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Abstract

Consider the following Markov chain, whose states

are all domino tilings of a 2n� 2n chessboard: start-

ing from some arbitrary tiling, pick a 2 � 2 window

uniformly at random. If the four squares appearing in

this window are covered by two parallel dominoes, ro-

tate the dominoes in place. Repeat many times. This

process is used in practice to generate a random tiling,

and is a key tool in the study of the combinatorics of

tilings and the behavior of dimer systems in statis-

tical physics. Analogous Markov chains are used to

randomly generate other structures on various two-

dimensional lattices. This paper presents techniques

which prove for the �rst time that, in many interest-

ing cases, a small number of random moves su�ce to

obtain a uniform distribution.

1 Introduction

This paper is concerned with algorithmic problems

of the following type: given a simply connected re-

gion S of the two-dimensional Cartesian lattice (chess-

board), generate uniformly at random a tiling of S

with non-overlapping dominoes. (Each domino cov-

ers two adjacent squares of the lattice.) This problem

arises in statistical physics, where the tilings corre-

spond to con�gurations of a so-called dimer system

on S (see, e.g., [7]). Various physical properties of the

system are related to the expected value, over the uni-

form distribution, of some function de�ned over con-

�gurations, such as the number of horizontal dominoes

or the correlation between the orientation of dominoes

at two given squares.

Evidently, an algorithm for randomly generating

con�gurations allows such expectations to be esti-

mated to any desired accuracy. It also enables one

to formulate and test more detailed properties of a

\typical" con�guration, such as the Arctic Circle Con-

jecture, which was originally based on observations of

random con�gurations but has recently acquired the

status of a theorem [10].
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A host of other problems of physical and combina-

torial interest center around the properties of random

structures of various kinds on a two-dimensional lat-

tice. Further examples that we shall consider in this

paper are lozenge tilings of a triangular lattice (corre-

sponding to a dimer system with a di�erent underlying

geometry), and Eulerian orientations of a Cartesian

lattice (the six-point ice model). In all cases, algo-

rithms that randomly generate con�gurations are the

major experimental tool available to researchers inter-

ested in the properties of such systems.

Returning to our �rst example, here is the algo-

rithm that is most widely used in practice to generate

a random domino tiling of a region S . Starting from

an arbitrary tiling, pick a 2� 2 window uniformly at

random. If the four squares in this window are cov-

ered by two parallel dominoes, rotate the dominoes

in place (see �gure 1). Repeat this operation a large

number of times. The resulting tiling should then be

(almost) random.

$

Figure 1: Domino rotations

The fact that this process (a Markov chain on the

set of tilings) is connected (i.e., that every tiling is

reachable from every other by a sequence of moves of

the above kind) is a beautiful result of Thurston [17].

However, no non-trivial upper bound is known on the

number of moves needed to achieve a random tiling. In

practice, this number is decided by appealing to com-

binatorial intuition, or experimentally by some form

of stopping rule. What is lacking is an analysis of the

rate of convergence of the Markov chain to the uniform

distribution, which would supply an a priori bound on

the number of moves. SimilarMarkov chains, based on

analogous local moves, are used to generate other two-

dimensional lattice structures in the same way. Like

the dominoes chain, they have so far resisted analysis.

In this paper, we develop a unifying combinatorial

framework that allows several Markov chains of this

kind to be analyzed for the �rst time. There are two

essential ingredients. The �rst, which we believe to be

of independent combinatorial interest, is to establish

a 1-1 correspondence between the con�gurations on a

lattice region S and objects which we call routings on

a related lattice. Informally, a routing is a collection



of vertex-disjoint (or edge-disjoint) paths crossing S

from left to right. (See Section 2 for precise de�nitions

and examples.) Such a correspondence was already

known, at least implicitly, for two of the systems we

consider. We extend the correspondence to domino

tilings, and identify the common structure of routings

as a key ingredient in the analysis of the associated

Markov chains.

The second ingredient is to interpret natural Markov

chains like the one above on domino tilings in terms of

the associated routings. As we shall see, elementary

moves on con�gurations correspond to natural local

perturbations of the routings (such as displacing one

vertex along a path). The crucial feature of this trans-

lation is that, when viewed in the routings world, the

rate of convergence of the Markov chain turns out to

be amenable to a simple and elegant analysis using

coupling arguments. In fact, this analysis leads us to

generalize slightly the class of random moves allowed

for routings; these in turn map back to natural non-

local moves for the con�gurations themselves. As a re-

sult, we obtain new, non-local versions of the Markov

chains which are provably \rapidly mixing" (i.e., con-

verge quickly to the uniformdistribution), and are also

seemingly more e�cient than the original versions.

The upshot of all this is low-degree polynomial

bounds on the convergence time of these Markov

chains for all three of the examples mentioned above.

We therefore provide the �rst rigorous justi�cation for

experiments that use short simulations of the chains

in order to generate random con�gurations.

We should mention that these problems can be

solved by alternative approaches. A combinatorial

trick known as the Gessel-Viennot method [6] allows

one to count lattice routings by evaluating a suit-

able determinant. In conjunction with self-reducibility

properties, this allows one to generate con�gurations

uniformly at random (see, e.g., [16]). Other Markov

chain algorithms which can be applied to these struc-

tures in arbitrary graphs are given in [9, 13] (for

tilings) and [14] (for Eulerian orientations). However,

in the important special case of planar lattices, the al-

gorithms in this paper have better time bounds than

these other methods, and are simpler, more natural

and quite widely used in practice. Moreover, simula-

tion studies suggest that our bounds are in fact quite

pessimistic, and we are con�dent that they can be im-

proved with a more careful analysis. We also point

out that there is a simple experiment one can perform

which provides a reliable estimate of the true conver-

gence rate: this can be used to dramatically reduce

the number of simulation steps required in practice.

Finally, we highlight another aspect of our work

which we believe to be of wider interest. Up to now,

most applications of Markov chains to the design of

combinatorial algorithms have utilized indirect geo-

metric techniques based on expansion of the underly-

ing graph to analyze the mixing rate (see, e.g., [12]

for a survey). In contrast, our analysis is based on the

simpler and more direct probabilistic approach of cou-

pling. Although this technique has long been known in

the statistics community, attempts to apply it to the

kind of complex Markov chains that arise in Computer

Science have generally been unsuccessful (though for

another interesting recent exception, see [8]).

The remainder of the paper is organized as follows.

In Section 2 we illustrate the correspondence between

lattice con�gurations and routings for each of our ex-

amples: lozenge tilings, domino tilings and Eulerian

orientations. In Section 3, we show how to analyze

the rate of convergence of the natural Markov chain

on lozenge tilings by applying a coupling argument to

the corresponding chain on routings. In the process,

we will enrich the chain with non-local moves. In Sec-

tion 4 we sketch how to apply similar technology to

Markov chains for domino tilings and Eulerian orien-

tations. Owing to space limitations, we concentrate

on giving a avor of the arguments and defer several

details to the full paper.

2 Lattice routings

In this section, we consider several important exam-

ples of lattice structures and illustrate the correspon-

dence between them and collections of paths which

we call routings. Lattice routings are a special case

of so-called plane partitions, which are widely stud-

ied in combinatorics. For some of these examples in

isolation, the correspondence is already known; how-

ever, our aim here is to present the correspondences

in a uni�ed setting. As we shall see later, this will

make the analytical tools we develop rather generally

applicable.

2.1 Lozenge tilings

The �rst structures we consider are lozenge tilings

of a �nite region of the triangular lattice: we discuss

these �rst because the correspondence with routings

is most direct here. A lozenge is the analogue of a

domino in the Cartesian lattice: each lozenge covers

two adjacent triangles in the lattice, and has three pos-

sible orientations. Lozenge tilings are con�gurations

of a dimer system on this lattice. As explained in the

Introduction, we are interested in the problem of gen-

erating a random lozenge tiling of the given region.

The routings corresponding to lozenge tilings are

de�ned on an associated Cartesian lattice. The ver-

tices of this lattice are the midpoints of the vertical

edges of the triangular lattice; two vertices are con-

nected by an edge if they lie on adjacent triangles.

For a �nite, simply-connected region S of the trian-

gular lattice, we designate each vertex of the Carte-

sian lattice that lies on the boundary of S as either a

source or a sink: a vertex v is a source if the interior

of S is on the right of v , and a sink otherwise. If a

lozenge tiling of S exists, the numbers of sources and

sinks are necessarily equal. Following the boundary in

counterclockwise order, starting at a source, we label

the sources fs

1

; : : : ; s

k

g and each sink t

i

, where s

i

was the last unmatched source we labeled.

A lozenge routing of S is a set of k non-intersecting

shortest paths on the Cartesian lattice within S

from s

i

to t

i

for each i . Note that the length of

the path from s

i

to t

i

is the same in every routing.

Figure 2 provides a pictorial illustration of the cor-

respondence between lozenge tilings and routings for

a typical region S . This correspondence has been for-

malized in general by Sachs et al :

2



Theorem 1 ([1, 11]) The set of lozenge tilings of S

corresponds bijectively with the set of lozenge routings

of S .
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A lozenge tiling The corresponding routing

Figure 2: Lozenge tilings and routings

2.2 Domino tilings

A domino tiling is a covering of a �nite region of the

Cartesian lattice with dominoes, where each domino

covers two adjacent squares of the region. Domino

tilings are con�gurations of dimer systems on this lat-

tice. As in the case of lozenge tilings, there is a family

of routings which correspond bijectively to the set of

domino tilings. Again, the routings are de�ned on an

associated lattice, which in this case is triangular.

To specify this lattice, �rst color the squares of the

Cartesian lattice black and white as on a chessboard.

The vertices of the triangular lattice are the centers of

vertical edges that have a black square to their right.

Finally, connect a vertex (x; y) to (x + 1; y + 1),

(x + 1; y � 1) and (x + 2; y) to complete the trian-

gular lattice. Sources and sinks are de�ned in similar

fashion to the lozenge case: sources are boundary ver-

tices with the interior of S to their right, and sinks

those with the interior to their left. Once again, we

pair up sources fs

1

; : : : ; s

k

g and sinks ft

1

; : : : ; t

k

g in

the obvious way. A domino routing of S is then a col-

lection of non-intersecting shortest paths on the trian-

gular lattice within S from s

i

to t

i

for each i .

The correspondence between domino tilings and

routings is illustrated by means of an example in �g-

ure 3: the reader may enjoy convincing himself that

a given tiling de�nes a unique routing using the three

permitted paths through the dominoes as shown. This

correspondence is formalized in the next theorem.

Theorem 2 There is a bijection between domino til-

ings of S and domino routings of S .

Proof. Figure 3 indicates how to use paths through

dominoes to map tilings to routings, as follows. Start

at a source vertex s

i

. By de�nition, there must be a

black square in the interior of S to the right of s

i

. The

domino occupying this square determines the �rst step

of our path: we connect s

i

to the unique point on the

right boundary of the domino which is a vertex of the

underlying triangular lattice. We now �nd ourselves

at a new point with a black square to our right, and

we can repeat this process. Since we migrate to the

right in each step, we eventually hit a point on the

right boundary of S which has a black square to its

right, and thus must be a sink. The paths must be

non-intersecting because the tiles cannot overlap.

To see that the above map is bijective, we will con-

struct the inverse map from routings to tilings. Each

path starts at a source s

i

(which has a black square to

its right) and follows lattice edges to a sink t

i

. As we

follow the path from left to right, we tile each of the

black squares to the right of the lattice points on the

path (except the sink t

i

). (There are three possible

positionings for each tile, corresponding to the three

possible types of edge the path can pass through.)

Since the paths are non-intersecting, our tiles cannot

overlap and we are left with a partial tiling of S . Now

there is a unique way to tile the remaining parts of the

region, namely using only horizontal tiles (whose left

half covers a white square). To see this, consider any

untiled black square. The white square to its left must

be untiled, for if it were tiled there would be a path

exiting its right boundary, and then the black square

would be tiled. So every black square can be tiled with

the right half of a horizontal domino. This completes

the tiling since there must be an equal number of black

and white squares in S . The uniqueness comes from

the fact that each row of each untiled region starts

with a white square, so we cannot complete the tiling

if we use any vertical tiles.
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Figure 3: Domino tilings and routings

2.3 Eulerian orientations

Another important set of structures which can be

identi�ed with lattice routings are the Eulerian orien-

tations of a region of the Cartesian lattice with speci-

�ed boundary conditions. An Eulerian orientation of

an undirected graph is an orientation of its edges so

that the in-degree of every vertex is equal to its out-

degree. In this problem, the input is a �nite region S

of the two-dimensionalCartesian lattice, together with

a �xed orientation for each of the edges that connects

the boundary of S with the interior: these orientations

are the boundary conditions. Our task is to generate

uniformly at random an orientation of the edges in the

interior such that all interior vertices have equal in-

degree and out-degree. This is the six-point model in

statistical mechanics, also known as the \ice model."

The correspondence between Eulerian orientations

and a suitable class of routings is well known in the

physics community (see, e.g., [3]), and is sketched in

�gure 4. The sources and sinks in this case are de�ned

by the boundary conditions, as shown.

An Eulerian routing of S is a set of shortest paths

in S from sources fs

1

; :::; s

k

g to sinks ft

1

; :::; t

k

g on

the boundary. The paths are permitted to intersect

at a vertex but not along an edge. As illustrated in

�gure 4, to get the Eulerian routing corresponding to

3



a given Eulerian orientation, we construct the paths

from edges that are oriented up and to the right.
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Figure 4: Eulerian orientations and routings

Remark. An alternative unifying framework for

these problems is provided by height functions, which

map two-dimensional structures to three-dimensional

surfaces. The correspondence between tilings and

height functions is a beautiful result of Thurston, Con-

way and Lagarias [4, 17] and was previously known

for Eulerian orientations (see, e.g., [3]). Lattice rout-

ings, which we have derived directly from the underly-

ing combinatorial structures, can also be interpreted

as the level sets of appropriate height functions. Al-

though the three-dimensional surfaces supplied the

geometric intuition suggesting the Markov chains we

study, it is the two-dimensional routings which capture

the essential information that admits analysis.

3 Generating lozenge tilings

This section is devoted to an analysis of a very nat-

ural Markov chain algorithm for generating random

lozenge tilings. The analysis will exploit in a crucial

way the correspondence with routings established in

Section 2.1. We present this example �rst because

it is the most straightforward to deal with. Analo-

gous Markov chains for generating the other struc-

tures mentioned in Section 2 can be analyzed by more

re�ned applications of the same techniques (see Sec-

tion 4).

3.1 The Markov chain

In the Introduction, we discussed a Markov chain

on domino tilings based on a local move that rotates

a pair of adjacent dominoes. The analogous Markov

chain for lozenge tilings has as its local move a rotation

of three neighboring lozenges (see �gure 5(a)). As in

the domino case, this chain can also be shown to be

connected, and to converge to the uniform distribution

over tilings.

Let us now interpret this Markov chain in the world

of routings. It is clear that a lozenge rotation induces

a natural local move on the corresponding routing, in

which a \peak" or a \valley" is inverted by moving

two edges (see �gure 5(b)).

It turns out that the Markov chain in the routings

world becomes considerably easier to analyze if every

peak and valley can give rise to a rotation: note that

this is not the case for the above chain, since some-

times when we try to invert a point the move will be

blocked by the presence of another path. (Recall that

the paths in a routing are not allowed to cross.) This

motivates the introduction of a more general set of
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(a) Tiling rotation

(b) Routing rotation

Figure 5: Lozenge rotations

moves in which a tower is rotated. The original moves

will simply correspond to the special case of rotating

a tower of height 1.

In the routings lattice, de�ne the cell at (x; y) to be

the edges connecting (x; y); (x + 1; y + 1); (x; y + 2)

and (x� 1; y + 1). A tower of height h is a connected

set of cells at the points (x; y); (x; y + 2); :::; (x; y +

2h � 2). We call the points (x; y) and (x; y + 2h)

the bottom and top of the tower respectively (see �g-

ure 6(a)).
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height 3
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(b) Tower rotation in routing

(c) Tower rotation in tiling

Figure 6: A move in the Markov chain M

loz

for

lozenge routings, and its counterpart for tilings

Let R

1

and R

2

be lozenge routings of the region S .

We de�ne a Markov chain M

loz

in which there is a

move from R

1

to R

2

if and only if the symmetric

di�erence of the edges of R

1

and R

2

is a tower. The

4



transition probabilities P (� ; �) of M

loz

are de�ned by

P (R

1

; R

2

) =

8

<

:

1=2Nh; if R

1

� R

2

is a

tower of height h;

1�

P

R6=R

1

P (R

1

; R); if R

2

= R

1

,

where N is the total number of internal vertices along

all the paths in any routing. Figure 6(b) illustrates

such a move (rotation of a tower of height 3). Fig-

ure 6(c) shows that these generalized moves have a

natural counterpart in the original tilings world.

Notice that we may implement a move of M

loz

as

follows. Given a routing R , choose an internal point p

on one of the paths in R , and a number r 2 [0; 1] uni-

formly at random. Assume �rst that r � 1=2. If p

is a valley then it is the bottom of a unique tower of

height h ; in this case, if r � 1=2h rotate the tower.

On the other hand, if r > 1=2 check to see if p is a

peak (and hence the top of a unique tower of height h),

and rotate this tower if r � 1 � 1=2h . In all other

cases do nothing. This somewhat unusual implemen-

tation is a technical device that will prove useful later

when we de�ne couplings in Section 3.3.

It is not hard to check that this Markov chain is er-

godic and reversible, and that it converges to the uni-

form distribution over all lozenge routings. Therefore,

we can generate a random tiling by simulating M

loz

for su�ciently many steps, starting from an arbitrary

routing, and outputting the tiling corresponding to the

�nal routing. The e�ciency of this algorithm depends

on the number of simulation steps necessary to ensure

an (almost) uniform distribution, or equivalently on

the rate of convergence of the Markov chain. We shall

see in Section 3.3 that a small number of steps su�ce.

First, however, we need some technology.

3.2 Coupling and the convergence rate

In this subsection, we establish some general ma-

chinery for bounding the rate of convergence ofMarkov

chains, which we shall use repeatedly in the remainder

of the paper. Consider an ergodic Markov chain M

with �nite state space 
, transition matrix P and sta-

tionary distribution � . Following standard practice,

for any given initial state x , we shall measure the de-

viation of the distribution P

t

(x; �) at time t from �

by the variation distance:

�

x

(t) =

1

2

X

y2


jP

t

(x; y)� �(y)j:

The mixing time of the Markov chain is de�ned by the

function

� (�) = max

x

minft : �

x

(t

0

) � � for all t

0

� tg:

Our strategy for bounding � (�) is to construct a

coupling for the Markov chain, i.e., a stochastic pro-

cess (X

t

; Y

t

)

1

t=0

on 
�
 with the properties:

1. Each of the processes X

t

and Y

t

is a faithful copy

of M (given initial states X

0

= x and Y

0

= y ).

2. If X

t

= Y

t

, then X

t+1

= Y

t+1

.

The idea here is the following. Although each of

X

t

; Y

t

, viewed in isolation, behaves exactly like M ,

they need not be independent; on the contrary, we will

construct a joint distribution for the two processes in

such a way that they tend to couple, or move closer

together. By the second condition above, once they

have coupled they must remain coupled at all future

times.

The expected time taken for the processes to couple

provides a good bound on the mixing time of M . To

state this formally, for initial states x; y set

T

x;y

= minft : X

t

= Y

t

j X

0

= x; Y

0

= yg;

and de�ne the coupling time to be T = max

x;y

ET

x;y

.

The following result relating the mixing time to the

coupling time is standard (see, e.g., [2]):

Theorem 3 � (�) � 6T (1 + ln �

�1

) .

Next, we introduce some machinery that will help

us to bound the coupling time. Suppose we have

a distance function � de�ned on 
 � 
 such that

� takes integer values in the range [0; ::; B] , and

�(x; y) = 0 i� x = y . In our examples, where the

states of the Markov chain are lattice routings, � will

be a natural measure of the \area" between a pair

of routings. We will measure the distance between

a pair of processes (X

t

; Y

t

) using the stochastic pro-

cess �(t) = �(X

t

; Y

t

). Our strategy will be to show

that, under a suitably de�ned coupling, the expected

change �� in � is always non-positive; intuitively,

this should enable us to conclude that the coupling

time is small. The following lemma makes this intu-

ition precise.

Lemma 4 With the above notation, suppose the cou-

pling satis�es E

�

��(t)jX

t

; Y

t

�

� 0 and, whenever

�(t) > 0 , E

�

(��(t))

2

jX

t

; Y

t

�

� V . Then the ex-

pected coupling time from initial states x; y satis�es

ET

x;y

� �(0)

�

2B ��(0)

�

=V .

Proof. De�ne the stochastic process Z(t) = �(t)

2

�

2B�(t) � V t . It is easy to check that

E

�

Z(t+ 1)jZ(t); : : : ; Z(0)

�

� Z(t+ 1) =

2

�

�(t) �B

�

E

�

��(t)jX

t

; Y

t

�

+

�

E[(��(t))

2

jX

t

; Y

t

]� V

�

� 0;

and hence Z(t) is a submartingale. Moreover, the ran-

dom time T

x;y

= minft : �(t) = 0g (where X

0

= x ,

Y

0

= y ) is a stopping time for Z(t) with �nite ex-

pectation, and the di�erences jZ(t + 1) � Z(t)j are

bounded. This allows us to apply the Optional

Stopping Theorem for submartingales (see, e.g., [5,

Chap. 4, Thm. 7.5]), and conclude that EZ(T

x;y

) �

EZ(0). From the de�nition of Z(t), this implies that

�V ET

x;y

� �(0)

2

� 2B�(0);

which gives the desired upper bound on ET

x;y

.
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3.3 M

loz

is rapidly mixing

We �rst consider the simpli�ed case of routings con-

sisting of a single path P with source s and sink t .

Notice that in this case all towers have height 1.

We de�ne a coupling as follows. Consider two

copies of the Markov chain, whose states are the paths

P

1

and P

2

, each containing N internal points. Then

in one move we choose (i; r) 2

u

f1; : : : ; Ng � [0; 1]

and simultaneously move the ith points of each of

P

1

and P

2

as speci�ed by the random number r . It

should be clear that this is a valid coupling. Notice

that, because we are using the same value of r for both

processes, the two paths will never move in opposite

directions. This was the reason we implemented the

Markov chain in this fashion in Section 3.1.

We now need to bound the expected time it takes

the coupled process to cause any two initial routings

to agree. To simplify the problem, we use an observa-

tion due to Propp and Wilson [15]: if the state space

of a Markov chain forms a distributive lattice, and the

coupling preserves the partial order, then the coupling

time is bounded above by the expected time for cou-

pling to occur when the initial states are the largest

and smallest elements of the lattice. It is easy to see

that our set of paths forms a partial order, in which

P

1

� P

2

i� the ith point of P

1

lies on or above the

ith point of P

2

for all i . The following lemma, whose

straightforward proof is omitted, establishes that our

coupling does indeed preserve this ordering.

Lemma 5 If, under the above coupling, the pair

(P

1

; P

2

) moves to (P

0

1

; P

0

2

) , and if P

1

� P

2

, then

P

0

1

� P

0

2

.

We now proceed to bound the time taken for the

two extremal paths to couple. To do this, we intro-

duce a distance function as in lemma 4. For a pair

of paths P

1

; P

2

, de�ne the distance �(P

1

; P

2

) to be

the area (i.e., number of lattice squares) of the region

between P

1

and P

2

. The crucial observation is that

this distance will tend not to increase under our cou-

pling, as the next lemma shows. By lemma 5, we may

restrict attention to the case P

1

� P

2

.

Lemma 6 Let P

1

and P

2

be any paths such that

P

1

� P

2

. Then E[��jP

1

; P

2

] � 0 .

Proof. Consider an arbitrary pair of paths P

1

� P

2

.

The typical situation is as depicted in �gure 7, with

path P

1

(the \red" path) drawn as a solid line and

path P

2

(the \blue" path) as a dotted line. We can

partition the paths into segments C

1

; : : : ; C

`

on which

the two paths coincide, and segments D

1

; : : : ; D

m

whose endpoints coincide, but for which the red path is

strictly above the blue path at all intermediate points.

Consider �rst a segment C

i

. It is clear that, if the

point chosen by the coupling lies in this segment, then

the point will move with the same probability on both

paths, so the paths will still coincide and there will be

no change in area.

Now consider a segment D

i

, in which the red points

are strictly above the blue points (except at the end-

points). On the red (upper) path, label the peaks

\good" (G) and the valleys \bad" (B), and vice versa

for the blue path. Thus a point is good if a rotation

at that point would cause the area between the paths

to decrease, and bad if a rotation would case the area

to increase. (The boundary of the region might in fact

prohibit some of these bad rotations.) It is easy to see

that, on each path, the labeled points in the interior of

the segment D

i

are alternately good and bad, with a

net excess of one good point. Moreover, each endpoint

of D

i

contributes at most one bad point (unless D

i

and D

i+1

meet at a point, in which case there might

be two bad points, but we can assign one to each seg-

ment). Summing over all segments of the path, we

see that the number of good points is greater than or

equal to the number of bad points. Since each good or

bad point is equally likely to be chosen in the coupling,

the expected change in area is at most zero.
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Figure 7: Proof of lemma 6

Theorem 7 Let S be a region with one source s and

one sink t . Then the mixing time of the Markov

chain M

loz

on lozenge routings of S satis�es � (�) �

12n

3

(1 + ln �

�1

) , where n is the area of S .

Proof. By theorem 3, it su�ces to show that the

coupling time T satis�es T � 2n

3

. To bound T

we appeal to lemma 4, restricting attention to ex-

tremal initial states following lemma 5. Our distance

function � clearly takes integer values in the inter-

val [0::n] . Moreover, we have seen in lemma 6 that

E[��] � 0. It remains only to bound E[(��)

2

] , as-

suming that the area between the pair of paths is non-

zero. In this case, there must be a segment on which

the red path is strictly above the blue path (using

the terminology in the proof of lemma 6). Scanning

this segment from left to right, there is a �rst point

where at least one of the paths is good and neither is

bad. If this point is chosen at the next time step, then

there will be a decrease in area with probability at

least

1

2

. Hence � decreases strictly with probability

at least 1=2n , so E[(��)

2

] � 1=2n . Plugging all of

these quantities into lemma 4 yields T � 2n

3

.

We now extend the above argument to the case of

lozenge routings with multiple paths. The coupling

we use is the following obvious generalization of our

earlier one. Given a pair of routings, choose the same

random point p on both routings, say the ith point

of the j th path, and the same random bit r 2

u

[0; 1].

Then update each routing by rotating at point p with

the appropriate probability as determined by the ran-

dom number r .

As in the single-path case, we can argue that it

is su�cient to bound the expected coupling time for

6



a pair of extremal routings. It is easy to see that

these routings again form a distributive lattice and

therefore have a unique highest and lowest element.

The partial order is de�ned in the natural way: we

say that a routing R

1

� R

2

i� the ith path of R

1

lies on or above the ith path of R

2

, for all i . Since

all routings of a region S have the same number of

paths, this is well-de�ned. Again, it can be checked

that the coupling preserves this ordering:

Lemma 8 If, under the above coupling, the pair

(R

1

; R

2

) moves to (R

0

1

; R

0

2

) , and if R

1

� R

2

, then

R

0

1

� R

0

2

.

This ensures that we need only consider coupling ex-

tremal routings.

For a pair of routings R

1

; R

2

, we de�ne the dis-

tance �(R

1

; R

2

) to be the sum of the areas between

corresponding paths in R

1

and R

2

. The next lemma,

a generalization of lemma 6, proves that the distance

tends not to increase under the coupling.

Lemma 9 Let R

1

and R

2

be any two routings such

that R

1

� R

2

. Then E[��jR

1

; R

2

] � 0 .
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Figure 8: Proof of lemma 9

Proof. Consider a pair of routings, the upper one

red and the lower one blue. Adopting the same ter-

minology as in the proof of lemma 6, give a point the

label G

i

if it de�nes a tower of height i and is a good

point (i.e., choosing it could reduce the area between

the two routings). Similarly, label a point B

i

if it de-

�nes a bad tower of height i (see �gure 8). We can

calculate the expected change in area by �rst consid-

ering the expected change if we make a move on the

red routing only, and then adding to this the expected

change in area from a move on the blue routing only.

Each point labeled G

i

has probability 1=2Ni of ro-

tating, and such a rotation decreases the area between

the two routings on each of the i paths altered by the

rotation, a total decrease of i . Summing the expected

changes in area over all good and bad points, we have

E[��jR

1

; R

2

] =

X

i

X

B

i

i

2Ni

�

X

j

X

G

j

j

2Nj

=

1

2N

�

X

i

#B

i

�

X

j

#G

j

�

� 0;

where #B

i

is the number of points labeled B

i

. The

�nal inequality follows from the fact that on each path

the number of good points is at least as large as the

number of bad points, as argued in lemma 6.

It is now a short step to the main theorem of this

section, which con�rms that simulating the Markov

chain M

loz

provides a reasonable algorithm for gen-

erating a random lozenge tiling.

Theorem 10 Let S be a region of the triangular lat-

tice. The mixing time of the Markov chain M

loz

on

lozenge routings of S satis�es � (�) � 12n

4

(1 + ln �

�1

) ,

where n is the area of S .

Proof. The maximum total area between any pair

of routings is n

1:5

, so the distance function � takes

values in the range [0; ::; n

1:5

] . Lemma 9 con�rms that

E[��] � 0. To get a bound on E[(��)

2

] , consider

a pair of routings with non-zero area between them.

Then there must be a pair of corresponding paths,

one red and one blue, and a segment in which the red

path is strictly above the blue path. Scanning this

segment from left to right, call the �rst good point

we reach on either path p . There is a 1=N chance

of choosing the point p , and we perform the rotation

at p with probability 1=2h , where h is the height of

the tower de�ned by p . Rotating this tower causes

a decrease of h in the total area, one unit for each

path included in the tower. Hence we can conclude

that E[(��)

2

] � h

2

=2Nh � 1=2n . Putting all this

together, and appealing to lemmas 4 and 8 we see

that the coupling time satis�es T � 2n

4

. The result

now follows from theorem 3.

Remarks. (a) We have made no attempt here to

tune the upper bound on the mixing time in theo-

rem 10. This can be improved by more re�ned argu-

ments, which we defer to the full paper.

(b) In practice, we can run an experiment to bound

the coupling time using stopping rules as in [15]. We

can run the coupled process starting with the two ex-

tremal elements in the set of routings to bound the

coupling time T . Experimentally, this has been found

to yield considerably tighter bounds; theorem 10 pro-

vides, for the �rst time, an a priori bound on the

running time of this experiment.

4 Generating other structures

The machinery presented in the last section pro-

vides a general framework which can be applied to

the random generation of other lattice structures, in-

cluding domino tilings and Eulerian orientations (and

presumably others). In each case, the development of

a provably e�cient algorithm follows the same outline:

we start with natural local moves connecting the space

of con�gurations which are believed by experimenters

to be e�cient. We then interpret these moves in terms

of the appropriate routings, enrich them with a small

set of non-local moves (involving towers), and use a

coupling argument to argue that the resulting Markov

chain is rapidly mixing: in all these cases, the mixing

time is bounded by a low-degree polynomial in the

area of the region. The de�nition of towers is sensi-

tive to the type of routing, and the proofs use slightly

more sophisticated arguments. It is interesting that,

7



in each case, as for lozenge tilings, the choice of towers

is quite natural in the original setting as well. Owing

to limited space, we will only sketch the main ideas

here; the details can be found in the full paper.

4.1 Domino tilings

Our task is to construct a random domino tiling of a

given region S of the Cartesian lattice. In theorem 2

we showed that this is equivalent to constructing a

random domino routing of a region of the triangular

lattice with sources fs

1

; :::; s

k

g and sinks ft

1

; :::; t

k

g .

This we achieve using a Markov chain on the space

of routings, whose moves correspond to rotations of

suitably de�ned towers. In this case there are four

di�erent types of towers, as indicated in �gure 9. The

height of a domino tower is the number of unit trian-

gles in the tower. Let N be the number of edges in

any domino routing of S . The transition probabilities

P (� ; �) of M

dom

are:

P (R

1

; R

2

) =

8

<

:

1=2Nh; if R

1

� R

2

is a

tower of height h;

1�

P

R6=R

1

P (R

1

; R); if R

2

= R

1

.

To implement one step of this Markov chain, start-

ing at a routing R , choose (e; r) 2

u

R � [0; 1]. First

suppose r � 1=2. If the edge e is a diagonal directed

up and to the right, check to see if there is a tower

starting at e and extending in the north-west direc-

tion. Notice that this must be a tower of Type I or

Type II, and is unique. If on the other hand e is hor-

izontal, check whether there is a tower of Type III or

Type IV starting at e and extending north-west (again

this is unique). In either case, determine the height h

of the tower, and if r � 1=2h rotate the tower. The

case when r > 1=2 is similar: check to see whether

there is a tower in the south-east direction starting at

e . If e is a diagonal pointing up and to the right this

would be a tower of Type II or Type IV; if e is hor-

izontal it would be a tower of Type I or Type III. In

either case rotate the tower if r > 1� 1=2h , where h

is the height of the tower.
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Figure 9: Domino towers

The Markov chain M

dom

is ergodic and converges

to the uniform distribution over all domino routings of

a region S . We can de�ne a coupling in exactly analo-

gous fashion to that for lozenge routings in Section 3.3.

Once again it is not hard to check that this coupling

preserves the obvious partial order on domino rout-

ings, so we may again restrict attention to extremal

routings when analyzing the coupling time. The key

fact is the following analogue of lemma 9, which says

that the area �(t) between routings (de�ned in the

obvious way) is non-increasing in expectation.

Lemma 11 Let R

1

and R

2

be two domino routings

such that R

1

� R

2

. Then E[��jR

1

; R

2

] � 0 .

Proof (sketch). First consider the case when R

1

and R

2

each consist of just a single path. Then, fol-

lowing the ideas from lemmas 6 and 9, we can consider

segments C

1

; : : : ; C

`

on which the two paths coincide,

and segments D

1

; :::; D

m

on which the two paths co-

incide at the endpoints, and on which R

1

is strictly

above R

2

at all intermediate points. As before, it is

clear that choosing an edge on any of the C

j

will not

change the area between the paths.

Now consider a region D

j

. Give an edge the la-

bel G

i

if, when that edge is chosen by the coupling,

the area between the routings could increase by ex-

actly i . Similarly, label an edge B

i

if one of the di-

rections could cause the area to decrease. When the

routings consist of a single path, i is either 1 or 2.

Certain edges will receive two labels. See �gure 10.
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Figure 10: Proof of lemma 11 | single path case

We can match each bad edge to a unique good edge

as follows. Each horizontal edge with a bad label also

has a good label, so we can pair them o�. Any diag-

onal segment which has a bad label at one end must

have a good label at the other end, so we can pair

these. (The moves of M

dom

are de�ned so that we

can only rotate the routing at the two extremal edges

of a diagonal segment.) This tells us that the number

of bad edges is no greater than the number of good

edges. As in lemma 9, the probability of rotating at

a given edge is inversely proportional to the change in

area caused by such a rotation. This ensures that the

expected change in area is always non-positive.
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Figure 11: Proof of lemma 11 | multiple path case

To handle multiple paths, we need to modify the

above labeling slightly. It is possible that edges which

8



would be labeled good or bad when a path is viewed

in isolation might no longer be places where we can

perform a rotation. In particular, if horizontal edges

from adjacent paths get too close, one will not be able

to rotate in the north-west direction, and the other will

not be able to rotate in the south-east direction. This

will have the net e�ect of eliminating a good and a bad

label. To see this, label an edge

^

G if it is a horizontal

edge which cannot move in the good direction because

of interference with another path, and label it

^

B if

it cannot move in the bad direction. Any edge which

cannot be rotated because the resulting rotation would

go outside of the boundary of S is also labeled

^

B .

These labels are shown in �gure 11 for the solid paths

only. The crucial point is that every edge labeled

^

G

must be paired with a distinct edge labeled

^

B . Hence

#

^

G � #

^

B .

Generalizing the argument from the single path

case, we have that

#

^

B +

X

i

#B

i

� #

^

G+

X

j

#G

j

;

whence

X

i

#B

i

�

X

j

#G

j

:

From this we can conclude that the expected change

in area is always non-positive.

Lemma 11, in conjunction with lemma 4, yields:

Theorem 12 Let S be a region of the Cartesian lat-

tice. Then the mixing time of the Markov chain

M

dom

on domino routings of S satis�es � (�) �

12n

4

(1 + ln �

�1

) , where n is the area of S .

4.2 Eulerian orientations

Let S be a region with speci�ed boundary condi-

tions for Eulerian orientations: recall that these de-

termine the sources and sinks. To generate a ran-

dom Eulerian orientation of S , we construct a Markov

chain M

eul

whose state space is the set of all Eule-

rian routings on S with these sources and sinks. In

similar fashion to the case of lozenge routings, we al-

low a move between two routings if they di�er by a

structure which is either a vertical or horizontal tower,

as depicted in �gure 12. The transition probabilities

P (� ; �) of M

eul

are

P (R

1

; R

2

) =

8

<

:

1=2Nh; if R

1

and R

2

di�er

by a tower of ht h;

1�

P

R6=R

1

P (R

1

; R); if R

2

= R

1

,

where N is the number of vertices on any routing.

To implement one step of M

eul

, starting at a rout-

ing R , choose (p; r) 2

u

R � [0; 1]. If r � 1=2, check

to see whether p is the lower-right point of a vertical or

horizontal tower (of height h), and rotate the tower if

r < 1=2h and this yields a legal routing. Similarly, if
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Figure 12: Markov chain for Eulerian orientations

r > 1=2, check to see whether p is the upper-leftmost

vertex on a vertical or horizontal tower, and rotate this

tower if r > 1� 1=2h and this yields a legal routing.

Note that whenever p is part of both a vertical and

a horizontal tower we will in fact do nothing: rotat-

ing either tower would force edges on two paths to

coincide, and thus fail to produce a legal routing.

Tower rotations have a simple interpretation in

terms of Eulerian orientations. A tower of height h

corresponds to a directed cycle in the Eulerian orien-

tation which is a 1 � h rectangle (with its internal

edges aligned). The rotation corresponds to reversing

all the orientations around this cycle, which of course

produces a new Eulerian orientation.

Note that, when the boundary conditions de�ne a

set of routings consisting of a single path, the Markov

chain is equivalent to the lozenge routing chain M

loz

of Section 3. Theorem 7 guarantees that this chain is

rapidly mixing. We now extend this result to Eulerian

routings that consist of an arbitrary number of paths.

As in the previous examples, we will start with the

highest and lowest routings and construct a coupling

which chooses corresponding points on the two rout-

ings and the same random number r . As usual, the

following lemma, which says that the area �(t) be-

tween routings is non-increasing in expectation, is the

key to the proof.

Lemma 13 Let R

1

and R

2

be any two routings such

that R

1

� R

2

. Then E[��jR

1

; R

2

] � 0 .
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Figure 13: Proof of lemma 13

Proof (sketch). We assign labels G and B to peaks

and valleys in similar fashion to the lozenge case (see

�gure 13). On the lower routing, label G any corner

which is the lower-right of a tower, and label B any

corner which is the upper-left of a tower; on the up-

per routing, interchange the roles of G and B . Now

9



we will label all the corners which do not de�ne a

tower. On the lower routing, label

^

G any unlabeled

corner which goes to the right and then up, and la-

bel

^

B any unlabeled corner which goes up and then

to the right; on the upper routing, interchange the

roles of

^

G and

^

B . Generalizing from the single path

case we know that #B +#

^

B � #G+#

^

G.

Next observe that each point labeled

^

G can be

paired with a distinct point labeled

^

B . A point p

is labeled

^

G for one of two reasons: either the two

edges which complete the unit square de�ned by the

peak or valley at p are part of an adjacent path, or

p (and its incident edges) lie on the boundary. In the

�rst case, the point de�ning the opposite corner of the

square must be labeled

^

B , and we can pair this bad

point (on the same routing) with p . In the second

case, since we have a good point on the boundary, the

corresponding point on the other routing must also be

on the boundary (and share both incident edges), and

therefore must be labeled

^

B ; we pair this bad point

with p . This pairing implies that #

^

B � #

^

G, and

hence that #B � #G .

Finally, observe that the weights of the moves

are chosen so that each bad and each good point

contributes equally to the expected change in area.

Hence, if N is the number of points on the routing,

we have E[��] = (#B �#G)=2N � 0.

Combining this with lemma 4 we obtain the following:

Theorem 14 Let S be a region of the Cartesian lat-

tice with speci�ed boundary conditions. Then the mix-

ing time of the Markov chain M

eul

on Eulerian rout-

ings of S satis�es � (�) � 12n

4

(1 + ln �

�1

) , where n

is the area of S .

5 Concluding remarks

The techniques discussed here also allow us to de-

velop an algorithm for generating a random three-

coloring of a rectangular region of the Cartesian lat-

tice, another fundamental problem motivated by sta-

tistical mechanics applications. To do this, we identify

the set of three-colorings with the union over all pos-

sible boundary conditions of the set of Eulerian orien-

tations of the region. We leave this algorithm, which

is based on a variant of the Markov chain M

eul

of

section 4.2, for the full paper.

We conclude by mentioning some directions for fur-

ther work. Firstly, we suspect that the broad class of

plane partition problems, i.e., planar problems which

can be expressed in terms of routings, contains sev-

eral other candidates for similar Markov chains and

analysis. Secondly, we note that no comparable ma-

chinery exists for lattice structures in three dimen-

sions, despite intense interest. The principle challenge

here is to �nd an analogue of routings that captures

naturally occurring three-dimensional structures: this

would constitute a major breakthrough. Finally, we

should mention the question of whether our arguments

could be enhanced to show that the original Markov

chains (i.e., our chains with rotations restricted to tow-

ers of height 1) are also rapidly mixing. Although we

suspect that this would not lead to faster algorithms,

it remains interesting for historical reasons.
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