some strategy S that is optimal

for p , in the sense that T (S) = inf

S

T (S) ? The answer turns out to be

\yes," and moreover the optimal strategy is rather easy to describe: it is

the repeating sequence (t

�

; t

�

; t

�

; : : :) for a carefully chosen value t

�

.

In fact, strategies of the special form (t; t; t; : : :) will play a central role

in our analysis, so we begin by analyzing them. Our �rst observation is that

the expected running time of the strategy S

t

= (t; t; t; : : :) is given by the

quantity

`(t) =

1

q(t)

�

t �

X

t

0

<t

q(t

0

)

�

; (1)

where q(t) =

P

t

0

�t

p(t

0

) is the cumulative distribution function of p .

Lemma 1 For all �nite t � t

min

, T (S

t

) = `(t).

Proof: Let S = (t

1

; t

2

; t

3

; : : :) be any strategy, and write S

0

for the same

strategy with t

1

omitted, i.e., S

0

= (t

2

; t

3

; : : :). If t

1

is �nite, we may write

T (S) as follows:

T (S) =

X

t�t

1

tp(t) + (1� q(t

1

))(t

1

+ T (S

0

))

= q(t

1

)`(t

1

) + (1� q(t

1

))T (S

0

) ; (2)

where we have used the relationship

X

t

0

�t

t

0

p(t

0

) = tq(t)�

X

t

0

<t

q(t

0

) = q(t)`(t)� t(1� q(t)): (3)

3

Now in the case S = S

t

, we have t

1

= t and S

0

= S , so we can solve (2)

for T (S) to give T (S

t

) = `(t), as claimed.

In order to specify our optimal strategy, we de�ne

` � `

p

= inf

t<1

`(t): (4)

It is easy to see that ` is �nite for any non-trivial distribution p . Let t

�

be

any �nite value of t for which `(t) = ` , if such a value exists, and t

�

= 1

otherwise. We shall see shortly that the strategy S

t

�

= (t

�

; t

�

; t

�

; : : :) is

optimal for p . First, we analyze its expected running time.

Lemma 2 The strategy S

t

�

= (t

�

; t

�

; t

�

; : : :) satis�es T (S

t

�

) = `.

Proof: If t

�

is �nite then the statement is immediate by the de�nition of

t

�

, ` and Lemma 1. We turn now to the case where t

�

= 1 . Here the

strategy S

t

�

= S

1

is simply the na��ve one of running A(x) until it halts,

so T (S

t

�

) = E[p] , the expectation of p . Using (3), we may write E[p] as

E[p] = q(t)`(t) + �(t) (5)

for any t � t

min

, where �(t) =

P

t>t

0

(t

0

� t)p(t

0

). Note �rst that in this case

E[p] must be �nite. For if not, take t

0

su�ciently large that q(t

0

)`(t

0

) �

`(t

min

). Then we have `(t) � q(t)`(t) � q(t

0

)`(t

0

) � `(t

min

) for all t � t

0

,

so `(t) must attain its minimum value for some t � t

0

, contradicting the

fact that t

�

= 1 . Now, since E[p] is �nite, we have lim

t!1

q(t) = 1 and

lim

t!1

�(t) = 0, and thus from (5) it follows that E[p] = lim

t!1

`(t). But

since t

�

= 1 , we must have E[p] = lim

t!1

`(t) = inf

t<1

`(t) = ` .

We are now in a position to prove that the strategy S

t

�

is optimal.

Theorem 3 For any distribution p, the strategy S

t

�

= (t

�

; t

�

; t

�

: : :) is an

optimal strategy for p, and T (S

t

�

) = `

p

.

Proof: We have already seen in Lemma 2 that T (S

t

�

) = `

p

. It su�ces to

show that no other strategy can beat this bound.

Let S = (t

1

; t

2

; t

3

; : : :) be any strategy. We may assume without loss of

generality that t

i

� t

min

for all i , since smaller values are plainly redun-

dant and can be removed from S without increasing T (S). We shall show

that T (S) � ` = `

p

by expressing T (S) as a convex combination of the

4

values `(t

i

).

y

In doing so, it will be convenient to extend the de�nition (1)

of `(t) by setting `(1) = E[p] , the expectation of p . Note that E[p] is

precisely the expected running time of the strategy S

1

= (1), so we have

e�ectively extended Lemma 1 to all values of t . Moreover, (3) also holds for

t = 1 provided we interpret 0�1 as 0.

Now let X be the random variable whose value is the running time of S

when applied to p , and for each i write T

i

=

P

i

j=1

t

j

. Thus T (S) is just

the expectation E[X] , which we may write in the following way:

T (S) = E[X] =

1

X

i=1

n

t

i

Pr[X > T

i

] +

X

t

i

t=1

tPr[X = T

i�1

+ t]

o

: (6)

Now using (3) the inner summation may be expanded as follows:

X

t

i

t=1

tPr[X = T

i�1

+ t] = Pr[X > T

i�1

]

X

t

i

t=1

tp(t)

= Pr[X > T

i�1

]

n

q(t

i

)`(t

i

)� t

i

(1� q(t

i

))

o

= Pr[X > T

i�1

] q(t

i

)`(t

i

) � Pr[X > T

i

] t

i

:

(Note that this holds even if t

i

= 1 provided we interpret 0 � 1 as 0.)

Thus (6) simpli�es to

T (S) =

X

i

Pr[X > T

i�1

] q(t

i

)`(t

i

) =

X

i

g

i

`(t

i

); (7)

where g

i

= Pr[T

i�1

< X � T

i

] . Since the g

i

form a probability distri-

bution, (7) is a convex combination of the `(t

i

). Hence we must have

T (S) � inf

i

`(t

i

) � ` and the proof is complete.

Remarks: (a) Note from (5) that `

p

� E[p] for all distributions p .

(b) As an example where t

�

is in�nite, consider the distribution p with

p(1) = 0 and p(t) = 2

1�t

for t > 1. Routine calculations show that `(1) =

1 and `(t) =

3�2

t�1

�2

2

t�1

�1

for t > 1, which is a strictly decreasing sequence

with limit 3. Theorem 3 con�rms the intuition that, because of the overhead

involved in the �rst step, it is always better to continue the �rst run of A(x)

than to stop and return to the beginning.

(c) Theorem 3 indicates that, if we know the value t

�

for a given distribu-

tion p , we can design an optimal strategy for p . It is perhaps worth noting

y

Recall that a convex combination of a set of values fv

1

; v

2

; : : :g is an expression of

the form

P

i=1;2;:::

�

i

� v

i

, where �

i

� 0 for all i and

P

i=1;2;:::

�

i

= 1.

5

that it is also enough to know the value q(t

�

) of the cumulative distribution

at t

�

in order to design a strategy whose expected running time is within

a constant factor of the optimal value ` . The strategy is simply the follow-

ing: for each i � 1 in sequence, execute b1=q(t

�

)c runs of length 2

i

. The

justi�cation is straightforward and left to the reader.

It might be argued that the class of strategies we have considered is some-

what restricted, and that substantially better performance could perhaps be

obtained if we widened the class. Two natural extensions are probabilistic

strategies, in which the length t

i

of each run is itself a random variable, and

mixed strategies, in which runs may be suspended and then restarted at a

later time. In this latter case, a strategy is an in�nite sequence of pairs of

the form fm

i

; t

i

g , where m

i

is the label of a run and t

i

a time as before;

such a pair indicates that, at stage i , the run m

i

is to be continued for t

i

steps starting from the con�guration in which it was previously suspended

(if any), and then suspended again. To avoid confusion, we shall use the

term pure strategy to refer to a strategy of the simple kind considered up

to now, i.e., deterministic and with no restarts. Is the pure strategy of The-

orem 3 still optimal in this more general framework? It turns out that it is,

as we now prove.

Theorem 4 The strategy S

t

�

of Theorem 3 remains optimal even when

probabilistic mixed strategies are permitted.

Proof: The reader should have little trouble convincing herself that the

proof of Theorem 3 goes through essentially unchanged for probabilistic

strategies; given the fact that the expected running time of any deterministic

strategy is a convex combination of the values `(t

i

), it is straightforward to

verify that the expected running time of any probabilistic strategy is also

a convex combination of the values `(t

i

). The same applies to the more

general proof we give below for mixed strategies.

Let S = (fm

i

; t

i

g) be a mixed strategy. We start from expression (6) for

the expectation T (S) = E[X] in the proof of Theorem 3. The expansion

of the inner summation is now a little more complicated because of the

possibility that fm

i

; t

i

g is a continuation of a previously suspended run.

We introduce some more notation to handle this. For each i , let t

i

be

the total time allocated to run m

i

up to and including the current stage

fm

i

; t

i

g , and let Q

i

be the probability that no other run (distinct from m

i

)

has stopped before the current stage. As in the proof of Theorem 3, we

may assume that t

i

� t

i

� t

min

for all i . Suppose �rst that fm

i

; t

i

g is the

6

continuation of a run whose previous stage was fm

i

0
; t

i

0
g . Then the inner

summation in (6) becomes

X

t

i

t=1

tPr[X = T

i�1

+ t] = Q

i

X

t

i

t=1

p(t

i

0

+ t)t

= Q

i

n

t

i

q(t

i

)�

X

t

i

�1

t=t

i

0

q(t)

o

= Q

i

n

q(t

i

)`(t

i

)� (1� q(t

i

))t

i

� q(t

i

0

)`(t

i

0

)

o

;

where we have used (3) freely. Since Pr[X > T

i

] = Q

i

(1� q(t

i

)), the overall

contribution of the ith summand to (6) is

Q

i

q(t

i

)`(t

i

)� Q

i

q(t

i

0

)`(t

i

0

): (8)

Suppose on the other hand that fm

i

; t

i

g is the �rst stage of run m

i

. Then

the contribution is exactly as in the proof of Theorem 3, namely (from (7))

Pr[X > T

i�1

] q(t

i

)`(t

i

) = Q

i

q(t

i

)`(t

i

): (9)

Putting all this together, we may write (6) as

T (S) =

X

i

g

i

`(t

i

); (10)

where

g

i

=

�

(Q

i

�Q

i

00

)q(t

i

) if fm

i

; t

i

g is continued by fm

i

00

; t

i

00

g;

Q

i

q(t

i

) if fm

i

; t

i

g is not continued.

From this it is clear that all coe�cients g

i

in the sum (10) are positive.

Moreover, for each i the sum of the two coe�cients in (8), or the single

coe�cient in (9), is easily seen to be

P

i

Pr[T

i�1

< X � T

i

] , from which

it is clear that

P

i

g

i

= 1. Hence we have a convex combination of values

`(t

i

), so just as in the proof of Theorem 3 we conclude that T (S) � ` . Thus

the mixed strategy cannot beat our previous bound.

3 Unknown distributions

The optimal strategy described in the previous section clearly requires de-

tailed knowledge of the distribution p for its implementation. As we have

already explained, however, in the applications we have in mind there will

7

be no information available about p . We are therefore led to ask what is the

best performance we can achieve in the absence of any a priori knowledge

of p .

It will be helpful to introduce one further function associated with a

distribution p . For �nite values of t � t

min

, de�ne

L(t) =

t

q(t)

;

where q is the cummulative distribution function of p as before, and by

analogy with (4) de�ne

L

p

= inf

t<1

L(t): (11)

Note that `

p

� L

p

� 4`

p

; the �rst inequality is obvious, and the second

may readily be checked. Furthermore, as can easily be veri�ed, there is

always some �nite value t = t

0

such that L(t

0

) = L

p

. (Recall that this is

not the case for `

p

.)

Our next theorem says that, with no knowledge whatsoever about the

distribution p , we can always come surprisingly close to the optimum value

for the case of full knowledge given in Theorem 3. Moreover, this perfor-

mance is achieved by a pure strategy of a very simple form that is easy to

implement in practice.

Consider the strategy S

univ

indicated by

S

univ

= (1; 1; 2; 1; 1; 2; 4; 1; 1; 2; 1; 1; 2; 4; 8; 1; : : :):

One way to describe this strategy is to say that all run lengths are powers of

two, and that each time a pair of runs of a given length has been completed,

a run of twice that length is immediately executed. For a more formal

de�nition we may write S

univ

= (t

1

; t

2

; t

3

; : : :), where

t

i

=

�

2

k�1

; if i = 2

k

� 1;

t

i�2

k�1

+1

; if 2

k�1

� i < 2

k

� 1.

Theorem 5 For all distributions p,

T (S

univ

; p) � 192 `

p

(log(`

p

) + 5):

Proof: The intuition for the bound is as follows. Let t

0

be a value that

achieves the minimum value L

p

in (11). Once the strategy has performed

about 1=q(t

0

) runs of length about t

0

, it will have stopped with fairly high

8

probability. At this point, the total time spent on runs of this length will be

about t

0

=q(t

0

) = L

p

. But the strategy is \balanced", in the sense that the

total time spent on runs of each length is roughly equal. Since the number of

di�erent run lengths used up to this time is about log(L

p

), the total running

time is about O(L

p

log(L

p

)) = O(`

p

log(`

p

)).

To make this intuition precise, note that S

univ

has the property that, for

any j , if the total time spent on runs of length 2

j

up to the end of some run

in the sequence is W , then at most (log(W) + 1) di�erent run lengths have

so far been used, and the total time spent on each one cannot exceed 2W .

Thus the total time spent on runs of all lengths up to this point is at most

2W (log(W) + 1).

With t

0

de�ned as above, set i

0

= dlog(t

0

)e and m

0

= dlog(1=q(t

0

))e .

Consider the instant when 2

m

0

runs of length 2

i

0

have been executed. The

probability that A has failed to halt on all of these runs is at most

�

1� q(2

i

0

)

�

2

m

0

�

�

1� q(t

0

)

�

1=q(t

0

)

� e

�1

:

At this point, the total time spent on runs of length 2

i

0

is

W = 2

m

0

+i

0

� 4L

p

� 16`

p

; (12)

and by the observation above the total time spent up to this point is at most

2W (log(W) + 1). More generally, after k 2

m

0

runs of length 2

i

0

have been

completed, the probability that A has failed to halt is at most e

�k

, and the

total time spent up to this point is at most 2kW (log(kW) + 1). Therefore,

T (S

univ

; p) �

X

k�1

2kW (log(kW) + 1)e

�k+1

:

Since log(kW) + 1 � k(log(W) + 1) for all values of k � 1, we have

T (S

univ

; p) � 2W (log(W) + 1)

X

k�1

k

2

e

�k+1

:

The theorem now follows from (12) and the fact that

X

k�1

k

2

e

�k+1

=

e

2

(e + 1)

(e� 1)

3

� 6:

9

Remarks: (a) For clarity of presentation, little attempt has been made to

minimize the constant 192 in the above theorem, and thus the true behavior

of S

univ

is obviously much better than stated.

(b) Note that the above theorem makes no assumptions about p , other than

that `

p

be �nite. In particular, the expectation E[p] need not even be �nite.

(c) In the strategy S

univ

, we chose to increase the run lengths at each stage

by a factor of 2. Of course, any other constant factor would do just as well,

provided the number of runs is adjusted to preserve the property that the

total running time for runs of each length is balanced.

From the above proof, we also immediately obtain the following expo-

nential tail bound on the running time of S

univ

.

Theorem 6 The probability that S

univ

runs for more than t steps is at

most

expf�t=64`

p

log(t)g: (13)

Remark: In a recent paper [1], Alt et al study strategies for minimizing

the tail probability in simulations of Las Vegas algorithms. In Theorem 4 of

their paper, they present a strategy that achieves a tail bound of the form

expf�ct=(E[p] log

2

(E[p])) + log(t=c)g (14)

for some constant c > 0. As discussed in the introduction, our tail

bound (13) is in many cases considerably sharper than (14) because it is

expressed in terms of the quantity `

p

whereas (14) is given in terms of the

expectation E[p] , which may be much larger. Indeed, E[p] may even be in-

�nite while `

p

is very small. The worst case from our point of view is when

`

p

� E[p] ; even in this case our bound is rather better than (14) as long as

t � E[p]

O(log(E[p]))

, but it becomes rather worse for larger values of t .

Finally, we show that Theorem 5 is actually the best we can hope to

achieve, to within a constant factor, for unknown distributions.

Theorem 7 For any strategy S ,

sup

p:`

p

=`

T (S; p) �

1

8

` log(`):

10

Proof: For an arbitrary �xed value of ` , we construct a �nite family

of distributions p with `

p

= ` such that any strategy S must satisfy

T (S; p) �

1

8

` log(`) for some p in the family. Informally, these distribu-

tions will have the maximum possible weight (consistent with the constraint

`

p

= `) concentrated at the points 1; 2; 4; : : : .

Let k = blog(`)c . There will be k + 1 distributions in the family, the

ith of which, p

(i)

, is of the form

p

i

(t) =

8

<

:

2

i

=` for t = 2

i

;

1� 2

i

=` for t = 1;

0 otherwise,

for 0 � i � k . Note that `

p

(i)

= ` for all i .

Now we claim that at least

1

2

(`=2

i

) runs of length at least 2

i

are required

to ensure that the strategy stops on p

(i)

with probability at least

1

2

. To see

this, note that the probability that the strategy fails to stop after t <

1

2

(`=2

i

)

runs of this length is (1� 2

i

=`)

t

>

1

2

. If a particular strategy fails to stop

with probability at least

1

2

after t steps, then then expected running time

of that strategy is at least t=2. Therefore we must have, for any strategy S ,

max

i

fT (S; p

(i)

)g � �=2;

where � is the minimum time required to perform

1

2

(`=2

i

) runs of length

at least 2

i

for 0 � i � k . But it is easy to see that � �

1

4

` log(`), which

completes the proof.

It is not hard to modify the above proof to obtain a similar theorem

(with a slightly smaller constant) when probabilistic mixed strategies are

allowed.

Acknowledgements

We are grateful to Wolfgang Ertel for motivating our consideration of this

problem and for his comments on an earlier version of the paper, to Dana

Randall for valuable discussions that helped to clarify the presentation, and

to Oded Goldreich and Dick Karp for their comments and suggestions.

11

References

[1] Helmut Alt, Leo Guibas, Kurt Mehlhorn, Richard Karp,

and Avi Wigderson. A method for obtaining randomized algorithms

with small tail probabilities. Technical Report TR-91-057, Interna-

tional Computer Science Institute, Berkeley, September 1991.

[2] Wolfgang Ertel. OR-Parallel Theorem Proving with Random

Competition. Proceedings of Logic Programming and Automated Rea-

soning, St. Petersburg, July 1992, Springer Lecture Notes in AI

Vol. 624, pp. 226{237.

12

