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ABSTRACT

We study the Sherali-Adams lift-and-project hierarchy of
linear programming relaxations of the matching polytope.
Our main result is an asymptotically tight expression 1+1/k
for the integrality gap after k rounds of this hierarchy. The
result is derived by a detailed analysis of the LP after k
rounds applied to the complete graph K2d+1. We give an ex-
plicit recurrence for the value of this LP, and hence show that
its gap exhibits a “phase transition,” dropping from close to
its maximum value 1+ 1

2d
to close to 1 around the threshold

k = 2d −Θ(
√

d). We also show that the rank of the match-
ing polytope (i.e., the number of Sherali-Adams rounds until
the integer polytope is reached) is exactly 2d − 1.

Categories and Subject Descriptors: G.1.6 [Optimiza-
tion]: Linear programming; G.2.2 [Graph Theory]: Graph
algorithms

General Terms: Algorithms, Theory

Keywords: 0-1 programming, linear programming relax-
ation, integrality gap, lift-and-project, matching polytope,
maximum matching

1. INTRODUCTION

Background.

Recent years have seen an explosion of interest in hierarchies
of linear or semidefinite relaxations of 0-1 integer programs,
such as those due to Sherali and Adams [26], Balas, Ceria
and Cornuejols [5], Lovász and Schrijver [22] and Lasserre [19,
20]. (For an excellent discussion and comparison of these
methods, see the article of Laurent [21].) Given a convex
polytope P0 ⊆ Rn, the goal is to maximize a linear func-
tion f over the associated integer polytope P = conv(P0 ∩
∗Supported in part by NSF Theoretical Foundations grant
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{0, 1}n). The above methods construct a sequence P0 ⊇
P1 ⊇ P2 ⊇ · · · ⊇ Pn = P of successive relaxations of P such
that the nth relaxation Pn is equal to P . The relaxations
are either linear or (in the case of Lasserre and one variant of
Lovász and Schrijver) semidefinite, and (under suitable as-
sumptions about P ) have the property that a linear function

can be optimized over Pk in time nO(k), which is polynomial
for any fixed k. The relaxations are constructed by “lifting”
the current Pk to a higher dimensional space, tightening it
by adding further linear or semidefinite constraints that are
satisfied by all 0-1 vectors, and then projecting back down
to Rn. For this reason, the methods are often referred to as
“lift-and-project” algorithms.

Interest in these methods has come from at least three
distinct communities. First, in polyhedral combinatorics,
the structure of the successive relaxations Pk is of intrin-
sic interest. In particular, one may naturally ask about
the rank of P , i.e., the minimum number of rounds k for
which Pk = P , or the rank of any particular linear inequal-
ity known to be satisfied by P . Second, in computational
complexity there has recently been a substantial sequence of
results proving for several classical combinatorial problems
that, even for k = Ω(n), the kth relaxation Pk has a large
integrality gap.1 The motivation for these results is that the
various lift-and-project schemes encompass most known so-
phisticated approximation algorithms for NP-hard problems
such as Sparsest Cut and Maximum Satisfiability; therefore,
a large integrality gap after a linear (or even logarithmic)
number of rounds rules out (unconditionally) a wide class
of efficient approximation algorithms. Third, in the area
of proof complexity, the various hierarchies can be viewed
as sequences of proof systems with the goal of proving that
the integer polytope P is empty (which may be equivalent
to, e.g., showing that a given formula is unsatisfiable). The
inclusion of new constraints corresponds to the derivation
of new inequalities from previous ones in the proof. Again,
the power of the proof system is related to the properties of
the relaxation Pk after k rounds. We briefly summarize the
relevant literature on these three directions in the Related
Work section below.

Results.

In this paper, we study the integrality gap of the Sherali-
Adams hierarchy for the classical matching polytope. The
Sherali-Adams scheme is the strongest of the linear lift-and-
project methods and has a particularly simple description

1The integrality gap is the ratio between the optimum of f
over Pk and the optimum of f over P .



as well as certain other advantages (see [21]). As is well
known, the matching polytope is defined for any finite graph
G = (V, E) by the variables {x1, . . . , x|E|} and constraints
0 ≤ xe ≤ 1 and

P

e:u∈e xe ≤ 1 for all u ∈ V ; the goal is to
maximize f(x) =

P

e xe. The kth Sherali-Adams relaxation
Pk is obtained by multiplying each of these constraints by
a multiplier of the form

Q

e∈I xe

Q

f∈J(1 − xf ) for disjoint

subsets I, J ⊆ E with |I ∪ J | = k, linearizing the result-
ing monomials by introducing new variables, and projecting
back down to |E| dimensions.

Our main result is a precise estimate for the integrality gap
after k rounds as a function of k, which is tight up to lower
order terms. This is expressed in the following theorem:

Theorem 1.1. As k tends to infinity, the integrality gap
of the kth round of the Sherali-Adams hierarchy for maxi-
mum matching is αk = 1 + 1/k + o(1/k).

Theorem 1.1 follows from a detailed analysis of the se-
quence of relaxations Pk applied to complete graphs K2d+1

of odd cardinality; it is not hard to see that, for any k, the
integrality gap is always attained on such a graph. More
precisely, we study the integrality ratio gk ≡ gk(K2d+1),
i.e., the ratio of the value of the kth Sherali-Adams relax-
ation applied to K2d+1 to that of the optimum (which is
clearly d, the size of a maximum matching in K2d+1). For
the standard LP relaxation P0 this value is well known to
be g0 = 1 + 1/2d. We show first that it remains at exactly
this value for 0 ≤ k ≤ d− 1, and also that it reaches 1 when
k = 2d − 1. In other words, the Sherali-Adams relaxations
make no progress in the first d − 1 rounds, and achieve the
integer optimum after 2d − 1 rounds. Between these two
extremes, we observe a perhaps surprising behavior: gk ex-
hibits a “phase transition” in that it switches suddenly from
close to its maximum value 1 + 1/2d to close to 1 in the

neighborhood of the threshold k = 2d−Θ(
√

d). The follow-
ing theorem makes this statement precise:

Theorem 1.2.

(i) If k ≤ d − 1 then gk(K2d+1) = 1 + 1/2d.

(ii) If d ≤ k ≤ 2d − ω(d1/2) then 1 + 1/2d − o(1/d) ≤
gk(K2d+1) ≤ 1 + 1/2d.

(iii) If 2d − o(d1/2) ≤ k ≤ 2d − 2 then 1 < gk(K2d+1) ≤
1 + o(1/d).

(iv) If k ≥ 2d − 1 then gk(K2d+1) = 1.

Theorem 1.1 follows easily from this result and the fact
that αk is non-increasing. However, Theorem 1.2 carries
more detailed information about the Sherali-Adams hierar-
chy. Our analysis also shows as a byproduct that the inte-
grality ratio is strictly larger than 1 for k ≤ 2d − 2, which
implies that the rank of the matching polytope (i.e., the
number of Sherali-Adams rounds needed to reach the inte-
ger polytope) is exactly 2d − 1.

Theorem 1.3. For n = 2d + 1, the Sherali-Adams rank
of the matching polytope, in the worst case over all n-vertex
graphs, is 2d − 1 = n − 2.

Theorem 1.3 answers for the Sherali-Adams hierarchy a
question initially posed by Lovász and Schrijver about the
rank of the matching polytope in the LS+ hierarchy, which
was answered by Stephen and Tunçel [27].

Our analysis proceeds by showing that, for each k, the
Sherali-Adams constraints on K2d+1 are all captured by a
much simpler family of multipliers of the form

Y

e∈I

xe

Y

f∈J

(1 − xf ),

where I is a matching and J is a star disjoint from I .
(We call these “standard multipliers.”) This simplification
allows us to explicitly write down the Sherali-Adams lin-
ear program for any k (see Theorem 3.9), and then to ex-
press its solution exactly in the form of a recurrence relation
(Lemma 4.3). While this recurrence does not appear to have
a closed-form solution, we are able to bound its value quite
tightly and hence show that it has the behavior claimed in
Theorem 1.2. Moreover, the recurrence provides a simple
and efficient algorithm for computing gk(K2d+1) exactly for
all k, d, and hence the integrality gap αk for all k. In the
Appendix we present some numerical results for these quan-
tities, which confirm our asymptotic analysis.

Related work.

The various lift-and-project hierarchies are placed in a com-
mon framework and compared by Laurent [21], who shows
among other things that the Sherali-Adams hierarchy is
stronger (i.e., gives a tighter relaxation at any given level)
than LS (the linear programming version of the Lovász-
Schrijver hierarchy) but incomparable with LS+ (i.e., LS
with added semidefinite constraints); the Lasserre hierarchy
is stronger than all the others.

The matching polytope was first studied in the lift-and-
project context by Lovász and Schrijver [22], who posed the
problem of determining the rank (i.e., the minimum number
of rounds until the integer polytope is reached) for complete
graphs Kn. For n = 2d + 1, they showed that the rank lies
between 2d and 2d2−1 in the LS hierarchy, and is at most d
in the LS+ hierarchy. Stephen and Tunçel [27] subsequently
proved that the LS+-rank is exactly d, and Goemans and
Tunçel [15] improved the upper bound on LS-rank to d2.
Aguilera, Bianchi and Nasini [1] show that the LS-rank is
strictly larger than d, and also that the rank in the weaker
Balas-Ceria-Cornuéjols hierarchy is exactly d2. We note that
these results say very little about the Sherali-Adams hier-
archy (other than the weak upper bound of d2 on the rank
inherited from LS), and do not directly address the more
detailed question of how the integrality gap behaves as a
function of k.

A question similar to ours, but for a different problem and
for the LS+ hierarchy, was asked by Feige and Krauthgamer
in [12]. They consider the independent set problem on a
random graph G ∈ Gn,1/2, and show that the value of the
SDP relaxation after k rounds of LS+ is almost surely about
p

n/2k.
Arora, Bollobás, Lovász and Tourlakis [3, 4] were the first

to propose using lift-and-project hierarchies as a model of
computation, in order to obtain strong evidence for the hard-
ness of approximating optimization problems. They showed
in particular that the integrality gap for vertex cover remains
at least 2− ε after Ωε(log n) rounds of LS. Since then there
has been a flurry of activity, proving larger gaps after fewer
rounds for vertex cover and several other classical NP-hard
optimization problems; see, e.g., [2, 8, 9, 10, 13, 14, 24, 25,
28]. Most of this work has focused on the LS and LS+ hierar-
chies; exceptions are [10, 13], which consider Sherali-Adams,



and [24] which considers Lasserre. We mention also the re-
cent work of Chlamtac [11], who uses the Lasserre hierar-
chy explicitly to derive improved approximation algorithms
for coloring and independent set problems in 3-uniform hy-
pergraphs. (This is in contrast to previous approximation
algorithms, such as the Lovász theta function, Goemans-
Williamson SDP relaxation, and Arora-Rao-Vazirani, which
were developed independently and subsequently shown to lie
in low levels of one or other hierarchy.)

Finally, we briefly mention a third body of work that
views the lift-and-project hierarchies as proof systems. A
recent paper of Pitassi and Segerlind [23] proves exponen-
tial size lower bounds for tree-like LS+ proofs of unsatisfia-
bility for several important classes of CNFs, and also shows
that tree-like LS+ proofs cannot efficiently simulate certain
other standard proof systems. This differs from the afore-
mentioned work in that the lower bounds are for the size of
the proofs rather than for the rank (which corresponds to
depth in the tree-like scenario). It also extends earlier results
by Buresh-Oppenheim et al. [8] on rank lower bounds, and
builds on work of Grigoriev et al. [16] and Kojevnikov and
Itsykson [18] that proves lower bounds for LS+ indirectly
via the more powerful but complex proof system known as
static positivstellensatz refutations.

2. PRELIMINARIES

2.1 The Sherali-Adams hierarchy
We recall the definition of the Sherali-Adams hierarchy of

progressively stronger relaxations of 0-1 polytopes [26, 21].
Let P0 = L0 = {x ∈ Rn : ∀`, 1 ≤ ` ≤ m, a` · x ≥ b`} be
a convex polytope contained in [0, 1]n, defined by m linear
constraints, and let P = conv(P0∩{0, 1}n) be the associated
0-1 polytope. Starting from P0, the Sherali-Adams method
constructs a hierarchy of progressively stronger linear relax-
ations P0, P1, P2, · · · of P . For k ∈ [1, n], the kth level Pk of
the Sherali-Adams hierarchy is obtained as follows.

First, we multiply each constraint a` · x − b` ≥ 0 by each
product

Q

i∈I xi

Q

j∈J (1 − xj), where I, J are disjoint sub-

sets of {1, . . . , n} such that |I ∪ J | = k, to produce a set
of polynomial inequalities. We add to this set all the in-
equalities

Q

i∈I xi

Q

j∈J (1 − xj) ≥ 0, where I, J are disjoint

subsets of {1, . . . , n} such that |I ∪ J | = min(k + 1, n).
Then, we replace each square x2

i by xi so that each ex-
pression is multilinear, and linearize each product mono-
mial

Q

`∈L x` by replacing it with a new variable yL (thus

y{i} = xi): this defines a new, lifted polyhedron2 Lk in the

higher-dimensional space Rd, d =
`

n
1

´

+ · · · +
`

n
k+1

´

.
Finally, polyhedron Pk is obtained by projecting Lk back

onto Rn: Pk = {x ∈ Rn : ∃y ∈ Lk,∀i = 1, . . . , n, y{i} = xi}.
We remark that in the above definition we may equiva-

lently use all multipliers such that |I ∪ J | ≤ k (respectively,
|I∪J | ≤ min(k+1, n)); indeed, any constraint obtained from
I, J with |I ∪ J | < k can be inferred by taking i /∈ I ∪ J and
adding the constraint for (I ∪ {i}, J) and the constraint for
(I, J ∪{i}), so such constraints are redundant. In our proofs
we shall generally include these redundant constraints for
simplicity.

2The original paper [26] introduces one additional dimen-
sion for the purpose of homogenization, but subsequently
intersects the cone with the hyperplane y0 = 1. This is
equivalent to the definition used here.

The following basic result is well known [26, 21].

Lemma 2.1. P0 ⊇ P1 ⊇ · · ·Pk ⊇ · · · ⊇ Pn = P .

Thus the Pk are indeed progressively stronger relaxations of
the integer polytope P , and after at most n rounds we arrive
at P itself.

2.2 The matching polytope
Given a graph G = (V, E) with |V | = n and |E| = m, any

subset of E can be written as a binary vector in {0, 1}m.
Consider the following linear program:

max
x

f(x) :=
X

e∈E

xe s.t. x ∈ L0 :

8

<

:

P

e:u∈e xe ≤ 1 ∀u ∈ V
xe ≤ 1 ∀e ∈ E
xe ≥ 0 ∀e ∈ E

Clearly, the polytope L0 of feasible solutions is contained in
[0, 1]m, and P = Conv(L0 ∩ {0, 1}m) describes exactly the
set of convex combinations of matchings, or the matching
polytope of G.

Starting from L0, the kth level of the Sherali-Adams hier-
archy defines the following lifted polyhedron Lk. For every
vertex u ∈ V , for every possible I, J disjoint subsets of E
with |I∪J | = k, we multiply the constraint 1−Pv:u 6=v xuv ≥
0 by

Q

e∈I xe

Q

f∈J(1−xf ), replace each square x2
e by xe, and

replace each monomial
Q

`∈L x` by a variable yL, to obtain
a linear constraint in y. Add to this set all the inequali-
ties obtained by linearization of

Q

i∈I xi

Q

j∈J(1 − xj) ≥ 0

where I, J are disjoint subsets of E such that |I ∪ J | =

min(k +1, m). If Pk denotes the projection of Lk onto R|E|,
we have

max{f(x) s.t. x ∈ Pk} = max
n

X

e∈E

y{e} s.t. y ∈ Lk

o

.

Abusing notation slightly, we write f(y) =
P

e∈E y{e}.

The integrality ratio3 gk(G) of Pk applied to a given graph
G is maxx∈Pk

f(x)/maxx∈P f(x), or equivalently

gk(G) = max
y∈Lk

f(y)/max
x∈P

f(x).

The integrality gap of the kth level of the Sherali-Adams
hierarchy is αk = supG gk(G), which we study as a function
of k. By Lemma 2.1 αk is motonone non-increasing.

2.3 The integrality gap
Our first observation is that the integrality gap is always

achieved on a complete graph of odd cardinality. For this we
require the notion of a certificate (or witness) for maximum
matching, given by the following version of the Tutte-Berge
formula [6, 7].

Theorem 2.2. [6, 7] The maximum cardinality of a
matching of G equals the minimum of |S1| +

P

i≥2b|Si|/2c
over all partitions V = S1 ∪ S2 ∪ · · · of V into subsets such
that every edge either has at least one endpoint in S1 or has
both endpoints in the same Si with i ≥ 2. Such a partition
is called a certificate.

We can deduce the following:

Proposition 2.3. The integrality gap αk is achieved for
G equal to a complete graph of odd cardinality, i.e., αk =
sup{gk(K2d+1), d ≥ 1}.
3We introduce this term to distinguish the approximation
ratio on a particular graph G from the integrality gap, which
is a supremum over all G.



Proof. Let G be any graph. Let M be a maximum
matching of G and {Si} be a certificate that M is maximum,
as given by Theorem 2.2: that is, |M | = |S1|+

P

i≥2b|Si|/2c.
Modify G to create a graph G′ by adding edges to make ev-
ery Si (i ≥ 2) a complete graph and to make (S1, V − S1)
a complete bipartite graph. Denoting by LPk(G′) the value
of the k-round Sherali-Adams LP on graph G′, we have

LPk(G′) ≤
X

e:e∩S1 6=∅

xe +
X

i

X

e⊆Si

xe ≤ |S1|+
X

i≥2

LPk(K|Si|).

In graph G′, M is still a valid matching and {Si} is still
a valid certificate, so the integer optimum is still |M | =
|S1| +

P

i≥2b|Si|/2c. Moreover, adding edges cannot de-
crease the value of the linear program. Hence the transfor-
mation cannot decrease the integrality ratio, i.e., gk(G) ≤
gk(G′). Therefore,

gk(G) ≤
|S1| +

P

i≥2 LPk(K|Si|)

|S1| +
P

i≥2b
|Si|
2

c

≤ max
i

LPk(K|Si|)

b |Si|
2

c
= max

i
gk(K|Si|),

where the last equality follows from the obvious fact that
the integer optimum on Kn is bn/2c. Thus, in order to com-
pute maxG gk(G), it suffices to restrict attention to complete
graphs. Finally, note that gk(K2d+1) ≥ gk(K2d) for all d,
since adding the extra vertex does not change the integer
optimum and can only increase the value of the LP. Hence,
to compute αk, it suffices to restrict attention to complete
graphs of odd cardinality.

Remark: For graphs of any fixed size n, the maximum
integrality ratio is also determined by the values LPk(Kj),
for by the above proof we can write

max
G:|V (G)|=n

gk(G) = max
Σisi=n

P

i LPk(Ksi
)

P

ib
si

2
c .

By Proposition 2.3, to compute the integrality gap αk it is
enough to study the integrality ratio gk(K2d+1) as a function
of k and d. When k = 0 we are dealing with the basic LP
relaxation, for which it is well known that the integrality
ratio is 1 + 1/2d:

Proposition 2.4. For all d, we have g0(K2d+1) = 1 + 1
2d

.

Proof. Summing all the constraints of the linear pro-
gram shows that any feasible solution has value at most

X

e

xe =
1

2

X

v

X

e:v∈e

xe ≤ (2d + 1)/2.

On the other hand, setting xe = 1/2d for every e clearly gives
a feasible solution, and its value is also

`

2d+1
2

´

1
2d

= 2d+1
2

.

Hence the LP has value exactly 2d+1
2

. Since the integer
optimum is clearly d, the integrality ratio is 1 + 1/2d.

Of course, the above is the maximum possible value of
the integrality ratio for any fixed d. Presently we shall see
(Corollary 4.1) that in fact gk(K2d+1) remains at its max-
imum value 1 + 1/2d for all k ≤ d − 1, and also (Corol-
lary 4.2 and Theorem 1.3) that gk(K2d+1) reaches 1 exactly
at k = 2d − 1. We will also describe in some detail the
decrease of the ratio between these two extreme values.

3. AN EXPLICIT LINEAR PROGRAM
Our goal in this section is to find a simple, explicit form

for the linear program obtained after k rounds of Sherali-
Adams lifting applied to G = K2d+1.

4 This explicit form
can be found in Theorem 3.9 at the end of the section. The
key to our analysis is the observation that, among all the
multipliers that give rise to Sherali-Adams constraints, only
a much smaller special set that we call “standard multipliers”
are needed. These have a simple description as follows.

Definition 1. A standard multiplier is a polynomial M in
the variables {xe : e ∈ E} of the form

Q

e∈I xe

Q

f∈J(1 − xf ),
where the edges of J are a star over some vertex set W and
the edges of I are a matching over some vertex set W ′ dis-
joint from W .

We will also need some notation for the linearization proce-
dure, as follows:

Definition 2. Let C be a polynomial over {xe}, and let
φ(C) denote the linear combination of variables z1, z2, . . .
which is obtained by expanding C, linearizing each monomial
(i.e., replacing xm

e by xe for each e and each m > 1), and
replacing each

Q

e∈L xe by 0 if L is not a matching and by
z|L| otherwise.

The key step is to show that only standard multipliers are
needed to define the k-round lifted linear program Lk:

Proposition 3.1. Let G = K2d+1. Then the value of Lk

equals the value of the following linear program L′
k:

max
z1,z2,...,zk+1

`

2d+1
2

´

z1 subject to

1. ∀i > d, zi = 0;

2. all the constraints of the form φ((1−
P

v:u 6=v xuv)M) ≥
0, where u ∈ V and M is a standard multiplier of
degree at most k over a vertex set not containing u;

3. all the constraints of the form φ(M) ≥ 0, where M is
a standard multiplier of degree at most k + 1.

The proof is through a sequence of lemmas. The first two
of these determine the variables in the linear program.

Lemma 3.2. Let y = (yL) be a feasible solution for Lk. If
L is not a matching then yL = 0.

Proof. Let e ∈ L. Multiplying the constraint xe ≥ 0 by
Q

f∈L\{e} xf yields yL ≥ 0.

Up to relabeling, assume that L = {01, 02}∪L′. Multiply
the constraint (1 −Pi6=1 x1i ≥ 0) by x01

Q

e∈L′ xe, replace

x2
01 by x01, and simplify, to get −Pi≥2 x01x0i

Q

e∈L′ xe ≥ 0.
For each i ≥ 3, multiplying the constraint x01 ≥ 0 by
x0i

Q

e∈L′ xe yields x01x0i

Q

e∈L′ xe ≥ 0. Summing, we ob-
tain −x01x02

Q

e∈L′ xe ≥ 0. Linearizing yields −yL ≥ 0.
Hence yL = 0.

Lemma 3.3. There exists an optimal solution y = (yL) ∈
Lk and associated projection x = (xe) ∈ Pk realizing the
fractional optimum maxx∈Pk

f(x) such that yL = z|L| is the
same for every set of |L| edges forming a matching.
4In this section, we use the definition of the Sherali-Adams
construction with redundant constraints, as discussed in Sec-
tion 2.1.



Proof. Starting from an optimal solution y of Lk, define
n! optimal solutions by considering all possible permutations

of the vertices: y(σ) = (y
(σ)
L ) = (yσ(L)). By symmetry of

K2d+1, y(σ) is also an optimal solution of Lk. Averaging
over all these solutions defines z.

The next sequence of lemmas shows that the only con-
straints we need to consider are those associated with stan-
dard multipliers.

Lemma 3.4. Consider the constraint of Lk defined by I, J
and u:

C =
Y

e∈I

xe

Y

f∈J

(1 − xf )(1 −
X

v:u 6=v

xuv).

Without loss of generality, we can assume that I is a match-
ing, that vertex u does not belong to any edge of I ∪ J, and
that the vertices spanned by J are disjoint from the vertices
spanned by I.

Proof. If I is not a matching, then no monomial in C is
a matching and thus by Lemma 3.2 we have φ(C) = 0. If
vertex u belongs to an edge of I , then by Lemma 3.2 again
we have φ(C) = φ(C′), where C′ =

Q

e∈I xe

Q

f∈J(1 − xf )
is a constraint of the form covered in Lemma 3.5 below.

The remaining two cases are handled by induction on the
number of factors in C (recall that we are including con-
straints with |I ∪ J | < k, so this induction is valid). First,
if vertex u is an endpoint of an edge {u, w} in J , then
C = (1− xuw)(1−Pv:u 6=v xuv)C

′, and since by Lemma 3.2

the linearization of (1 − xuw)(1 −Pv:u 6=v xuv) equals (1 −
P

v:u 6=v xuv), we have φ(C) = φ((1−Pv:u 6=v xuv)C
′). Since

the latter argument has one fewer factor than C, we can
apply induction to it. Finally, if some vertex w appears
in both an edge {w1, w} of I and an edge {w2, w} of J ,
then C = xw1w(1 − xw2w)C′ and by Lemma 3.2 we have
φ(C) = φ(xw1wC′) and we can again apply induction.

Lemma 3.5. Consider the constraint of Lk defined by I
and J:

C =
Y

e∈I

xe

Y

f∈J

(1 − xf ).

Without loss of generality, we can assume that I is a match-
ing and that the vertices spanned by J are disjoint from the
vertices spanned by I.

Proof. Similar to the proof of Lemma 3.4.

The following straightforward fact will be needed in the
proof of the next lemma.

Proposition 3.6. Let C, D and F be polynomials in {xe}
such that the set of vertices spanned by the edges in the sup-
port of C or D are disjoint from the set of vertices spanned
by the edges in the support of F . If φ(C) = φ(D) then
φ(CF ) = φ(DF ).

Lemma 3.7. Let J be a multiset of edges over some vertex
set W (where the same edge can be present several times),
and let C =

Q

e∈J(1−xe) . Then there exists a set C1, C2, . . .
of standard multipliers over W , and positive coefficients
λ1, λ2, . . ., such that φ(C) =

P

i λiφ(Ci).

Proof. The proof is by induction over the cardinality of
J (degree of C) and over the number t of vertices of W that

have more than one adjacent vertex in J . (Note that these
adjacent vertices must be distinct. Multiple edges to the
same neighbor count as a single adjacency.)

Base case: If t = 1, or if t = 0 and J spans only two
vertices, then J is a star, possibly with some duplicate edges.
If there are no duplicate edges, then the conclusion of the
lemma holds and we are done. Otherwise, we write C =
Q

v∈S(1−xu0v)mv , where mv ≥ 1 is the multiplicity of edge

{u0, v}. Observing that the linearization of (1− xe)
2 equals

(1 − xe), it follows that φ(C) = φ(
Q

v∈S(1 − xu0v)) and we
are done.

General case: Otherwise, let v1, v2 be two vertices that
both have neighbors outside {v1, v2}, let A be the multiset
of edges from v1 to neighbors in V \ {v2}, and let B be the
multiset of edges from v2 to neighbors in V \ {v1}.

Define B′ as the multiset of edges obtained from B by
replacing each occurrence of an edge {v2, b} by an occurrence
of {v1, b}, and define the multiset J ′ = (J \ B) ∪ B′, where
edges are counted with multiplicity. Let C′ =

Q

e∈J′(1−xe).
The matchings of J which do not have both an edge from

A and an edge from B are in bijection with the matchings
of J ′. The other matchings of J have both an edge e1 from
A and an edge e2 from B. Thus it is easy to check that

φ(C) = φ(C′) +
X

e1∈A

X

e2∈B

φ(xe1
xe2

Y

e∈J\(A∪B)

(1 − xe)).

Note that J ′ has the same number of edges as J , but in J ′

vertex v2 has at most one adjacent vertex (namely, v1), so
we can apply induction to C′. Now consider the polyno-
mial xe1

xe2

Q

e∈J\(A∪B)(1 − xe). By Lemma 3.5 we have

φ(xe1
xe2

Q

e∈J\(A∪B)(1 − xe)) = φ(xe1
xe2

Q

e∈J′′(1 − xe)),

where J ′′ is the set of edges in J \ (A ∪ B) that have no
vertex in common with e1 ∪ e2. Applying induction to J ′′

(which has smaller degree than J) and using Proposition 3.6
to multiply by F = xe1

xe2
concludes the proof.

Lemma 3.8. Let u be a vertex and C, D be polynomials
in {xe} such that the set of vertices spanned by the edges in
the support of C or D does not contain u. If φ(C) = φ(D)
then φ(C(1 −Pv:u 6=v xuv)) = φ(D(1 −Pv:u 6=v xuv)).

Proof. Let C =
P

`

P

M:|M|=` αM

Q

e∈M xe + C′, and

D =
P

`

P

M:|M|=` α′
M

Q

e∈M xe + D′, where M is a match-

ing, and C′, D′ are polynomials whose monomials are all
non-matchings. The fact that φ(C) = φ(D) =

P

` β`z`

means that, for every `, we have β` =
P

M:|M|=` αM =
P

M:|M|=` α′
M .

Now, since every matching of size ` spans exactly 2` of
the 2d neighbors of u, the coefficient of z` in both φ(C(1 −
P

v xuv)) and φ(D(1−Pv xuv)) is β` − (2d− 2`)β`−1. The
lemma follows.

Armed with the foregoing lemmas, we now prove Propo-
sition 3.1.

Proof of Proposition 3.1. From Lemmas 3.2 and 3.3,
we can simplify Lk by defining a new set of variables, with
variable zi denoting the common value of yL for every match-
ing L of size i and by replacing yL by 0 whenever L is not
a matching. In other words, we take the intersection of the
polytope with the subspace of equations yL = 0 for L a non-
matching, and equations yL1

= yL2
for L1, L2 matchings of



equal size. This transforms Lk into an equivalent linear pro-
gram with variables (zi)i≥1. Since G has

`

2d+1
2

´

edges, the

objective function
P

e∈E y{e} becomes
`

2d+1
2

´

z1.
Since the maximum matching of G has size d, this implies

that yL = 0 whenever |L| > d, and therefore zi = 0 for
i > d. This establishes the first set of constraints.

The second set of constraints is trivially obtained by mul-
tiplying the appropriate constraint (1 −Pv:u 6=v xuv ≥ 0)
by the appropriate standard multiplier. We now proceed
to prove that any other constraints which can be obtained
from 1 −Pv:u 6=v xuv ≥ 0 can be expressed as positive lin-
ear combinations of these constraints. By Lemma 3.4 we
only need to examine constraints obtained by multiplying
1 −Pv:u 6=v xuv ≥ 0 by

Q

e∈I xe

Q

f∈J(1 − xf ), where I is a
matching not containing u, and J spans a set of vertices W
which is disjoint from I and from u. Let C =

Q

f∈J(1−xf ).
Applying Lemma 3.7 to C, we have

φ(C) =
X

I′,J′

αI′,J′φ(
Y

e∈I′

xe

Y

f∈J′

(1 − xf )),

where the coefficients αI′,J′ are non-negative, I ′ is a match-
ing in W , and J ′ is a star in W disjoint from I ′. By Proposi-
tion 3.6 the equality still holds when each term is multiplied
by
Q

e∈I xe. Finally, by Lemma 3.8 the equality still holds
when each term is multiplied by 1−Pv:u 6=v xuv. Hence the

constraint φ(C) ≥ 0 is a positive linear combination of the
constraints described in Proposition 3.1.

Similarly, the third set of constraints is trivially obtained
by multiplying the appropriate constraint (either xe ≥ 0 or
1−xe ≥ 0) by the appropriate standard multiplier. Proving
that any other constraints that can be obtained from xe ≥ 0
or 1− xe ≥ 0 are linear combinations of these constraints is
analogous to the argument of the previous paragraph (using
Lemma 3.5 in place of Lemma 3.4 and omitting the final
step involving Lemma 3.8).

The following theorem writes in algebraic form the con-
straints of the linear program L′

k defined implicitly in Propo-
sition 3.1.

Theorem 3.9. Let G = K2d+1. For k ≤ d− 1, the linear
program L′

k of Proposition 3.1 may be rewritten as follows:

max
z1,z2,...,zk+1

 

2d + 1

2

!

z1 s.t.



zj − (2d − 2j)zj+1 ≥ (k − j)(zj+1 − (2d − 2j − 2)zj+2);
zk+1 ≥ 0,

where the first set of constraints is for 0 ≤ j ≤ k, with the
special extreme case z0 = 1.

For k ≥ d, L′
k may be rewritten as follows:

max
z1,z2,...,zk+1

 

2d + 1

2

!

z1 s.t.



zd+1 = . . . = zk+1 = 0;
zj − (2d − 2j)zj+1 ≥ βj(zj+1 − (2d − 2j − 2)zj+2),

where the second set of constraints is for 0 ≤ j ≤ d, with
the special extreme case z0 = 0 and with the notation βj =
min(k − j, 2d − 2j − 1).

Proof. Consider the linear program L′
k defined in Propo-

sition 3.1. From the first set of constraints, if k ≥ d then we
have zj = 0 for every j > d.

We now rewrite the second set of constraints of Proposi-
tion 3.1. Consider the constraint C = (1 −P1≤`≤2d x0`),

and a standard multiplier Mj with |I | = j ≤ k:

Mj =
Y

m:0≤m≤j−1

x2d−2m,2d−2m−1 ·
Y

i:2≤i≤|J|+1

(1 − x1i).

(Here we are assuming w.l.o.g. that vertex u = 0, the match-
ing I consists of edges {2d−2m, 2d−2m−1} for 0 ≤ m ≤ j−
1, and the star J consists of edges {1, i} for 2 ≤ i ≤ |J |+1.)
Then we have

φ(CMj) = φ

„

Y

m:0≤m≤j−1

x2d−2m,2d−2m−1 ·

ˆ

1 −
X

1≤`≤2d−2j

x0`

˜ˆ

1 −
X

i:2≤i≤|J|+1

x1i

˜

«

,

which evaluates to

zj−(2d−2j+|J |)zj+1+
X

1≤`≤2d−2j

X

2≤i≤|J|+1

χ(` /∈ {1, i})zj+2.

The number of non-zero terms in the double sum is (2d −
2j − 2)|J |; hence we obtain the constraint

zj − (2d − 2j)zj+1 ≥ |J |(zj+1 − (2d − 2j − 2)zj+2).

Depending on the sign of the coefficient of |J |, the critical
constraint as |J | varies is either for |J | = 0 or for |J | max-
imum. We now compute the maximum value of |J |. Since
|I | + |J | ≤ k, we must have |J | ≤ k − j. Since the total
number of vertices spanned by the edges of I ∪ J is at most
2d (all vertices except vertex 0), and I spans exactly 2j, J
must span at most 2d − 2j. Thus, since the set of edges de-
fined by J is a tree, it has at most 2d− 2j − 1 edges. Hence
the maximum value of |J | is |J | = min(k − j, 2d − 2j − 1).

The second set of constraints can therefore be written, for
0 ≤ j ≤ min(k, d), as

zj − (2d − 2j)zj+1 ≥


0;
min(k − j, 2d − 2j − 1)(zj+1 − (2d − 2j − 2)zj+2).

For j = min(k, d) these two inequalities coincide, and so, for
any j, the first inequality is subsumed by the second. Also
note that if k ≤ d − 1 then d ≤ 2d − k − 1, so every j has
j ≤ 2d − k − 1, and therefore k − j ≤ 2d − 2j − 1 so that
min(k − j, 2d − 2j − 1) = k − j. Thus the above system is
equivalent to

- if k ≥ d then, for 0 ≤ j ≤ d,

zj − (2d − 2j)zj+1 ≥ (1)

min(k − j, 2d − 2j − 1)(zj+1 − (2d − 2j − 2)zj+2);

- if k ≤ d − 1 then, for 0 ≤ j ≤ k,

zj − (2d− 2j)zj+1 ≥ (k − j)(zj+1 − (2d− 2j − 2)zj+2). (2)

Note that these are precisely the constraints of the LP as
stated in the theorem. Thus, to complete the proof, we just
need to show that all the remaining constraints (i.e., those
in the third set of Proposition 3.1) are subsumed by (1)
and (2).



For the third set of constraints, take a standard multiplier
with |I | = j ≤ k + 1:

Mj =
Y

m:0≤m≤j−1

x2d−2m,2d−2m−1 ·
Y

i:2≤i≤|J|+1

(1 − x1i).

Then we obtain φ(Mj) = zj−|J |zj+1, yielding the constraint

zj ≥ |J |zj+1.

The critical constraint is for |J | = 0 or for |J | maximum.
What is the maximum value of |J | in this case? Since |I | +
|J | ≤ k + 1, we must have |J | ≤ k + 1 − j. Since the total
number of vertices spanned by the edges of I ∪ J is at most
2d + 1 (all vertices) and I spans exactly 2j, J must span
at most 2d − 2j + 1. Since the set of edges defined by J
is a tree, it has at most 2d − 2j edges. Hence we obtain
that the maximum value is |J | = min(k − j + 1, 2d − 2j).
Thus the third set of constraints can be written, for 0 ≤ j ≤
min(k + 1, d), as



zj ≥ 0
zj − min(k + 1 − j, 2d − 2j)zj+1 ≥ 0

(3)

Again, for j = min(k + 1, d) the two inequalities coincide,
and so for any j the first inequality is implied by the second.
Again, if k ≤ d−1 then k−j ≤ 2d−2j−1 for every j and so
k−j+1 ≤ 2d−2j, so that min(k+1−j, 2d−2j) = k+1−j.
Thus (3) is equivalent to:

- if k ≥ d then, for 0 ≤ j ≤ d,

zj − min(k + 1 − j, 2d − 2j)zj+1 ≥ 0; (4)

- if k ≤ d − 1 then, for 0 ≤ j ≤ k + 1,

zj − (k + 1 − j)zj+1 ≥ 0. (5)

Consider the case k ≥ d. Then inequality (1) implies that
zj − (2d−2j)zj+1 ≥ 0 for 0 ≤ j ≤ d, which implies (4), and
so we obtain the claimed linear program.

Now, consider the case k ≤ d − 1. Then it is easy to see
that inequality (2) implies (5) for 0 ≤ j ≤ k, since 2d−2j ≥
k + 1 − j. For j = k + 1, (5) is simply zk+1 ≥ 0. Thus we
obtain the claimed linear program.

This completes the proof of the theorem.

4. SOLVING THE LINEAR PROGRAM
We turn now to our main task of computing the integral-

ity ratios gk(K2d+1). Since the integer optimum on K2d+1 is
clearly d, gk(K2d+1) is just 1

d
times the value of the k-round

Sherali-Adams LP on K2d+1. By Proposition 3.1, this in
turn is equal to the value of the linear program L′

k. The
simple explicit form for L′

k given in Theorem 3.9 makes it a
relatively straightforward algebraic task to determine its op-
timal solution. This will yield proofs of the various theorems
stated in the Introduction.

We begin with two immediate corollaries of Theorem 3.9
concerning the behavior of the integrality ratio gk(K2d+1) at
the lower and upper extremes. (These are parts (i) and (iv)
of Theorem 1.2 stated in the Introduction.)

Corollary 4.1. Let k ≤ d − 1. Then gk(K2d+1) = 1 +
1/2d.

Proof. By Proposition 2.4 it suffices to prove this for
k = d−1. Define z1 = 1/2d and zj+1 = 1/((2d−2j) · · · (2d−
4)(2d − 2)2d). Then zk+1 ≥ 0 and all other constraints are
tight, so this is feasible and has value (2d + 1)/2. Since the
integer optimum is d, the result follows.

Corollary 4.2. Let k ≥ 2d − 1. Then gk(K2d+1) = 1.

Proof. We know [21, 26] that for k equal to the num-
ber of variables in the basic linear program, which in our
case is

`

2d+1
2

´

, the integrality ratio is 1 and the value of the
lifted linear program is equal to the integer optimum. But
Proposition 3.1 implies that the value of the lifted linear
program is the same for every k ≥ 2d − 1; this follows be-
cause the maximum possible degree of a standard multiplier
in G(K2d+1) is 2d, so for k ≥ 2d no new constraints are
added. Hence the ratio is 1 for every k ≥ 2d − 1.

We now derive an explicit recurrence relation for the so-
lution of the linear program L′

k of Theorem 3.9, and hence
for the integrality ratio gk(K2d+1). By the above corollaries
we may restrict our attention to the range d ≤ k ≤ 2d − 2.

Lemma 4.3. Let d ≤ k ≤ 2d − 2. Then

gk(K2d+1) =
(2d + 1)

(k + 2d) − 2k(d − 1)/ρ2d−k−2
(6)

where (ρi)0≤i≤2d−k−2 is given by the recurrence
(

ρ0 = 2(k − d) + 3;

ρi = 4(k − d) + 3 + 3i − (2(k−d)+i+1)(2(k−d)+2i)
ρi−1

.
(7)

Proof. Since gk(K2d+1) is equal to 1
d

times the value of
L′

k, it suffices to show that this value is equal to d times the
RHS of (6).

Let us write the constraints of L′
k more explicitly. There

are two cases, depending on how k−j compares to 2d−2j−1.
If j ≤ 2d−k−1 then k−j ≤ 2d−2j−1 and so βj = k−j. If
j > 2d−k−1 then k−j > 2d−2j−1 and so βj = 2d−2j−1.
We can therefore rewrite L′

k as:

max
`

2d+1
2

´

z1 s.t.

1 ≥
“

(k + 2d) − 2k(d−1)
z1/z2

”

z1 (j = 0)
zj

zj+1
≥ (k − j) + 2(d − j) − (k−j)(2(d−j)−2)

zj+1/zj+2

(1 ≤ j ≤ 2d − k − 1)
zj

zj+1
≥ 4(d − j) − 1 − (2(d−j)−1)(2(d−j)−2)

zj+1/zj+2

(2d − k ≤ j ≤ d − 2)
zd−1

zd
≥ 3 (j = d − 1)

zd ≥ 0 (j = d)

Clearly, the optimum is obtained when the ratio z1/z2 is
minimized, which in turn occurs when every inequality in the
system (other than the last line) is an equality. Solving this
system of equalities with unknowns zj/zj+1 yields zj/zj+1 =
2(d − j) + 1 for 2d − k ≤ j ≤ d − 1; this holds for j = d − 1
from the fourth equality zd−1/zd = 3, and can be verified
for the other values of j by induction using the third family
of equalities. Thus for j = 2d − k − 1 we get zj/zj+1 =
2(k − d) + 3. Letting ρi := zj/zj+1 for j = 2d − k − 1 − i,
and substituting for i = 0, 1, 2, . . . into the second family
of equalities, yields the claimed recurrence (7) for the ρi.
Finally, the value of z1 can be read off from the first equality,
and substituted into the objective function to yield the value
of L′

k. Upon dividing by d we obtain (6).

Although we are not aware of any closed form for the so-
lution of the recurrence in Lemma 4.3, by using it we can



compute numerically the exact integrality ratio gk(K2d+1)
for any fixed number of rounds k and graph size 2d+1. More-
over, as we shall see shortly, with a little additional analysis
we can derive tight asymptotic bounds on the solution to
the recurrence, and hence on the integrality ratio.

Remark: The above procedure implies a very efficient ex-
act algorithm for computing gk(K2d+1), and hence also the
integrality gap αk. To compute αk we need to compute
gk(K2d+1) for O(k) values of d; since each such gk can be
computed from the recurrence in time O(k), we compute αk

in time O(k2). We present some numerical results based on
this observation in the Appendix.

One of our main theorems stated in the Introduction, The-
orem 1.3 on the rank of the matching polytope, follows im-
mediately from Lemma 4.3.

Proof of Theorem 1.3. We just need to observe that
g2d−2(K2d+1) > 1 (since we already know from Corollary 4.2
that g2d−1(K2d+1) = 1). This follows by plugging k = 2d−2
into Lemma 4.3, so that ρ2d−k−2 = ρ0, whence the integral-
ity ratio is easily seen to be 1 + 1/(4d2 − 2) > 1.

Next we prove Theorem 1.2 in the Introduction, which de-
scribes the threshold behavior of gk(K2d+1). This we achieve
by establishing tight bounds on the solution to the recur-
rence in Lemma 4.3.

Proof of Theorem 1.2. Parts (i) and (iv) are exactly
Corollaries 4.1 and 4.2 respectively.

Now, assume d ≤ k < 2d − 1. Following Lemma 4.3, it
suffices to analyze the recurrence relation (7) defining the ρi.
Define εi by ρi = (2(k− d) + 2i + 2)(1 + εi). The recurrence
becomes:
8

<

:

ε0 = 1
2(k−d)+2

;

εi =
“

1 − i+1
2(k−d)+2i+2

”

εi−1

1+εi−1
:= ri

εi−1

1+εi−1
(for i ≥ 1).

(8)
Then it is easy to see that the ratio gk := gk(K2d+1) satisfies

1 +
1 − (2d + 1)ε

2d
≤ gk =

2d + 1

2d + k ε
1+ε

≤ 1 +
1 − kε

1+ε

2d
, (9)

where ε := ε2d−k−2. To prove parts (ii) and (iii) of the
theorem, we use (9) to derive upper and lower bounds on gk

in the relevant ranges of k.

Lower bound on gk for d ≤ k ≤ 2d − ω(d1/2)

To prove the bound in part (ii), by the left-hand inequality
in (9) it suffices to show that ε = o(1/d). Let k = (2 − γ)d

where γ = ω(d−1/2). Note that then 2d − k − 2 = γd − 2.
Consider the quantity ri defined in (8). Since ri decreases
monotonically with i, for all i in the range γd

2
≤ i ≤ γd− 2,

we have

ri ≤ rγd/2 = 1 − γd/2 + 1

2(1 − γ)d + γd + 2
≤ 1 − γ

4
.

Hence, from the recurrence in (8) we get that ε2d−k−2 is at
most

ε0

γd−2
Y

i=γd/2

ri ≤ ε0
“

1 − γ

4

”γd/2−2

≤ ε0 exp

„

−γ2d

8
+

γ

2

«

.

(10)
Now if k ≥ 3

2
d then from (8) ε0 ≤ 1

d+2
, and therefore (10)

together with the fact that γ = ω(d−1/2) implies that ε =

o(1/d). If on the other hand k < 3
2
d then γ ≥ 1

2
and (10)

again implies ε = o(1/d). The left-hand inequality in (9)
now completes the proof of part (ii) of the theorem.

Upper bound on gk for k ≥ 2d − o(d1/2)

To prove the bound in part (iii) of the theorem, by the right-
hand inequality in (9) it suffices to show that kε

1+ε
= 1−o(1).

And since k ≥ 2d − o(d), it suffices to show ε = 1−o(1)
2d

.

Let k = 2d−β, where β = o(d1/2). Then 2d−k−2 = β−2.
In this case, for 1 ≤ i ≤ β − 2 and sufficiently large d we
have

ri ≥ rβ = 1 − β + 1

2d + 2
≥ 1 − β

d

and

εi

1 + εi
≥ εi

1 + ε0
=

„

1 − 1

2(d − β) + 3

«

εi.

Thus from the recurrence (8) we get that ε = ε2d−k−2 is at

least ε0
Qβ−2

i=1
ri

1+ε0
, which is bounded below by

1

2(d − β + 1)

„

1 − 1

2(d − β) + 3

«β−2„

1 − β

d

«β−2

.

Since β = o(d1/2) we see that the first factor is 1−o(1)
2d

, and
the second and third factors are each 1 − o(1). Hence ε =
1−o(1)

2d
, which in conjunction with the right-hand inequality

in (9) completes the proof of part (iii) of the theorem.

Finally, our main result on the integrality gap, Theo-
rem 1.1 stated in the Introduction, follows almost imme-
diately from Theorem 1.2.

Proof of Theorem 1.1. By Proposition 2.3, we know
that αk = sup{gk(K2d+1), d ≥ 1}.

For a lower bound on αk, choose d = d(k) such that

k = 2d − γ where ω(
√

d) < γ < o(d). This implies that
d = k

2
+ o(k). By part (ii) of Theorem 1.2, we have αk ≥

gk(K2d+1) ≥ 1 + 1−o(1)
2d

= 1 + 1
k

+ o( 1
k
).

For an upper bound on αk, note from part (iv) of Theo-
rem 1.2 that gk(K2d+1) = 1 for d ≤ k+1

2
, and hence αk ≤

max{gk(K2d+1) : d > (k +1)/2}. But by part (i) of the the-
orem this is at most max{1+ 1

2d
: d > (k+1)/2} < 1+ 1

k
.
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Appendix

In this appendix we present some numerical values for the in-
tegrality ratio and the integrality gap based on the algorithm
indicated in the Remark following the proof of Lemma 4.3.

Figure 1 shows a table of exact values of gk(K2d+1) (to
four decimal places) for small values of k and d. The table
is interesting only in the central diagonal portion, within
the wedge d ≤ k ≤ 2d − 2; for k ≤ d − 1 the entries are
1 + 1

2d
by Corollary 4.1, while for k ≥ 2d − 1 the entries

are 1 by Corollary 4.2. Note that, of course, the values are
monotonically decreasing in every column (corresponding to
increasing the number of rounds for a fixed graph K2d+1);
however, the rows (keeping the number of rounds k fixeed
while increasing the size of the graph) are not monotone.

The maximum value in the kth row (shown in bold) is the
integrality gap αk; by the above observation, this must lie
between columns dk+2

2
e and k + 1 inclusive. For k = 0 we

have α0 = 1.5, corresponding to the well-known fact that the
integrality gap of the standard LP (without lifting) is 3/2,
achieved on K3. For k = 1 we have α1 = 1.25, corresponding
to the fact that a single round of Sherali-Adams implies the
triangle constraints and thus has integrality ratio 1 on K3;
the integrality gap is now 5/4, achieved on K5. For small k
the maximum value occurs for d ≈ k, giving an integrality
gap of about 1 + 1

2k
. However, as k increases the maximum

occurs much closer to d = k
2
, giving a gap close to 1 + 1

k
.

Figure 2 plots the exact value of αk −1 as a function of k,
for k = 20 to 1000. The value approaches 1/k for large k,
as predicted by Theorem 1.1.

Finally, Figure 3 illustrates the decrease of the integral-
ity ratio gk(K2d+1) with k for various values of d (d =
10, 100, 500) in the interval 1 ≤ k ≤ 2d− 1 (during which gk

decreases from 1+ 1
2d

to 1). The axes are scaled so that both
the range of values of gk and the width of the interval are
the same (and equal to 1) for each d. This figure illustrates
the“phase transition” in gk for large values of d at a distance
Θ(

√
d) from the right-hand end of the interval, as predicted

by Theorem 1.2.



d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 d = 11 d = 12 d = 13
k = 0 1.5000 1.2500 1.1667 1.1250 1.1000 1.0833 1.0714 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 1 1.0000 1.2500 1.1667 1.1250 1.1000 1.0833 1.0714 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 2 1.0000 1.0714 1.1667 1.1250 1.1000 1.0833 1.0714 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 3 1.0000 1.0000 1.0889 1.1250 1.1000 1.0833 1.0714 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 4 1.0000 1.0000 1.0294 1.0887 1.1000 1.0833 1.0714 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 5 1.0000 1.0000 1.0000 1.0479 1.0825 1.0833 1.0714 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 6 1.0000 1.0000 1.0000 1.0161 1.0566 1.0748 1.0714 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 7 1.0000 1.0000 1.0000 1.0000 1.0302 1.0589 1.0672 1.0625 1.0556 1.0500 1.0455 1.0417 1.0385
k = 8 1.0000 1.0000 1.0000 1.0000 1.0102 1.0394 1.0578 1.0604 1.0556 1.0500 1.0455 1.0417 1.0385
k = 9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0208 1.0442 1.0550 1.0545 1.0500 1.0455 1.0417 1.0385
k = 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0070 1.0290 1.0459 1.0514 1.0495 1.0455 1.0417 1.0385
k = 11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0153 1.0344 1.0456 1.0477 1.0452 1.0417 1.0385
k = 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0052 1.0223 1.0372 1.0441 1.0442 1.0415 1.0385
k = 13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0117 1.0275 1.0383 1.0420 1.0410 1.0384

Figure 1: Table of values of the integrality ratio gk(K2d+1) (to 4 decimal places) for small values of k and d.
Bold face entries (the maximum in each row) show the integrality gap αk after k rounds of Sherali-Adams.
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Figure 2: Graph of αk − 1 (where αk is the exact
integrality gap) as a function of k, for k = 20 to 1000
(lower curve). For large k the curve approaches 1/k
(upper curve).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

d=10
d=100

d=500

Figure 3: Graph showing the decrease of gk(K2d+1)
with k for various values of d (d = 10, 100, 500). For
each value of d, the horizontal axis is k/2d; the range
of k shown therefore corresponds to 0 ≤ k ≤ 2d. The
vertical axis is 2d(gk(K2d+1) − 1), a quantity that de-
creases from 1 to 0 within this range of k; the value 1
corresponds to the maximum integrality ratio 1+ 1

2d
,

and the value 0 corresponds to integrality ratio 1.


