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Abstrat

The paper onsiders spin systems on the d-dimensional integer lattie Z

d

with nearest-

neighbor interations. A sharp equivalene is proved between exponential deay with distane

of spin orrelations (a spatial property of the equilibrium state) and \super-fast" mixing time

of the Glauber dynamis (a temporal property of a Markov hain Monte Carlo algorithm).

While suh an equivalene is already known in various forms, we give proofs that are purely

ombinatorial and avoid the funtional analysis mahinery employed in previous proofs.
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1 Introdution

Lattie spin systems are a lass of models that originated in Statistial Physis, though interest in

them has sine expanded to many other areas, inluding Probability Theory, Statistis, Arti�ial

Intelligene, and Theoretial Computer Siene. A (lattie) spin system onsists of a olletion

of sites whih are the verties of a regular lattie graph. A on�guration of the spin system is

an assignment of one of a �nite set of spins to eah site. The sites interat loally, aording

to potentials spei�ed by the system, suh that di�erent ombinations of spins on neighboring

sites have di�erent relative likelihoods. This interation gives rise to a well-de�ned probability

distribution over on�gurations of any �nite subset (volume) of the sites, onditional on a �xed

on�guration of the sites on the boundary of this subset. Suh a distribution is referred to as a �nite

volume Gibbs distribution, and is regarded as the equilibrium state of the given subset onditional

on the given boundary on�guration.

A Glauber dynamis is a Markov hain Monte Carlo algorithm used to sample from the Gibbs

distribution. A step in this Markov hain is a random update of the spin of a single site (or of a

�nite set of sites), onditional on its neighboring spins and in a manner whih is reversible with

respet to the Gibbs distribution. As a result, suh a Markov hain onverges to the orresponding

Gibbs distribution. The Glauber dynamis plays a entral role not just as an algorithm for sampling

from the Gibbs distribution but also as a model for the physial proess of reahing equilibrium.

A striking phenomenon in the �eld of spin systems, at least for latties with \sub-exponential

growth" suh as the integer lattie Z

d

, is the equivalene of (a priori unrelated) notions of temporal

and spatial mixing. By temporal mixing we mean that the Glauber dynamis onverges \very fast"

to its stationary Gibbs distribution, while by spatial mixing we mean that in the Gibbs distribution,

orrelations between the spins of di�erent sites deay \very fast" with the (lattie) distane between

them. This equivalene is interesting beause it preisely relates the running time of an algorithm

to purely spatial properties of the underlying model. In addition, a ommon heuristi in omputer

siene is that loal algorithms should work well (run fast) for loal problems. The equivalene

between temporal and spatial mixing is an example of the above heuristi in a restrited setting,

where the relationship is formally proven and where there are preise interpretations for the terms

\loal algorithm", \loal problem", and \run fast".

The above equivalene has been explored by a number of previous authors, using various notions

of spatial and temporal mixing. This line of work was initiated by Holley [10℄ and Aizenman and

Holley [1℄, followed by Zegarlinski [17℄ and ulminating in the work of Strook and Zegarlinski [16℄,

who were the �rst to establish the above equivalene in full. We further mention Martinelli and

Olivieri [13, 14℄, who later obtained sharper results by working with a weaker spatial mixing as-

sumption, and Cesi [4℄, who reently simpli�ed some of the proofs. See also [12℄ for a review of

results in the �eld.

The referenes mentioned above make ruial use of funtional analysis in their proofs, and

usually disuss quantities suh as the spetral gap and the logarithmi Sobolev onstant of the

dynamis as a measure of its temporal mixing (these quantities measure the ontration of the

semi-group assoiated with the dynamis). In this paper, we give purely ombinatorial proofs of

this equivalene, based on the elementary tehnique of oupling probability distributions. Although

some of the ideas we use have appeared before, our main ontribution lies in presenting a omplete

argument whih is purely ombinatorial, where the reader does not need to resort to onepts from

funtional analysis.
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We note that the result we present in the diretion going from spatial mixing to temporal mixing

(of the single site Glauber dynamis) is limited in the sense that it only applies tomonotone systems.

For general systems, however, we show that spatial mixing implies temporal mixing of a \�nite-

blok" Glauber dynamis, in whih a suÆiently large blok of spins is updated at eah step. The

orresponding impliation for the single site dynamis in the general ase is known [4, 12, 14, 16℄,

but urrently we do not have a ombinatorial proof of it.

The remainder of the paper is organized as follows. Setion 2 inludes exat de�nitions and

statements of results. In Set. 3 we list a few basi tools we use in the proofs. In Set. 4 we prove

that temporal mixing implies spatial mixing while in Sets. 5 and 6 we prove that spatial mixing

implies temporal mixing for monotone and general systems respetively.

2 De�nitions and statements of results

2.1 Spin systems

Consider the d-dimensional integer lattie

1

as a graph with vertex set V = Z

d

and edge set E,

where (v; u) 2 E, denoted v � u, if and only if

P

d

i=1

jv

i

� u

i

j = 1. We use the statistial physis

terminology and refer to the verties as sites. For a �nite subset 	 � V , we de�ne its boundary as

�	 = fv =2 	 : there exists u 2 	 s.t. v � ug :

Eah site is assigned a spin from the spin spae S = f1; : : : ; qg, and the on�guration spae is

denoted by 
 = 


	

= S

	

. Given a on�guration � 2 
, we write �[v℄ for the spin that � assigns

to v and abuse this notation with �[�℄ standing for the on�guration of the subset � under �.

We onsider spin systems with nearest neighbor interations (although everything we do an

be generalized to �nite range interations). Namely, we have a (symmetri) pair potential

2

U :

S � S ! R, and a self potential W : S ! R. Then, for a �nite subset 	 and a boundary

on�guration � 2 


�	

, the Hamiltonian H

�

	

: 


	

! R is de�ned as

H

�

	

(�) =

X

v2�	;u2	;v�u

U(� [v℄; �[u℄) +

X

v;u2	;v�u

U(�[v℄; �[u℄) +

X

v2	

W (�[v℄):

The value this Hamiltonian assigns an be onsidered as the \energy" of � when � is the boundary

on�guration. The �nite volume Gibbs distribution assoiated with the subset 	 and the boundary

on�guration � assigns probability to � whih is proportional to the inverse exponential of its

energy. Formally,

�

�

	

(�) =

1

Z

�

	

exp(�H

�

	

(�)); (1)

where Z

�

	

is the appropriate normalizing fator.

Example: Probably the best known spin system is the ferromagneti Ising model. In this ase,

the spin spae is S = f�1;+1g, while U(s

1

; s

2

) = �� �s

1

�s

2

and W (s) = �� �h �s, where � 2 R

+

is

1

Most of our results hold | with suitable modi�ations | for any lattie with \sub-exponential growth" (i.e., the

volume of inreasing balls around any site inreases sub-exponentially with the radius). For simpliity, in this paper

we fous just on Z

d

.

2

The given de�nition of the pair potential does not over systems with hard onstraints, where U may be in�nite.

Systems with hard onstraints are disussed in setion 2.5 below.
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the inverse temperature and h 2 R is an external �eld. Thus, the energy of a on�guration is linear

in the number of edges with disagreeing spins, as well as the number of spins with sign opposite

to that of h. For example, if h = 0 and if we ignore the e�et of the boundary on�guration (the

so-alled \free-boundary ondition") then the minimum energy (highest probability) on�gurations

are the two onstant on�gurations where all the spins have the same value (either +1 or �1).

2.2 The Glauber dynamis

We study the following simple Markov hain (X

t

), known as the (heat-bath) Glauber dynamis,

whih is used to sample from �

�

	

. Given the urrent on�guration X

t

2 


	

, the transition X

t

!

X

t+1

is de�ned as follows:

� Choose a vertex v uniformly at random from 	.

� Let X

t+1

[u℄ = X

t

[u℄ for all u 6= v.

� Choose X

t+1

[v℄ from �

X

0

t

fvg

, where X

0

t

is the on�guration of �fvg de�ned by X

0

t

[u℄ = X

t

[u℄

for u 2 	 and X

0

t

[u℄ = � [u℄ for u 2 �	.

It is not too diÆult to verify that this Markov hain is reversible with respet to the Gibbs

distribution �

�

	

and, in partiular, that �

�

	

is the unique stationary distribution.

Remark: In the literature, a Glauber dynamis is usually any Markov hain that makes single site

updates that are reversible with respet to the single site Gibbs measure. Indeed, all the results

below apply to any hoie of Glauber dynamis. However, for de�niteness we will assume the above

de�nition throughout this paper.

We also disuss a generalization of the Glauber dynamis to a Markov hain where at eah step

a blok of sites is updated rather than a single site. Let Q

L

= [1; : : : ; L℄

d

be the d-dimensional

regular box of side length L. Consider all the translations of Q

L

that interset the subset 	 and

let B(	; L) =

�

� 6= ; j � = (z +Q

L

) \	 for some z 2 Z

d

	

. We think of eah � 2 B(	; L) as a

blok. We then denote by HB(L) the heat-bath blok dynamis that makes updates to bloks

from B(	; L). Given the urrent on�guration X

t

, the transition X

t

! X

t+1

is de�ned as follows:

� Choose a blok � uniformly at random from B(	; L).

� Let X

t+1

[u℄ = X

t

[u℄ for all u =2 �.

� Choose X

t+1

[�℄ from �

X

0

t

�

, where X

0

t

is the on�guration of �� de�ned by X

0

t

[u℄ = X

t

[u℄

for u 2 	 and X

0

t

[u℄ = � [u℄ for u 2 �	.

2.3 Temporal and Spatial Mixing

The statements in this paper relate an appropriate notion of temporal mixing (onvergene in time

of the Glauber dynamis) with an appropriate notion of spatial mixing (deay of orrelation with

distane in the Gibbs distribution). The exat de�nitions are given below.

Let �

1

and �

2

be two distributions on 


	

. We write k�

1

��

2

k = max

A�


	

j�

1

(A)��

2

(A)j for the

total variation distane between the two distributions, and k�

1

��

2

k

�

= max

A�


�

j�

1

(A)��

2

(A)j

for the distane when projeting the two distributions on 


�

for � � 	.
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De�nition 2.1. We say that the Glauber dynamis has optimal temporal mixing if there exist

onstants b and  > 0 suh that for any subset 	 with any boundary on�guration, the dynamis

on 	 has the following property. For any two instanes (X

t

) and (Y

t

) of the hain and for any

positive integer k, kX

kn

� Y

kn

k � bn exp(�k), where n = j	j is the volume of 	.

In partiular, optimal temporal mixing means that the distane from the stationary measure

kX

kn

��

�

�

k � bn exp(�k) for any instane (X

t

). Before we move on to the de�nition of the spatial

mixing notion, we pause to ompare optimal temporal mixing as de�ned here with some of the

other notions of temporal mixing found in the literature. The mixing time of a Markov hain (as

a funtion of �) is the time it takes to get within a variation distane of � from the stationary

measure. Notie that optimal temporal mixing is equivalent to a mixing time of O(n log(

n

�

)).

Optimal temporal mixing also implies that the spetral gap of the dynamis is at least



n

. While

a spetral gap of 
(

1

n

) does not immediately imply optimal temporal mixing, it is not too diÆult

to see that if the log Sobolev onstant assoiated with the dynamis is 
(

1

n

) then the dynamis

has optimal temporal mixing. We notie that in fat, in the ontext of spin systems, all the above

notions of temporal mixing are known to be equivalent when onsidered to hold uniformly in the

subset 	 and in the boundary on�guration (sine they are all equivalent to an appropriate notion

of spatial mixing as below).

The orresponding spatial notion we onsider states that hanging the spin of a site on the

boundary has an exponentially small e�et on the on�guration of sites far away from the hanged

site. The distane between two sites v and u is de�ned as the graph distane between them, or

equivalently, dist(v; u) =

P

d

i=1

jv

i

�u

i

j. The distane between subsets is the natural extension, i.e.,

the minimal distane between two sites, one in eah subset.

De�nition 2.2. We say the system has strong spatial mixing if there exist onstants � and � > 0

suh that for any two subsets �;	 where � � 	, any site u 2 �	, and any pair of boundary

on�gurations � and �

u

that di�er only at u, k�

�

	

� �

�

u

	

k

�

� �j�j exp(�� � dist(u;�)):

Remark: In the literature, the de�nition of strong spatial mixing may vary, where the di�erene

lies in whih lass of subsets 	 the assumption applies to (for example, 	 may be restrited to be

a regular box). We work with the strongest version by requiring it to apply to all subsets in order

to simplify our arguments.

In order to illustrate the above de�nitions

3

, let us onlude this setion with a brief disussion of

how they apply to the Ising model (as de�ned in Example 2.1) on the square lattie Z

2

. Reall that

in the de�nition of the Ising model, � stands for the inverse temperature and h for an external �eld.

The following fat is an example of the equivalene between temporal and spatial mixing: There

exists a ritial

^

�



suh that, when h = 0 (no external �eld), for � <

^

�



both optimal temporal

mixing (De�nition 2.1) and strong spatial mixing (De�nition 2.2) hold for the Ising model on Z

2

,

while for � >

^

�



both fail.

It is worth mentioning here that in the speial ase of the Ising model on Z

2

, the ritial

^

�



mentioned above oinides [15℄ with the ritial inverse temperature �



where a phase transition

ours in the in�nite volume limit, namely, for � < �



there exists a unique in�nite volume Gibbs

3

Stritly speaking, the disussion in the three paragraphs starting here applies to slightly modi�ed de�nitions of

spatial and temporal mixing where the subset 	 is restrited to have a \nie" shape (see remark following De�ni-

tion 2.2).
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measure while for � > �



there are multiple suh measures. Though we do not disuss in�nite

volume Gibbs measures in this paper (see for example [8, 9℄ for more on this topi), one an

interpret the uniqueness of the in�nite volume Gibbs measure as an alternative notion of spatial

mixing (whih is weaker than strong spatial mixing provided the underlying lattie is of sub-

exponential growth). Notie that in general it is not true that the two ritial inverse temperatures

^

�



and �



oinide, and there are examples where the in�nite volume Gibbs measure is unique while

strong spatial mixing does not hold (see [12℄ for a disussion on the matter).

Finally, again in the speial ase of the Ising model on Z

2

, the orresponding phase transition

in the mixing time is known to be very sharp [5℄. Spei�ally, for � >

^

�



= �



, not only does

optimal temporal mixing not hold, but in fat the mixing time is super-polynomial (spei�ally,

exp(
(

p

n))).

2.4 Monotone systems

Some of the statements in this paper apply only to monotone systems. In a monotone system, eah

site v is assoiated with a linear ordering of the spin spae, denoted by �

v

. Sine the spin spae

is �nite, eah of the linear orderings has unique maximal and minimal elements, whih we all the

plus and minus elements respetively. The single site orderings give rise to a partial ordering �

	

of the on�guration spae. Spei�ally, �

1

�

	

�

2

if and only if �

1

[v℄ �

v

�

2

[v℄ for every v 2 	.

The system is monotone with respet to the above partial ordering if, for every subset 	 and any

two boundary on�gurations �

1

and �

2

suh that �

1

�

�	

�

2

, the Gibbs measure �

�

1

	

statistially

dominates the Gibbs measure �

�

2

	

with respet to �

	

. Equivalently, the two distributions an be

oupled suh that with probability 1, �

1

�

	

�

2

, where �

1

and �

2

are a pair of oupled on�gurations

hosen from �

�

1

	

and �

�

2

	

respetively. Notie that it is enough that the above property holds for

all single sites to ensure that it holds for all subsets 	. Also, sine the single site orderings are

linear, the system is \realizably" monotone [7℄. This means that, given a olletion of boundary

on�gurations �

1

; �

2

; : : : ; �

k

, we an simultaneously ouple the k orresponding Gibbs distributions

suh that if �

i

�

�	

�

j

, the orresponding oupled on�gurations satisfy �

i

�

	

�

j

with probability 1

(simultaneously for eah suh pair i; j).

Many well known spin systems are monotone, inluding the Ising model and the hard-ore

model (independent sets).

2.5 Systems with hard onstraints

Reall that aording to our de�nition above, the edge potential U may only take on �nite real

values. However, there are interesting models where U is in�nite for some ombinations of spin

values, i.e., there is a hard onstraint forbidding ertain ombinations of spins along an edge. Ex-

amples of suh systems are the hard-ore model (whose on�gurations are independent sets) and

the anti-ferromagneti Potts model at zero temperature (whose on�gurations are proper olor-

ings) - see e.g. [9℄ for de�nitions of these models. In general, the results of this paper apply to these

kinds of systems as well. However, some of the notions we de�ned above are not neessarily well

de�ned for systems with hard onstraints. In order to avoid umbersome details but still onsider

systems with hard onstraints, we make the ompromise of allowing U to be in�nite but restriting

our results to permissive systems. A permissive system is one where, for any �nite subset 	 and

any boundary on�guration � , there is at least one on�guration � 2 


	

suh that H

�

	

(�) < 1,

and in partiular, �

�

	

(�) > 0. We also require that the spae of \legal" on�gurations (those in

5



the support of the stationary distribution) is onneted under the Glauber dynamis. Notie that

by de�nition, systems without hard onstraints are always permissive. It is easy to verify that the

hard-ore model is permissive, as is the model of proper olorings when the number of olors is

stritly larger than the degree of the lattie, i.e., q > 2d.

The main importane of assuming the system is permissive is that �

�

�

is well de�ned for any

value of � . An alternative to this assumption is to extend the de�nition of �

�

�

, but this requires

additional details whih we wish to avoid. One the �nite Gibbs distributions are well de�ned for

any value of the boundary on�guration, strong spatial mixing is also well de�ned. In addition, the

transitions of the Markov hains above are well de�ned for any urrent on�guration, even if it is

not in the support of the stationary distribution. In permissive systems, the hain is guaranteed to

reah a legal on�guration at some �nite time, and thus onverge to the stationary Gibbs measure.

Hene, without loss of generality, we may think of the hains as running on the whole on�guration

spae 


	

. In partiular, when we say the dynamis has optimal temporal mixing, the error bound

is good for hains that start from illegal on�gurations as well. Notie, however, that this has a

negligible quantitative e�et sine one every site is updated at least one (whih takes O(n logn)

time with high probability) the on�guration is guaranteed to be a legal one.

2.6 Results

Several notions of temporal and spatial mixing for models on integer latties are known to be

equivalent to one another [4, 12, 13, 14, 16℄, though the proofs are often rather omplex and ast in

the language of funtional analysis. In this paper we present ombinatorial proofs of the following

impliations.

Theorem 2.3. If the single site dynamis has optimal temporal mixing then the system has strong

spatial mixing.

For monotone systems we show the onverse as well:

Theorem 2.4. If a monotone system has strong spatial mixing then the single site dynamis has

optimal temporal mixing.

In the general ase (without assuming monotoniity), we show that

Theorem 2.5. If a system has strong spatial mixing then there exists a �nite integer L for whih

the heat-bath blok dynamis HB(L) has optimal temporal mixing.

The onverse of Theorem 2.5 (that optimal temporal mixing of HB(L) implies strong spatial mixing)

an be proved using the same ideas as in the proof of Theorem 2.3 (with the addition of a few minor

tehnial details), so we skip it here.

Notie that strong spatial mixing implies optimal temporal mixing of the single site Glauber

dynamis in the general ase as well [4, 12, 14, 16℄, but we have not yet been able to �nd a purely

ombinatorial proof of this impliation.

3 Preliminaries

In this setion we identify some of the ommon tools we use in our proofs.
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3.1 Coupling and Mixing Time

A ommon tool for bounding the total variation distane between two distributions, and in parti-

ular for bounding the mixing time of Markov hains, is oupling. A oupling of �

1

and �

2

is any

joint distribution whose marginals are �

1

and �

2

respetively. If �

1

and �

2

are a pair of random

on�gurations hosen from a given oupling of �

1

and �

2

then Pr(�

1

6= �

2

) is an upper bound on

the total variation distane between �

1

and �

2

. Also, there is always an optimal oupling, i.e., a

oupling suh that Pr(�

1

6= �

2

) = k�

1

� �

2

k.

In the proofs we give in this paper we use the following oupling of the Glauber dynamis,

whih we all an identity oupling. This oupling allows us to simultaneously ouple any num-

ber of instanes of the hain. An identity oupling is determined by speifying, for eah site v,

a oupling of all the single site Gibbs distributions (ranging over all possible values for the on-

�guration of the neighbors of v). Namely, we have a joint distribution 

v

whose marginals are

�

�

1

fvg

; : : : ; �

�

k

fvg

, where the set f�

1

; : : : ; �

k

g = 


�fvg

. Given 

v

, we ouple a olletion of instanes of

the Glauber dynamis (X

1

t

); (X

2

t

); : : : ; (X

l

t

) using a Markovian oupling (i.e., the joint distribution

of X

1

t+1

; : : : ;X

l

t+1

is a funtion only of the oupled on�gurations X

1

t

; : : : ;X

l

t

) where the oupled

transition (X

1

t

; : : : ;X

l

t

)! (X

1

t+1

; : : : ;X

l

t+1

) is as follows:

� Choose a site v u.a.r. from 	 (the same one for all hains).

� Choose a olletion of spins (s

1

; : : : ; s

k

) from the joint distribution 

v

.

� For every 1 � i � l set X

i

t+1

[v℄ = s

j

if and only if X

i

t

[�fvg℄ = �

j

.

An important property of this oupling is that if X

i

t

[�fvg℄ = X

j

t

[�fvg℄ then X

i

t+1

[v℄ = X

j

t+1

[v℄ with

probability 1. Notie that in a monotone system there exists a monotone identity oupling, i.e., a

joint distribution 

v

suh that whenever �

i

�

�fvg

�

j

, s

i

�

v

s

j

with probability 1.

We say that an identity oupling has optimal mixing if for any two instanes of the hain (X

t

)

and (Y

t

), we have Pr(X

kn

6= Y

kn

) � bn exp(�k), where the probability spae is the oupling of X

kn

and Y

kn

resulting from the identity oupling of the two proesses. Notie that optimal mixing of an

identity oupling implies optimal temporal mixing of the dynamis. Finally, the oupling time of an

identity oupling is the minimum T suh that Pr(X

T

6= Y

T

) �

1

e

. As a result, Pr(X

kT

6= Y

kT

) � e

�k

for any positive integer k.

3.2 Bounding the Speed of Propagation of Information

A entral idea in the analysis of the mixing time of the Glauber dynamis, in partiular when using

spatial mixing assumptions, is to bound the speed at whih information propagates during the

dynamial proess. In this setion we give a lemma of this sort following Van den Berg [2℄, where

the bound omes from a paths of disagreement (also known as disagreement perolation) argument.

Similar bounds an be found in [11, 12℄. The version we give here applies to running the Glauber

dynamis on any graph of bounded degree (as in [11℄), rather than just for �nite subsets of Z

d

.

Lemma 3.1. Let G = (V;E) be a graph of maximum degree � > 1, and let n = jV j. Let (X

t

)

and (Y

t

) be two opies of a Glauber dynamis on G suh that the two initial on�gurations agree

everywhere exept on A � V . Let B � V be another subset and let r = dist(A;B). Then, for

any positive integer k �

r

(��1)e

2

, if we run the dynamis for T = kn steps, Pr(X

T

[B℄ 6= Y

T

[B℄) �

7



4min fjAj; jBjg (

(��1)ek

r

)

r

, where the probability spae is the oupling of X

T

and Y

T

resulting from

any identity oupling of (X

t

) and (Y

t

). In partiular, if T = kn and dist(A;B) � (�� 1)e

2

k, then

Pr(X

T

[B℄ 6= Y

T

[B℄) � 4min fjAj; jBjg e

�dist(A;B)

.

In words, Lemma 3.1 states that in kn steps, with high probability, information perolates a

distane of at most (�� 1)e

2

k.

Proof: Sine we ouple X

t

and Y

t

using an identity oupling, if at time zero v had the same spin

in both hains and at time T the spins at v di�er then it must be the ase that at some time t

0

� T

the site hosen to be updated was v and immediately before the update of v at time t

0

the two

hains had di�erent spins at one of the neighbors of v. Carrying this argument indutively, if we

assume that at time zero the only sites whose spins may di�er are inluded in A then in order for

a site v to have di�erent spins at time T there must be a path of disagreement going from A to v.

Spei�ally, there must be v

0

; v

1

; : : : ; v

l

= v and 0 < t

1

< t

2

< : : : < t

l

� T suh that v

0

2 �

and for 1 � i � l, v

i

� v

i�1

and at time t

i

the site hosen to be updated was v

i

. Notie that for

a given path v

0

; : : : ; v

l

the probability of this event ourring is at most

�

T

l

�

(

1

n

)

l

. Now, if the two

on�gurations at time T di�er at some site in B, there must be a path of disagreement of length at

least r = dist(A;B) going from A to B. Sine the number of (simple) paths of length l going from A

to B is bounded from above by min fjAj; jBjg�(�� 1)

l�1

we an onlude that the probability of

a disagreement in B at time T = kn is at most

min fjAj; jBjg �

�

�� 1

�

1

X

l=r

(�� 1)

l

�

kn

l

��

1

n

�

l

� minfjAj; jBjg �

�

�� 1

�

1

X

l=r

�

(�� 1)ek

l

�

l

�

4min fjAj; jBjg

�

(�� 1)ek

r

�

r

;

where in the last inequality we used the fat that r � (�� 1)e

2

k.

Remark: We will often use Lemma 3.1 in a setting where only a subset of the sites may be updated

in the Markov hain (i.e., the spins on some sites - typially those on the boundary - are held �xed

throughout the proess). Notie that the proof above is still valid in this setting (regardless of

whether or not the �xed spins disagree - i.e., are of sites in A). In fat, it is valid even if the two

ompared hains have di�erent sets of �xed sites as long as the sites whih are �xed in only one

of the hains are all inluded in the subset A, i.e., we just assume that the spins of these sites

disagree in the two hains. An important point to keep in mind in these senarios is the meaning of

the parameter n. Rather than the volume of the graph, n stands for the inverse of the probability

that a given site is hosen to be updated (and it must be the same in both hains). Indeed, this is

the only use we made of this parameter in the proof. The senarios mentioned in this remark will

beome learer when they arise in the proofs below.

4 From Temporal to Spatial Mixing

In this setion we prove Theorem 2.3, whih states that if the Glauber dynamis has optimal tem-

poral mixing then strong spatial mixing holds. The �rst step in the proof is to derive a stronger

8



notion of temporal mixing, given in Lemma 4.1 below. Temporal mixing as de�ned earlier (Def-

inition 2.1) guarantees that if we run the dynamis on a retangle 	 for suÆient time then the

distane between any two hains will be small enough as a funtion of the time we run the hains.

The distane onsidered is the total variation distane between the two distributions on 


	

. How-

ever, if we projet the distributions on 


�

, where � � 	, it may very well be that after the same

amount of time the distane between the two projeted distributions is smaller than the distane

between the original distributions. Ideally, we look for a bound whih is of the same form as the one

we get from running the dynamis on �, i.e., b

0

j�j exp(�

0

k). We use the sub-exponential growth

of Z

d

to argue that if the Glauber dynamis has optimal temporal mixing then indeed this stronger

notion, whih we all projeted optimal mixing, holds as well.

Lemma 4.1. If the Glauber dynamis has optimal mixing then there exist onstants b

0

and 

0

> 0

suh that, for any subset 	 of volume n, any boundary on�guration, any two instanes (X

t

)

and (Y

t

) of the hain on 	 and any subset � � 	, we have that kX

kn

� Y

kn

k

�

� b

0

j�j exp(�

0

k)

for any positive integer k.

Proof: The idea of the proof is one we use throughout this paper, whih involves using Lemma 3.1

in order to loalize the dynamis we onsider. Namely, when we run the dynamis for kn steps,

with high probability information from sites whih are at distane at least (2d� 1)e

2

k from � does

not perolate into �. Therefore, if we take a subset �

k

surrounding � and whose boundaries are

at distane at least (2d � 1)e

2

k from �, we an assume that the sites on the boundary of �

k

are

�xed throughout the proess. Thus, we an use the optimal temporal mixing bound for a dynamis

on the loal subset �

k

, whose volume is smaller than that of 	. As shown below, the fat that

the volume of �

k

grows only sub-exponentially in k (this is the �rst plae where we use the sub-

exponential growth of Z

d

) gives the required bound. An additional point we need to make in order

to arry out the above argument is that when running the dynamis on 	, with high probability,

an appropriate portion of the time is spent in the subset �

k

. This, however, is an easy onsequene

of the Cherno� bound.

We proeed with the formal proof. Consider the subset of all sites within distane (2d � 1)e

2

k

from �, and let �

k

be the intersetion of this subset with 	. Notie that dist(�;	n�

k

) � (2d�1)e

2

k

and that j�

k

j � [2(2d � 1)e

2

k℄

d

j�j.

In addition to the hains (X

t

) and (Y

t

), we onsider two additional hains, denoted by (X

�

k

t

)

and (Y

�

k

t

), whose initial on�gurations inside �

k

are the same as (X

t

) and (Y

t

) respetively. The

on�guration of 	 n �

k

is �xed to the same arbitrary on�guration in both (X

�

k

t

) and (Y

�

k

t

) and

remains �xed throughout the proess, i.e., (X

�

k

t

) and (Y

�

k

t

) represent modi�ed proesses where,

in a given step, if the hosen site to be updated is outside �

k

then the spin of that site remains

unhanged, while if it is in �

k

then it is updated as usual. Notie that this modi�ed proess is the

same as running the dynamis on �

k

exept that the probability of a site being hosen at a given

step is

1

j	j

instead of

1

j�

k

j

.

Using the triangle inequality, we have kX

kn

�Y

kn

k

�

� kX

kn

�X

�

k

kn

k

�

+kX

�

k

kn

�Y

�

k

kn

k

�

+kY

�

k

kn

�

Y

kn

k

�

. Lemma 3.1 (together with the remark following it) gives a bound on the �rst and third terms

in the r.h.s. of the last inequality. To see this, ouple (X

t

) and (X

�

k

t

) using a modi�ed identity

oupling, where an update of a site outside �

k

in (X

t

) is oupled with doing nothing in (X

�

k

t

).

Notie that at time zero the two hains agree on �

k

. Disagreement may perolate from 	 n�

k

into

the bulk of �

k

as we run the hains, but sine dist(�;	 n�

k

) � (2d� 1)e

2

k, we an use Lemma 3.1

to dedue that kX

kn

�X

�

k

kn

k

�

� 4j�je

�(2d�1)e

2

k

.
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It remains to bound kX

�

k

kn

� Y

�

k

kn

k

�

. Reall that both these hains have the same �xed on-

�guration outside �

k

so we an use the optimal temporal mixing assumption for a proess on �

k

.

Notie that when running the hain X

�

k

t

for kn steps, on average kj�

k

j of the steps hit �

k

. Using

a Cherno� bound, with probability at least 1� exp(�

kj�

k

j

8

), the number of steps that hit �

k

is at

least

kj�

k

j

2

. Thus, we an use the same bound as when running a proess on �

k

for

kj�

k

j

2

steps.

Spei�ally,

kX

�

k

kn

� Y

�

k

kn

k

�

� kX

�

k

kn

� Y

�

k

kn

k

�

k

� bj�

k

j exp

�

� �

k

2

�

+ exp

�

�

kj�

k

j

8

�

�

b[2(2d � 1)e

2

k℄

d

j�j exp

�

� �

k

2

�

+ exp

�

�

k

8

�

� b

0

j�j exp(�

0

� k)

for appropriate onstants b

0

and 

0

> 0.

We now proeed with the proof of Theorem 2.3.

Proof of Theorem 2.3: Let 	 be a subset of volume n, � and �

u

be two boundary on�gurations

that di�er only at u, and let � � 	. Following Lemma 4.1, we assume the dynamis has projeted

optimal mixing and show that

k�

�

	

� �

�

u

	

k

�

� b

0

j�j exp

�

�



0

(2d� 1)e

2

� dist(u;�)

�

+ 4j�je

�dist(u;�)

:

The idea of the proof is that when running the Glauber dynamis, the time needed in order

for the projeted distribution on � to be lose to the stationary one is less than the time it takes

for the disagreement at u to perolate into �. Formally, onsider the following two instanes

of the Glauber dynamis on 	. The �rst, denoted by Z

t

, is an instane with � as the boundary

on�guration while the seond, denoted by Z

0

t

, is an instane with �

u

as the boundary on�guration.

The initial on�guration of 	 in both hains is hosen from the distribution �

�

u

	

. Notie that this

is the stationary distribution of Z

0

t

and therefore Z

0

t

= �

�

u

	

for all t.

Using the triangle inequality, we have k�

�

	

� �

�

u

	

k

�

= k�

�

	

�Z

0

t

k

�

� k�

�

	

� Z

t

k

�

+ kZ

t

�Z

0

t

k

�

.

By letting t =

dist(u;�)

(2d�1)e

2

� n we an make sure both terms are small. We bound the �rst term

using the temporal mixing time assumption. Namely, for t =

dist(u;�)

(2d�1)e

2

� n we have k�

�

	

� Z

t

k

�

�

b

0

j�j exp(�

0

�

dist(u;�)

(2d�1)e

2

). We use Lemma 3.1 in order to bound the seond term. Notie that Z

t

and Z

0

t

have the same initial distribution on 	 and thus they an be oupled suh that at time zero

they have the same on�guration on 	 with probability 1. We ontinue to ouple the two proesses

using an identity oupling. Disagreement may perolate from u, but sine dist(u;�) = (2d� 1)e

2

t

n

we have kZ

t

� Z

0

t

k

�

� 4j�je

�dist(u;�)

.

We onlude this setion with a ouple of remarks on the generalization of the arguments made

above to other settings. First, notie that we never used the fat that the di�erene on the boundary

is only at a single site u. Indeed, if the di�erene is on a subset � we have the same bound (as

a funtion of dist(�;�)) without adding any fator that depends on �. Seond, the argument for

showing that projeted temporal mixing implies spatial mixing uses only Lemma 3.1 and an thus

be arried out in models with any underlying �nite degree graph. On the other hand, the proof
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of Lemma 4.1 uses the sub-exponential growth of Z

d

and breaks down for graphs with exponential

growth. Indeed, the Ising model on a tree at an appropriate temperature provides a ounterexample

to the laim of Lemma 4.1 in suh graphs. This ounterexample an be dedued from [11℄, where

it is shown that there are temperatures where the Glauber dynamis for the Ising model on a tree

has optimal temporal mixing but a modi�ed form of strong spatial mixing (where the di�erene

on the boundary may inlude many sites) does not hold, whih in partiular means that projeted

optimal mixing does not hold.

5 From Spatial to Temporal Mixing: The Monotone Case

In this setion we show that in monotone systems the strong spatial mixing assumption implies

optimal temporal mixing of the single-site Glauber dynamis (Theorem 2.4). Atually, we state two

theorems whose ombination gives Theorem 2.4. The �rst theorem, whose proof uses ideas from the

proof of Theorem 4.2 of [13℄, states that the strong spatial mixing assumption implies O(n log

2

n)

oupling time of any monotone identity oupling, uniformly in the volume n and in the boundary

on�guration. The seond theorem, whih is based on Theorem 3.12 of [12℄, states (for general

systems) that if there exists n

0

for whih the oupling time of any identity oupling of the Glauber

dynamis on subsets of volume n

0

is at most



log n

0

n

1+1=d

0

for an appropriate onstant , uniformly

in the boundary on�guration, then this identity oupling has optimal mixing. In partiular, any

upper bound of o(

n

1+1=d

log n

) on the asymptoti oupling time immediately implies that the identity

oupling has optimal mixing.

Theorem 5.1. Strong spatial mixing implies that the oupling time of any monotone identity

oupling of the Glauber dynamis on any subset of volume n is at most T (n) = n(log n)

2

for some

onstant , uniformly in n and in the boundary on�guration.

Proof: As in our earlier arguments, the idea of the proof is again to loalize the dynamis, whih

allows us to use indutive bounds from smaller volume subsets. However, here we use strong spatial

mixing to ahieve the loalization, rather than the bound on the speed of propagation of information

from Lemma 3.1.

Fix a large enough n

0

(to be determined later). By hoosing an appropriate onstant  = (n

0

),

the oupling time statement is true for all n � n

0

. This is a onsequene of the fat that any

two instanes of the hain will oalese in �nite time under any monotone oupling, e.g., beause

eventually both instanes will simultaneously reah a maximal or minimal state. We go on to show

the statement of the theorem is valid for n > n

0

, by indutively assuming its validity for volumes

m � [2 �

2

�

log(3e�n)℄

d

, where �; � are the onstants in the de�nition of strong spatial mixing

(De�nition 2.2).

Let 	 be a subset of volume n with an arbitrary boundary on�guration. Let (X

t

) and (Y

t

)

be two instanes of the hain with arbitrary initial on�gurations inside 	. We will show that

after T (n) steps, for every site v 2 	, the probability that the two spins at v di�er is at most

1

en

,

and therefore, the probability that two on�gurations (on the whole of 	) di�er is at most

1

e

, as

required.

Consider the regular box of radius

2

�

log(3e�n) around v, and let �

v

be the intersetion of this

box with 	. Let m = j�

v

j and notie that m � [2 �

2

�

log(3e�n)℄

d

. We now introdue four additional

hains that may only update sites in �

v

. We will ouple these hains along with (X

t

) and (Y

t

) suh

11



that, whenever the site hosen to be updated is outside �

v

only X

t

and Y

t

are updated while the

additional four hains remain unhanged. On the other hand, when the site to be updated belongs

to �

v

all six hains are updated simultaneously aording to the monotone identity oupling. Below

we desribe the additional four hains and their initial on�gurations. Notie that we only desribe

the initial on�guration inside 	. Outside 	, all four hains have the same boundary on�guration

as (X

t

) and (Y

t

).

1. Q

+;�

v

t

: the hain starting from the all plus on�guration on 	.

2. Q

�;�

v

t

: the hain starting from the all minus on�guration on 	.

3. Z

+;�

v

t

: the hain starting from the all plus on�guration outside �

v

, while the initial on-

�guration inside �

v

is hosen from the (stationary) Gibbs measure on �

v

with this boundary

on�guration.

4. Z

�;�

v

t

: the hain starting from the all minus on�guration outside �

v

, and the stationary

Gibbs measure orresponding to this boundary on�guration inside �

v

.

Notie that we an simultaneously ouple the six hains suh that at time zero, with probability

one, Q

+;�

v

0

� X

0

� Q

�;�

v

0

, Q

+;�

v

0

� Y

0

� Q

�;�

v

0

, and Z

+;�

v

t

� Z

�;�

v

t

. Sine we use a monotone

identity oupling, we have by indution that these relations hold for all t. Thus, we have

Pr(X

t

[v℄ 6= Y

t

[v℄) � Pr(Q

+;�

v

t

[v℄ 6= Q

�;�

v

t

[v℄) �

Pr(Q

+;�

v

t

[v℄ 6= Z

+;�

v

t

[v℄) + Pr(Z

+;�

v

t

[v℄ 6= Z

�;�

v

t

[v℄) + Pr(Z

�;�

v

t

[v℄ 6= Q

�;�

v

t

[v℄):

We use the strong spatial mixing assumption to bound the middle term of the last expres-

sion. Notie that sine Z

+;�

v

t

and Z

�;�

v

t

represent the stationary Gibbs distributions on �

v

with

the appropriate boundary on�gurations then strong spatial mixing (together with the triangle

inequality

4

) gives kZ

+;�

v

t

�Z

�;�

v

t

k

fvg

� j��

v

n�	j� exp(�� �dist(��

v

n�	; v)). This bound on the

total variation distane does not guarantee the same bound on disagreement under the oupling

beause the oupling we use is not neessarily the optimal one. However, monotoniity guarantees

that our oupling is within a fator of q � 1 (reall that q is the size of the spin spae) from the

optimal oupling, as explained next. We embed the ordering assoiated with v in the linear order-

ing 1; 2; : : : ; q with integer arithmeti. Sine the spins at v are oupled suh that with probability

one Z

+;�

v

t

[v℄ � Z

�;�

v

t

[v℄, we have

Pr(Z

+;�

v

t

[v℄ 6= Z

�;�

v

t

[v℄) � E(Z

+;�

v

t

[v℄� Z

�;�

v

t

[v℄) =

E(Z

+;�

v

t

[v℄) � E(Z

�;�

v

t

[v℄) � (q � 1)kZ

+;�

v

t

� Z

�;�

v

t

k

fvg

�

(q � 1)j��

v

n �	j� exp(�� � dist(��

v

n �	; v)) �

1

3en

for large enough n. Notie that in order to get the inequality in the middle line we used an optimal

oupling of Z

+;�

v

t

[v℄ and Z

�;�

v

t

[v℄ together with the fat that the osillation of any funtion whose

range is [1; q℄ is at most q � 1.

4

The strong spatial mixing assumption gives bounds only for omparing two Gibbs distributions whose boundary

onditions di�er at a single site. We use the triangle inequality in order to extend the bound to omparing two

distributions whose boundary onditions di�er at multiple sites.
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In order to omplete the proof we have to show that Pr(Q

+;�

v

t

[v℄ 6= Z

+;�

v

t

[v℄) �

1

3en

when

t = T (n) (by symmetry, the same will hold for the minus hains). Using a Cherno� bound, if we

run the dynamis on 	 for n(logn)

2

steps then with probability at least 1 �

1

6en

the number of

steps in whih �

v

is hit is at least

1

2

m(log n)

2

= (2 log n)m

log n

4

� (2 log n)m(logm)

2

for large enough n. If we assume that indeed �

v

is hit this often then we an use the indution

hypothesis to bound the probability that the spins at v di�er beause the two hains we are

omparing have the same �xed boundaries outside �

v

. Indeed, after T (m) = m(logm)

2

steps in

�

v

, the on�gurations (on the whole of �

v

) disagree with probability at most

1

e

, and thus after

(2 log n)T (m) steps, they disagree with probability at most

1

n

2

. Hene, Pr(Q

+;�

v

T (n)

[v℄ 6= Z

+;�

v

T (n)

[v℄) �

1

6en

+

1

n

2

�

1

3en

for large enough n, as required.

Remark: The reader may have notied that, by arrying through a more areful analysis in the

above proof, one an get a slightly better bound | for example, O(n log n(log log n)

2

) | on the

oupling time. However, sine in any ase we will redue the oupling time to O(n log n) using the

next theorem, we hoose to keep the alulations simpler by only showing a bound of O(n log

2

n).

Theorem 5.2. Suppose there exists an identity oupling suh that for all subsets � of volume at

most n

0

, where n

0

is a suÆiently large onstant, the oupling time of the given identity oupling

on � is at most

1

8(2d�1)e

2

n

1=d

0

log n

0

j�j uniformly in the boundary on�guration. Then for all n and for

all subsets 	 of volume n with any boundary on�guration, Pr(X

kn

6= Y

kn

) � j	j exp(�k), where

 = 2(2d� 1)e

2

n

�

1

d

0

. Namely, this identity oupling has optimal mixing.

Proof: Consider the Glauber dynamis on 	 with an arbitrary boundary on�guration. We will

show that for any two instanes of the hain (X

t

) and (Y

t

) and any v 2 	 we have Pr(X

kn

[v℄ 6=

Y

kn

[v℄) � exp(�k) under the given identity oupling. Using a union bound, this implies that

Pr(X

kn

6= Y

kn

) � j	j exp(�k).

Let l

0

= d

1



e = d

n

1=d

0

2(2d�1)e

2

e. As before, we will use Lemma 3.1 to loalize the dynamis. Together

with the hypothesis of the theorem, this will imply that after l

0

n steps the spins at v agree with

high probability. What we want, however, is that the probability of disagreement will ontinue to

deay exponentially with the number of steps. Notie that suh a result would follow if, one the

spins at v agreed, they ontinued to agree through the rest of the proess, but this is learly not

the ase. However, using the sub-exponential growth of Z

d

and another loalization argument, we

an show that if all the spins within a large enough radius around v agree at a given time, then the

spins at v will ontinue to agree for suÆiently many steps (depending on the radius of agreement).

Bootstrapping from the suÆiently small probability of disagreement after l

0

n steps, we get the

required exponential deay.

We proeed with the formal proof. Let �(k) = max

X

0

;Y

0

;v2	

Pr(X

kn

[v℄ 6= Y

kn

[v℄). We have the

following two laims.

Claim 1. Under the hypothesis of the theorem, �(l

0

) �

1

e2

d

(n

0

+1)

=

1

e2

d

([2(2d�1)e

2

l

0

℄

d

+1)

.
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Claim 2. Without any assumptions, for any k

1

and k

2

, �(k

1

+ k

2

) � [2(2d� 1)e

2

k

2

℄

d

�(k

1

)�(k

2

) +

4e

�k

2

.

Theorem 5.2 follows from the ombination of the above two laims. To see this, let �(k) =

2

d

([2(2d � 1)e

2

k℄

d

+ 1) � max

n

�(k); 2e

�

k

2

o

. Using Claim 2, we have by an expliit alulation

that �(2k) � �(k)

2

. On the other hand, from Claim 1 we get that �(l

0

) �

1

e

(where we used

the fat that l

0

is large enough to handle the ase of �(l

0

) < 2e

�

l

0

2

). We then onlude that

�(k) � �(k) � exp(�

k

l

0

), as required.

Proof of Claim 1: Let v 2 	 be any site. As in Lemma 4.1, the idea is to take a regular box of

volume n

0

around v. Then, sine we run the oupled hains for only l

0

n steps, information from

the boundary of this box does not have enough time to perolate to v. We an therefore assume

the boundaries around this box are �xed. But then, the assumption of the theorem guarantees that

the spins at v will agree with the required probability.

Formally, let �

v

be the intersetion of the regular box of volume n

0

around v with 	. Let (X

�

v

t

)

and (Y

�

v

t

) be two hains whose initial on�gurations inside �

v

agree with X

0

and Y

0

respetively,

and whih have the same �xed arbitrary boundary on�guration on ��

v

n�	. We have Pr(X

t

[v℄ 6=

Y

t

[v℄) � Pr(X

t

[v℄ 6= X

�

v

t

[v℄) + Pr(X

�

v

t

[v℄ 6= Y

�

v

t

[v℄) + Pr(Y

�

v

t

[v℄ 6= Y

t

[v℄). Notie that dist(v; ��

v

n

�	) �

1

2

n

1=d

0

= (2d � 1)e

2

l

0

. Therefore, using Lemma 3.1, we have Pr(X

l

0

n

[v℄ 6= X

�

v

l

0

n

[v℄) �

4e

�(2d�1)e

2

l

0

.

We go on to bound Pr(X

�

v

l

0

n

[v℄ 6= Y

�

v

l

0

n

[v℄). Notie that sine in both hains the on�guration

outside �

v

is �xed and is idential in both hains and sine j�

v

j � n

0

, we an use the hypothesis of

the theorem to bound the above probability. If we run the oupled hains for l

0

n steps, then with

probability at least 1 � exp(�

l

0

8

j�

v

j) the number of steps that hit �

v

is at least

l

0

2

j�

v

j. If indeed

that many steps hit �

v

then aording to the hypothesis of the theorem, Pr(X

�

v

t

[v℄ 6= Y

�

v

t

[v℄) �

e

�2 log n

0

= n

�2

0

. Thus, Pr(X

�

v

l

0

n

[v℄ 6= Y

�

v

l

0

n

[v℄) � n

�2

0

+ exp(�

l

0

8

j�

v

j). Putting this together with the

result of the previous paragraph we get Pr(X

l

0

n

[v℄ 6= Y

l

0

n

[v℄) � n

�2

0

+ exp(�

l

0

8

) + 8e

�(2d�1)e

2

l

0

�

1

e2

d

(n

0

+1)

for suÆiently large n

0

, as required. �

Proof of Claim 2: We use Lemma 3.1 one again, this time in the sense that in k

2

n steps,

information an perolate over a distane of at most (2d � 1)e

2

k

2

. Thus, if the spins of all the

sites within that radius from v agree after k

1

n steps, then the spin at v will ontinue to agree

after (k

1

+ k

2

)n steps with high probability.

Formally, let �

v;k

2

be the intersetion of the regular box of radius (2d�1)e

2

k

2

around v with 	,

and let A stand for the event that X

k

1

n

[�

v;k

2

℄ 6= Y

k

1

n

[�

v;k

2

℄. Then, using Lemma 3.1 we have

Pr(X

(k

1

+k

2

)n

[v℄ 6= Y

(k

1

+k

2

)n

[v℄) � (1� Pr(A))4e

�(2d�1)e

2

k

2

+ Pr(A)�(k

2

):

The proof is onluded one we notie that Pr(A) � j�

v;k

2

j�(k

1

) � [2(2d � 1)e

2

k

2

℄

d

�(k

1

). �

This ompletes the proof of Theorem 5.2.

Remark: Notie that, in fat, the proof of Theorem 5.2 gives the stronger property of projeted

optimal mixing, as in Lemma 4.1. The hypothesis of Theorem 5.2 di�ers from that of Lemma 4.1
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in two respets. On one hand, the hypothesis of Theorem 5.2 is stronger beause it works with

the oupling time of an identity oupling rather than with the mixing time in general. On the

other hand, the hypothesis in Theorem 5.2 is weaker beause the time bounds are weaker. The

reason why a weaker time bound is suÆient for oupling time is that we an appeal to the union

bound Pr(X

t

[�℄ 6= Y

t

[�℄) �

P

v2�

Pr(X

t

[v℄ 6= Y

t

[v℄). We used this union bound twie, �rst when

we redued the proof to bounding the probability of disagreement at a single site, and seond

when we bounded the probability of the event A. Notie that the orresponding inequality for

the total variation distane is not neessarily true. Namely, we annot in general assert that

kX

t

�Y

t

k

�

�

P

v2�

kX

t

�Y

t

k

fvg

. If this assertion were true then we ould have done with assuming

a fast mixing time (rather than a fast oupling time) and working with the total variation distane

rather than with the probability of disagreement throughout the proof.

As remarked at the beginning of this setion, ombining Theorems 5.1 and 5.2 immediately

yields Theorem 2.4.

6 From Spatial to Temporal Mixing: The General Case

In this setion we prove Theorem 2.5. Namely, we show that in general (without assuming mono-

toniity), strong spatial mixing implies that the heat-bath blok dynamis has optimal temporal

mixing if the bloks used are large enough. Using path oupling [3℄, the proof is redued to showing

that strong spatial mixing implies that a ondition known as the Dobrushin-Shlosman ondition

holds. The last impliation was proven in [6℄, but we inlude a simple proof of it here.

Proof of Theorem 2.5: Consider the heat-bath dynamis HB(L) on a retangle 	 of volume n

with an arbitrary boundary on�guration. Notie that L here is a large enough onstant to be set

later and will depend only on the dimension d and the onstants from the de�nition of strong spatial

mixing. In partiular, L is uniform in n and the boundary on�guration. Reall that the dynamis

hooses a blok to be updated from B(	; L), whih is the set of translations of the regular box of

side-length L that interset 	. We denote the number of bloks by m = jB(	; L)j and notie that

n � m � L

d

n (the lower bound is due to the fat that the number of translations that interset 	

is at least the volume of 	 while the upper bound rudely uses the fat that eah site is overed

by L

d

translations). Using the path oupling method [3℄, it is enough to show that there exists a

onstant  > 0 (independent of n and the boundary on�guration) suh that, for any site u 2 	 and

any two on�gurations �,�

u

that di�er only at u, there exists a oupling of the two hains whose

urrent on�gurations are � and �

u

respetively suh that after one step, the average Hamming

distane between the two oupled on�gurations is at most 1�



m

, i.e, dereases by at least



m

.

We ouple these two hains using a spei� identity oupling. Namely, the blok hosen to be

updated is the same in both hains, and if the boundaries of that blok are the same in both �

and �

u

then we ouple the update of the blok suh that the on�gurations inside the blok agree

with probability one. If the boundaries are not the same (this an happen only if u is on the

boundary of the hosen blok), we use a oupling to be desribed below.

From the way we de�ned the heat-bath blok dynamis, eah site in 	 is inluded in exatly

L

d

bloks. Sine we use an identity oupling, if a blok inluding the site u is hosen to be updated

then the Hamming distane between the two on�gurations will be zero (i.e., derease by one) sine

the boundaries of this blok are the same in both � and �

u

. The probability of hoosing a blok as

15



above is

L

d

m

. Thus, it is enough to show that the ontribution to the expeted hange in Hamming

distane from hoosing the rest of the bloks is at most

L

d

�

m

.

As we already mentioned, the Hamming distane may inrease only if the blok hosen to be

updated is one whose boundaries inlude u. Sine there are at most 2dL

d�1

suh bloks, we will

be done one we show that we an ouple the update of eah suh blok � suh that the resulting

average Hamming distane in � is stritly less then

L

2d

.

Consider a blok � suh that u 2 ��. Let r =

1

2

(

L

4d

)

1

d

, �

r

= fv 2 � jdist(v; u) � rg, and

�

r

= �n�

r

. By the strong spatial mixing assumption, k�

�

�

��

�

u

�

k

�

r

� �j�

r

j exp(�� � r) � L

�d

for

a large enough L. We an thus ouple the update of � suh that the two oupled on�gurations

disagree over �

r

with probability at most L

�d

. A trivial upper bound on the resulting average

Hamming distane in � in this oupling is then j�

r

j+ L

�d

j�

r

j �

L

4d

+ 1.
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