
C H A P T E R

12

THE MARKOV CHAIN MONTE CARLO

METHOD: AN APPROACH

TO APPROXIMATE COUNTING

AND INTEGRATION

Mark Jerrum Alistair Sinclair

In the area of statistical physics, Monte Carlo algorithms
based on Markov chain simulation have been in use for
many years. The validity of these algorithms depends cru-
cially on the rate of convergence to equilibrium of the
Markov chain being simulated. Unfortunately, the classical
theory of stochastic processes hardly touches on the sort of
non-asymptotic analysis required in this application. As a
consequence, it had previously not been possible to make
useful, mathematically rigorous statements about the qual-
ity of the estimates obtained.

Within the last ten years, analytical tools have been
devised with the aim of correcting this deficiency. As well
as permitting the analysis of Monte Carlo algorithms for
classical problems in statistical physics, the introduction of
these tools has spurred the development of new approxi-
mation algorithms for a wider class of problems in combi-
natorial enumeration and optimization. The “Markov chain
Monte Carlo” method has been applied to a variety of such
problems, and often provides the only known efficient (i.e.,
polynomial time) solution technique.

482



12.1 INTRODUCTION 483

INTRODUCTION

12.1

This chapter differs from the others in being concerned more with problems of count-

ing and integration, and correspondingly less with optimization. The problems we ad-

dress still tend to be complete, but now for the complexity class of counting problems

known as #P, rather than for the more familiar class NP of decision problems. It also

differs from most of the others in being centred around a general paradigm for design-

ing approximation algorithms, rather than around a specific problem domain. We shall

refer to this paradigm as the “Markov chain Monte Carlo method.” It has been widely

used for many years in several application areas, most notably in computational physics

and combinatorial optimization. However, these algorithms have been almost entirely

heuristic in nature, in the sense that no rigorous guarantees could be given for the qual-

ity of the approximate solutions they produced. Only relatively recently have analytical

tools been developed that allow Markov chain Monte Carlo algorithms to be placed on a

firm foundation with precise performance guarantees. This has led to an upsurge of inter-

est in this area in computer science, and in the development of the first provably efficient

approximation algorithms for several fundamental computational problems. This chap-

ter aims to describe these new tools, and give the reader a flavor of the most significant

applications.

The Markov chain Monte Carlo method provides an algorithm for the following

general computational task. Let Ω be a very large (but finite) set of combinatorial struc-

tures (such as the set of possible configurations of a physical system, or the set of fea-

sible solutions to a combinatorial optimization problem), and let π be a probability

distribution on Ω . The task is to sample an element of Ω at random according to the

distribution π .

In addition to their inherent interest, combinatorial sampling problems of this kind

have many computational applications. The most notable of these are the following:

I. Approximate counting: i.e., estimate the cardinality of Ω . A natural generaliza-

tion is discrete integration, where the goal is to estimate a weighted sum of the

form
∑

x∈Ω w(x), where w is a positive function defined on Ω .

II. Statistical physics: here Ω is the set of configurations of a statistical mechanical

system, and π is a natural probability distribution on Ω (such as the Gibbs dis-

tribution), in which the probability of a configuration is related to its energy. The

task is to sample configurations according to π , in order to examine properties of

a “typical” configuration and to estimate the expectations of certain natural ran-

dom variables (such as the mean energy of a configuration). Computations of this

kind are typically known as “Monte Carlo experiments.”

III. Combinatorial optimization: here Ω is the set of feasible solutions to an opti-

mization problem, and π is a distribution that assigns, in some natural way, higher

weight to solutions with a better objective function value. Sampling from π thus

favors better solutions. An example of this approach is the popular optimization

heuristic known as “simulated annealing.”



484 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

In all the above applications, more or less routine statistical procedures are used to infer

the desired computational information from a sequence of independent random samples

from the distribution π . (This point will be illustrated by examples later in the chapter.)

In algorithms of this kind, therefore, it is the sampling itself which presents the major

challenge.

The Markov chain Monte Carlo method solves the sampling problem as follows.

We construct a Markov chain having state space Ω and stationary distribution π . The

Markov chain is designed to be ergodic, i.e., the probability distribution over Ω con-

verges asymptotically to π , regardless of the initial state. Moreover, its transitions cor-

respond to simple random perturbations of structures in Ω , and hence are simple to

simulate. Now we may sample from π as follows: starting from an arbitrary state in Ω ,

simulate the Markov chain for some number, T , of steps, and output the final state. The

ergodicity means that, by taking T large enough, we can ensure that the distribution of

the output state is arbitrarily close to the desired distribution π .

In most applications it is not hard to construct a Markov chain having the above

properties. What is not at all obvious, however, is how to choose the number of simula-

tion steps T , which is the crucial factor in the running time of any algorithm that uses the

chain. Of course, if the algorithm is to be efficient, then T must be very much smaller

than the size of Ω ; equivalently, we require that the Markov chain be close to its station-

ary distribution after taking a very short random walk through Ω . Loosely, we shall call

a Markov chain having this property “rapidly mixing,” and the number of steps required

for the distribution to become close to π the “mixing time” of the chain.

In heuristic applications of the Markov chain Monte Carlo method, T is usually cho-

sen by empirical observation of the Markov chain, or by an appeal to combinatorial or

physical intuition. This means that no precise claim can be made about the distribution

of the samples, so no performance guarantee can be given for the associated approxima-

tion algorithms. This observation holds for almost all existing Monte Carlo experiments

in physics, and for almost all applications of simulated annealing in combinatorial opti-

mization. It is a considerable challenge for theoretical computer science to analyze the

mixing time in such applications, and hence to place these algorithms on a firm founda-

tion.

Unfortunately, the classical theory of stochastic processes hardly touches upon the

sort of non-asymptotic analysis required in this situation. In recent years, however, novel

analytical tools have been developed that allow the mixing time of Markov chains of this

kind to be determined quite precisely. This in turn has led to the first rigorous analysis

of the running time of various approximation algorithms based on the Markov chain

Monte Carlo method, as well as to the design of entirely new algorithms of this type.

This chapter aims to present some of these analytical tools, and to describe their most

important algorithmic applications.

The remainder of the chapter is organized as follows. Section 12.2 illustrates how

the Markov chain Monte Carlo method can be applied to a combinatorial problem that

is very simple to state, namely the problem of counting the number of solutions to an

instance of the Knapsack problem. Section 12.3 describes two tools for bounding the

mixing time of Markov chains that have proved successful in a number of applications

(though not as yet in the case of the Knapsack solution counting problem). An illustration

of how these tools might be applied is provided by a toy example, which is a radically

simplified version of the Knapsack problem. Section 12.4 introduces a more substantial



12.2 AN ILLUSTRATIVE EXAMPLE 485

and better motivated application drawn from the field of statistical physics, namely, esti-

mating the partition function of a monomer-dimer system. This computational problem

includes, as a special case, approximately counting matchings of all sizes in a graph. Sec-

tion 12.5 then catalogues various other problems to which the Markov chain Monte Carlo

method has been successfully applied. The concluding Section 12.6 formulates the sim-

ulated annealing heuristic as an instance of the Markov chain Monte Carlo method, and

indicates how the techniques described in Sections 12.3 and 12.4 can, in certain cases,

give rigorous results on the performance of the heuristic.

AN ILLUSTRATIVE EXAMPLE

12.2

To introduce and motivate the Markov chain Monte Carlo method, consider the fol-

lowing problem: given a = (a0, . . . ,an−1) ∈ N
n and b ∈ N, estimate the number N of

0,1-vectors x ∈ {0,1}n satisfying the inequality a · x =
∑n−1

i=0 ai xi ≤ b. If the vector a

gives the sizes of n items to be packed into a knapsack of capacity b, the quantity to be

estimated can be interpreted as the number of combinations of items that can be fitted into

the knapsack, which we shall refer to as “Knapsack solutions.” Although this problem

is perhaps not of pressing practical importance, it does provide a convenient demonstra-

tion of the method. No efficient deterministic algorithm is known for accurately counting

Knapsack solutions and there is convincing complexity-theoretic evidence that none ex-

ists. In this regard at least, the chosen example is more realistic than the familiar classical

demonstration of the Monte Carlo method, which involves estimating π by casting a nee-

dle onto a ruled surface [Usp37].

The nature of the “convincing evidence” mentioned above is that the problem

of counting Knapsack solutions is complete for Valiant’s complexity class #P [GJ79,

Val79b] with respect to polynomial-time Turing reductions. The class #P is the counting

analogue of the more familiar class NP of decision problems. A #P-complete problem is

computationally equivalent (via polynomial-time Turing reductions) to computing the

number of satisfying assignments of a boolean formula in CNF, or the number of ac-

cepting computations of a polynomial-time nondeterministic Turing machine. Obvi-

ously, computing the number of accepting computations is at least as hard as deciding

whether an accepting computation exists, so #P certainly contains NP. Less obviously,

as Toda [Tod89] has demonstrated, #P also essentially contains the entire

Meyer-Stockmeyer polynomial-time hierarchy. Thus, in structural terms, and maybe

in fact, a #P-complete problem is computationally even harder than an NP-complete

one [Jer94].

A classical Monte Carlo approach to solving the Knapsack problem would be based

on an estimator of the following type. Select uniformly at random (u.a.r.) a vector x ∈
{0,1}n from the corners of the n-dimensional boolean hypercube; if a · x ≤ b then re-

turn 2n, otherwise return 0. The outcome of this experiment is a random variable whose

expectation is precisely N , the value we are required to estimate. In principle, we need

only perform sufficiently many trials and take the mean of the results to obtain a reliable



486 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

approximation to N within any desired accuracy. In practice, the method fails badly, as

we can see by taking a = (1, . . . ,1) and b = n/3. Note that, with these values, the ex-

pected number of trials before the first non-zero outcome is exponential in n. Thus, a

sequence of trials of “reasonable” length will typically yield a mean of 0, even though

the actual number of Knapsack solutions is exponentially large. Clearly, the variance of

the estimator is far too large for it to be of any practical value.

Before considering other, potentially better approaches, we should pause to con-

sider what distinguishes a good algorithm from a bad one. In the theoretical computer

science tradition, we consider an efficient algorithm to be one that terminates in a num-

ber of steps that is bounded by a polynomial in the length of the input. More formally,

suppose f : Σ∗ → N is a function mapping problem instances (encoded as words over

some convenient alphabet Σ) to natural numbers. For example, in the case of the Knap-

sack problem, f might map (encodings of) the pair a ∈ N
n and b ∈ N to the number of

solutions of a · x ≤ b in the set x ∈ {0,1}n. It should be clear that any combinatorial enu-

meration problem can be cast in this framework. A randomized approximation scheme

for f is a randomized algorithm that takes as input a word (instance) x ∈ Σn and ε > 0,

and produces as output a number Y (a random variable) such that1

Pr
(
(1 − ε) f (x) ≤ Y ≤ (1 + ε) f (x)

)
≥ 3

4
. (12.1)

A randomized approximation scheme is said to be fully polynomial [KL83] if it runs in

time polynomial in n (the input length) and ε−1. We shall abbreviate the rather unwieldy

phrase “Fully Polynomial Randomized Approximation Scheme” to FPRAS.

The above provides a clear-cut definition of an “efficient approximation algorithm”

that has at least a certain degree of intuitive appeal. The naive Monte Carlo algorithm

described earlier is not efficient in the FPRAS sense, which is reassuring. On the other

hand, it is certainly debatable whether an algorithm with running time n10 constitutes an

efficient solution in anything other than a theoretical sense. In this chapter, we always

use the FPRAS as our notion of efficient approximation algorithm; while this has the

advantage of providing us with clear goals, it is obvious that in practical applications

some more demanding notion of “efficient approximation” would be necessary.

Returning to the Knapsack problem, we might try applying the Markov chain Monte

Carlo method as follows. Consider the Markov chain MKnap with state space Ω = {x ∈
{0,1}n : a · x ≤ b}, i.e., the set of all Knapsack solutions, and transitions from each state

x = (x0, . . . ,xn−1) ∈ Ω defined by the following rule:

I. with probability 1
2

let y = x ; otherwise,

II. select i u.a.r. from the range 0 ≤ i ≤ n −1 and let y ′ =
(x0, . . . ,xi−1,1 − xi,xi+1, . . . ,xn−1);

III. if a · y ′ ≤ b, then let y = y ′, else let y = x ;

the new state is y. Informally, the process MKnap may be interpreted as a random walk

(with stationary moves) on the boolean hypercube, truncated by the hyperplane a ·x = b.

1There is no significance in the constant 3
4

appearing in the definition, beyond its lying strictly

between 1
2

and 1. Any success probability greater than 1
2

may be boosted to 1−δ for any desired δ > 0

by performing a small number of trials and taking the median of the results; the number of trials required

is O(lnδ−1) [JVV86].



12.2 AN ILLUSTRATIVE EXAMPLE 487

The Markov chain MKnap is ergodic, since all pairs of states intercommunicate via

the state (0, . . . ,0), and the presence of loops ensures aperiodicity; it is readily checked

that the stationary distribution is uniform over Ω . This observation immediately suggests

a procedure for selecting Knapsack solutions almost u.a.r.: starting in state (0, . . . ,0),

simulate MKnap for sufficiently many steps that the distribution over states is “close”

to uniform, then return as result the current state. Of course, sampling from Ω is not

quite the same as estimating the size of Ω (which is our goal), but the second task can

be related to the first using a simple trick, which we now describe.2

We keep the vector a fixed, but allow the bound b to vary, writing Ω(b) and

MKnap(b) to make explicit the dependence of the Markov chain on b. Assume without

loss of generality that a0 ≤ a1 ≤ ·· · ≤ an−1, and define b0 = 0 and bi = min
{
b,
∑i−1

j=0 a j

}
,

for 1 ≤ i ≤ n. It may easily be verified that |Ω(bi−1)| ≤ |Ω(bi)| ≤ (n +1)|Ω(bi−1)|, for

1 ≤ i ≤ n, the key observation being that any element of Ω(bi) may be converted into

an element of Ω(bi−1) by changing the rightmost 1 to a 0. Now write

|Ω(b)| = |Ω(bn)| =
|Ω(bn)|

|Ω(bn−1)|
×

|Ω(bn−1)|
|Ω(bn−2)|

× · · ·×
|Ω(b1)|
|Ω(b0)|

× |Ω(b0)|,
(12.2)

where, of course, |Ω(b0)| = 1. The reciprocals ρi = |Ω(bi−1)|/|Ω(bi)| of each of the

ratios appearing in (12.2) may be estimated by sampling almost uniformly from Ω(bi)

using the Markov chain MKnap(bi), and computing the fraction of the samples that lie

within Ω(bi−1).

Consider the random variable associated with a single trial — i.e., one run of the

Markov chain MKnap(bi) — that is defined to be 1 if the final state is a member of

Ω(bi−1), and 0 otherwise. If we were able to simulate MKnap(bi ) “to infinity,” the ex-

pectation of this random variable would be precisely ρi . In reality, we must terminate

the simulation at some point, thereby introducing a small though definite bias that ought

to be accounted for. To avoid obscuring the main ideas, let us ignore this technical com-

plication for the time being; details of this kind will be attended to when we address a

more realistic example in Section 12.4. With the simplifying assumption of zero bias,

the expectation of an individual trial is ρi , and its variance, since it is a 0,1-variable, is

ρi(1−ρi). Suppose we perform t = 17ε−2n2 trials, and let X i denote the sample mean.

In analyzing the efficiency of Monte Carlo estimators, the quantity to focus on is the ra-

tio of the variance of the estimator to the square of its expectation; in this instance we

have

Var X i

ρ2
i

=
1 −ρi

tρi

≤
n

t
=

ε2

17n
,

where the inequality follows from earlier-noted bound ρi = |Ω(bi−1)|/|Ω(bi)| ≥
(n +1)−1.

Suppose the above process is repeated for each of the n ratios in equation (12.2), and

denote by Z the random variable Z = Xn X n−1 . . . X 1 which is the product of the various

sample means. Then, since the random variables X i are independent, the expectation

2For a more detailed discussion of the problem of inferring information from observations of a

Markov chain, see [Ald87, Gill93, Kah94].



488 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

of Z is E Z = ρnρn−1 . . .ρ1 = |Ω(b)|−1, and

Var Z

(E Z)2
=

n∏

i=1

[
1 +

Var X i

ρ2
i

]
−1 ≤

[
1 +

ε2

17n

]n

−1 ≤
ε2

16
,

assuming ε ≤ 1. By Chebyshev’s inequality, this implies that

Pr
(
(1 − ε/2)|Ω(b)|−1 ≤ Z ≤ (1 + ε/2)|Ω(b)|−1

)
≥ 3

4
,

so the random variable Y = Z−1 satisfies (12.1), i.e., it yields a randomized approxima-

tion scheme for the number of Knapsack solutions. The idea of expressing the quantity to

be estimated as a product of small factors in the style of (12.2) and then estimating each

of the factors by separate Monte Carlo experiments, is one that has repeatedly proved

useful in this area, since it provides a general tool for reducing approximate counting to

sampling.

Observe that the total number of trials (Markov chain simulations) used is nt =
17ε−2n3, which is polynomial in n and ε−1. The method described above is therefore

an FPRAS for the number of Knapsack solutions, provided the Markov chain MKnap

is “rapidly mixing,” that is to say, is close to stationarity after a number of steps that

is polynomial in n. This is a non-trivial condition, since the size of the state space Ω is

exponential in n. Given the relative simplicity of the Markov chain MKnap, it is humbling

that the question of whether MKnap is rapidly mixing is even now unresolved. The wider

question of whether there exists an FPRAS of any kind for the Knapsack problem is

also unresolved, though the Markov chain simulation approach sketched above seems to

offer the best hope. Using it, Dyer et al. [DFKKPV93] were able to obtain a randomized

approximation scheme for the number of Knapsack solutions whose running time is

ε−2 exp
(
O(

√
n (logn)5/2)

)
, and this is asymptotically the fastest known.

OPEN PROBLEM 12.1 Is the Markov chain Mknap rapidly mixing (i.e., is its mixing

time bounded by a polynomial in the dimension n — see next section) for all choices of

the bound b and item sizes a?

TWO TECHNIQUES FOR BOUNDING
THE MIXING TIME

12.3

It will be clear from Section 12.2 that successful application of the Markov chain Monte

Carlo method rests on obtaining good bounds on the time taken for a Markov chain to

become close to stationarity.

There are a number of ways of quantifying “closeness” to stationarity, but they are

all essentially equivalent in this application. Let M be an ergodic Markov chain on state

space Ω with transition probabilities P : Ω2 → [0,1]. Let x ∈ Ω be an arbitrary state,

and denote by P t (x, ·) the distribution of the state at time t given that x is the initial state.

Denote by π the stationary distribution of M. Then the variation distance at time t with



12.3 TWO TECHNIQUES FOR BOUNDING THE MIXING TIME 489

respect to the initial state x is defined to be

∆x(t) = max
S⊆Ω

∣∣P t (x, S)−π(S)
∣∣= 1

2

∑

y∈Ω

∣∣P t (x, y)−π(y)
∣∣.

Note that the variation distance provides a uniform bound, over all events S ⊆ Ω , of

the difference in probabilities of occurrence of event S under the stationary and t-step

distributions. The rate of convergence of M to stationarity may then be measured by the

function

τx(ε) = min{t : ∆x(t
′) ≤ ε for all t ′ ≥ t},

which we shall refer to as the “mixing time” of the Markov chain.

The classical approach to bounding τx(ε) is via a “coupling” argument. This ap-

proach is very successful in the context of highly symmetric Markov chains (e.g., those

associated with card shuffling [Ald81, Dia88]), but seems difficult to apply to the kind

of “irregular” Markov chains that arise in the analysis of Monte Carlo algorithms. Two

exceptions are the analyses of Aldous [Ald90] and Broder [Bro89] for a Markov chain

on spanning trees of a graph, and of Matthews [Mat91] for a Markov chain related to

linear extensions of a partial order. A glance at the latter paper will give an impression

of the technical complexities that can arise.3

We should point out that the coupling method has very recently shown signs of stag-

ing a comeback. Jerrum [Jer95] has presented a simple application to sampling vertex

colorings of a low-degree graph. Propp and Wilson [PW95] have some novel and at-

tractive thoughts on applying coupling when the state space of the Markov chain has a

natural lattice structure; their ideas are encouraging, and provide one of the ingredients in

Luby, Randall, and Sinclair’s [LRS95] analysis of a Markov chain on dimer coverings of

certain planar (geometric) lattice graphs. Also, Bubley, Dyer, and Jerrum [BDJ96] have

applied coupling to demonstrate rapid mixing of a certain random walk in a convex body,

a situation we return to in Section 12.5.2. Finally, coupling has been used in a Markov

chain approach to protocol testing by Mihail and Papadimitriou [MP94]. Despite this

activity, it is not yet clear how far the coupling method can be pushed in the analysis of

complex Markov chains.

In this section we consider two recently proposed alternatives to coupling, which

tend to give weaker bounds but which are applicable in a wider range of situations.

Historically [Sin93, SJ89], these two methods were not separate, but were developed

together in a composite approach to bounding τx(ε); however, for practical purposes

it is better to view them now as distinct approaches. We describe the “canonical path”

argument first, and complete the section with a treatment of the “conductance” argument.

For further discussion of these approaches, and various refinements of them, see, e.g.,

[DS91, Sin92, DSC93, Kah95].

We shall assume throughout the rest of the section that M is reversible, that is to

say, satisfies the detailed balance condition:

Q(x, y) = π(x)P(x, y) = π(y)P(y,x), for all x, y ∈ Ω;

furthermore, we assume the loop probabilities P(x,x) are at least 1
2

for all x ∈ Ω . Since

3For a more direct approach to this problem, using a conductance argument as described below,

see [KK90].



490 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

the Markov chain M is a constructed one, it is not at all difficult to arrange that these

two conditions are met.

12.3.1 CANONICAL PATHS

To describe the canonical path argument, we view M as an undirected graph with ver-

tex set Ω and edge set E =
{
{x, y} ∈ Ω (2) : Q(x, y) > 0

}
; this makes sense because of

the reversibility condition. For each (ordered) pair (x, y) ∈ Ω2, we specify a canonical

path γxy from x to y in the graph (Ω, E); the canonical path γxy corresponds to a se-

quence of legal transitions in M that leads from initial state x to final state y. Denote by

Γ = {γxy : x, y ∈ Ω} the set of all canonical paths. For the method to yield good bounds,

it is important to choose a set of paths Γ that avoids the creation of “hot spots:” edges of

the graph that carry a particularly heavy burden of canonical paths. The degree to which

an even loading has been achieved is measured by the quantity

ρ̄ = ρ̄(Γ ) = max
e

1

Q(e)

∑

γx y∋e

π(x)π(y)|γxy|,

where the maximum is over oriented edges e of (Ω, E), and |γxy| denotes the length of

the path γxy .

Intuitively, we might expect a Markov chain to be rapidly mixing if it contains no

“bottlenecks,” i.e., if it admits a choice of paths Ŵ for which ρ̄(Ŵ) is not too large. This

intuition is formalized in the following result from Sinclair [Sin92], which is a slight

modification of a theorem of Diaconis and Stroock [DS91].

PROPOSITION 12.1 Let M be a finite, reversible, ergodic Markov chain with loop

probabilities P(x,x) ≥ 1
2

for all states x . Let Γ be a set of canonical paths with maximum

edge loading ρ̄ = ρ̄(Γ ). Then the mixing time of M satisfies τx(ε) ≤ ρ̄(lnπ(x)−1 +
lnε−1), for any choice of initial state x .4

Proof. Combine Proposition 1 of [Sin92] and Theorem 5 of [Sin92].

We demonstrate the canonical path method by applying it to a radically simplified

version of the Knapsack Markov chain from Section 12.2. Instead of a random walk on

the truncated boolean hypercube, we consider a random walk on the the full hypercube.

This can be viewed as the degenerate case of the Knapsack Markov chain which obtains

when
∑

i ai ≤ b, i.e., the knapsack is large enough to contain all items simultaneously.

Let x = (x0,x1, . . . ,xn−1) and y = (y0, y1, . . . , yn−1) be arbitrary states in Ω =
{0,1}n. The canonical path γxy from x to y is composed of n edges, 0 to n − 1, where

edge i is simply
(
(y0, . . . , yi−1,xi ,xi+1, . . . xn−1), (y0, . . . , yi−1, yi ,xi+1, . . .xn−1)

)
, i.e.,

we flip the value of the i th bit from xi to yi . Note that some of the edges may be loops

(if xi = yi ). To compute ρ̄, fix attention on a particular (oriented) edge

e = (w,w′) =
(
(w0, . . . ,wi , . . .wn−1),(w0, . . . ,w′

i , . . .wn−1)
)
,

and consider the number of canonical paths γxy that include e. The number of possible

4This Proposition also has a suitably stated converse; see Theorem 8 of [Sin92].



12.3 TWO TECHNIQUES FOR BOUNDING THE MIXING TIME 491

choices for x is 2i , as the final n − i positions are determined by x j = w j , for j ≥ i ,

and by a similar argument the number of possible choices for y is 2n−i−1. Thus, the to-

tal number of canonical paths using a particular edge e is 2n−1; furthermore, Q(e) =
π(w)P(w,w′) ≥ 2−n(2n)−1, and the length of every canonical path is exactly n. Plug-

ging all these bounds into the definition of ρ̄ yields ρ̄ ≤ n2. Thus, by Proposition 12.1,

the mixing time for the random walk on the boolean hypercube is τx(ε) ≤ n2
(
(ln2)n +

lnε−1
)
. We call this Markov chain “rapidly mixing” because its mixing time grows

only polynomially with the input size n (even though the size of the state space is ex-

ponential in n). The above bound is some way off the exact answer [Dia88], which is

τx(ε) = O
(
n(lnn + lnε−1)

)
, and the slackness we see here is typical of the method.

On reviewing the canonical path argument, we perceive what appears to be a major

weakness. In order to compute the key quantity ρ̄, we needed in turn to compute quanti-

ties such as Q(e) that depend crucially on the size of the state space Ω . In the hypercube

example this does not present a problem, but in more interesting examples we do not

know the size of the state space: indeed, our ultimate goal will often be to estimate this

very quantity. Fortunately, it is possible to finesse this obstacle by implicit counting us-

ing a carefully constructed injective map. The idea will be illustrated by application to

the hypercube example.

Let edge e = (w,w′) be as before, and denote by cp(e) = {(x, y) : γxy ∋ e} the set

of all (endpoints of) canonical paths that use edge e. Define the map ηe : cp(e) → Ω as

follows: if (x, y) =
(
(x0, . . . ,xn−1),(y0, . . . , yn−1)

)
∈ cp(e) then

ηe(x, y) = (u0, . . . ,un−1) = (x0, . . . ,xi−1,wi , yi+1, . . . , yn−1).

The crucial feature of the map ηe is that it is injective. To see this, observe that x and y

may be unambiguously recovered from (u0, . . . ,un−1) = ηe(x, y) through the explicit

expressions

x = (u0, . . . ,ui−1,wi ,wi+1, . . . ,wn−1)

and

y = (w0, . . . ,wi−1,w
′
i ,ui+1, . . . ,un−1).

Using the injective map ηe it is possible to evaluate ρ̄ without recourse to explicit

counting. Noting5 that π(x)π(y) = π(w)π(ηe(x, y)), we have

1

Q(e)

∑

γx y∋e

π(x)π(y)|γxy| =
1

π(w)P(w,w′)

∑

γx y∋e

π(w)π(ηe(x, y)) |γxy|

=
n

P(w,w′)

∑

γx y∋e

π(ηe(x, y)) ≤
n

P(w,w′)
≤ 2n2,

where the penultimate inequality follows from the facts that ηe is injective, and that π is

a probability distribution. Since the above argument is valid uniformly over the choice

of e, we deduce ρ̄ ≤ 2n2. The factor of 2 as compared with the direct argument was lost

to slight redundancy in the encoding: the map ηe was not quite a bijection.

5This is a trivial observation when the stationary distribution is uniform, as it is here, but it is

sometimes possible, by judicious choice of ηe, to contrive such an identity even when the stationary

distribution is non-uniform. See Section 12.4 for an example.



492 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

12.3.2 CONDUCTANCE

As advertised earlier, we now consider an alternative “conductance” approach to bound-

ing τx(ε), which has proved useful in situations where the Markov chain can be given a

geometric interpretation [DFK91]. The conductance [SJ89] of Markov chain M is de-

fined by

Φ = Φ(M) = min
S⊂Ω

0<π(S)≤1/2

Q(S, S )

π(S)
, (12.3)

where Q(S, S ) denotes the sum of Q(x, y) over edges {x, y} ∈ E with x ∈ S and y ∈ S =
Ω − S. The conductance may be viewed as a weighted version of edge expansion of the

graph (Ω, E) associated with M. Alternatively, the quotient appearing in (12.3) can be

interpreted as the conditional probability that the chain in equilibrium escapes from the

subset S of the state space in one step, given that it is initially in S; thus, Φ measures

the readiness of the chain to escape from any small enough region of the state space,

and hence to make rapid progress towards equilibrium. This intuitive connection can be

given a precise quantitative form as follows. (See [Ald87, Alon86, AM85, Che70, LS88]

for related results.)

PROPOSITION 12.2 Let M be a finite, reversible, ergodic Markov chain with loop

probabilities P(x,x) ≥ 1
2

for all states x . Let Φ be the conductance of M as defined

in (12.3). Then the mixing time of M satisfies τx(ε) ≤ 2Φ−2(lnπ(x)−1 + lnε−1), for

any choice of initial state x .

Proof. Combine Proposition 1 of [Sin92] and Theorem 2 of [Sin92].

From Proposition 12.2 it will be apparent that good lower bounds on conductance

translate to good upper bounds on the mixing time τx(ε). As we shall see presently, it is

possible to bound the conductance of the random walk on the hypercube by considering

the geometry of the hypercube and applying an “isoperimetric inequality.”

For x ∈ Ω = {0,1}n and S ⊆ Ω , define

C(x) =
{
ξ = (ξ0, . . . ,ξn−1) : |ξi − xi | ≤ 1

2
, for all i

}
,

and C(S) =
⋃

x∈S C(x). Observe that the mapping C provides a geometric interpretation

of each set S of states as a body in n-dimensional space, and that within this interpretation

the entire state space Ω is a hypercube K = C(Ω) of side 2. Each possible transition

from a state in S to a state in S contributes one unit of area (i.e., (n − 1)-dimensional

volume) to ∂ C(S) − ∂K , where ∂ denotes boundary, and each transition occurs with

probability 1
2n

; thus,

Q(S, S ) =
1

2n|Ω|
voln−1(∂ C(S)− ∂K ), (12.4)

where vold denotes d-dimensional volume.

Intuitively, if voln C(S) is large (but less than 1
2

voln K ), then ∂ C(S) − ∂K must

also be large. It is this kind of intuition that is captured and formalized in an isoperi-

metric inequality. Rather than working with the Euclidean norm and using a classical



12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 493

isoperimetric inequality, it is advantageous in this instance to work with the l∞-norm

‖ξ‖∞ = max{|ξ0|, . . . , |ξn−1|} and its dual the l1-norm ‖ξ‖∗
∞ = ‖ξ‖1 = |ξ0|+· · ·+|ξn−1|,

and invoke a very refined isoperimetric inequality due to Dyer and Frieze [DF91], which

holds for arbitrary norms.

Observe that voln C(S) = |S|, voln K = 2n , and diam K = 2, where diam denotes

diameter in the l∞-norm. From Theorem 3 of [DF91], taking F to be identically 1, we

have, for |S| ≤ 1
2
|Ω|,

voln C(S)

voln−1(∂ C(S)− ∂K )
≤ 1

2
diam K ;

it follows immediately that voln−1(∂ C(S)−∂K ) ≥ |S|. Combining this inequality with

equation (12.4) yields

Q(S, S ) ≥
|S|

2n|Ω|
=

π(S)

2n
.

From the definition of conductance, Φ ≥ 1
2n

, and hence, by Proposition 12.2, τx(ε) ≤
8n2

(
(ln2)n + lnε−1

)
. It will be seen that for this example the two bounds obtained using

the conductance and canonical paths arguments differ by just a small constant factor.

A MORE COMPLEX EXAMPLE: MONOMER-DIMER
SYSTEMS

12.4

In this section we describe a significant computational problem to which the Markov

chain Monte Carlo method has been successfully applied to yield an efficient approx-

imation algorithm, or FPRAS. (This is in contrast to the Knapsack problem discussed

in Section 12.2, which is still open.) Moreover, the Markov chain Monte Carlo method

is to date the only approach that yields a provably efficient algorithm for this problem.

This application will illustrate the full power of the analysis techniques described in the

previous section. Our presentation is an improved version of one we originally gave

in [JS89, Sin93].

The problem in question is a classical one from statistical physics, known as the

monomer-dimer problem. In a monomer-dimer system, the vertices of a finite undirected

graph G = (V, E) are covered by a non-overlapping arrangement, or configuration of

monomers (molecules occupying one site, or vertex of G) and dimers (molecules oc-

cupying two vertices that are neighbors in G). Typically, G is a regular lattice in some

fixed number of dimensions. Three-dimensional systems occur classically in the theory

of mixtures of molecules of different sizes [Gugg52] and in the cell-cluster theory of the

liquid state [CdBS55]; in two dimensions, the system is used to model the adsorption

of diatomic molecules on a crystal surface [Rob35]. For a more detailed account of the

history and significance of monomer-dimer systems, the reader is referred to the seminal

paper of Heilmann and Lieb [HL72] and the references given there.



494 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

It is convenient to identify monomer-dimer configurations with matchings in the

graph G; a matching in G is a subset M ⊆ E such that no two edges in M share an

endpoint. Thus, a matching of cardinality k, or a k-matching, corresponds precisely to a

monomer-dimer configuration with k dimers and 2(n −k) monomers, where 2n = |V | is

the number of vertices in G.6 To each matching M , a weight w(M) = λ|M| is assigned,

where λ is a positive real parameter that reflects the contribution of a dimer to the energy

of the system. The partition function of the system is defined as

Z(λ) ≡ ZG(λ) =
∑

M

w(M) =
n∑

k=0

mkλ
k, (12.5)

where mk ≡ mk(G) is the number of k-matchings in G (or equivalently, the number of

monomer-dimer configurations with k dimers). For a physical interpretation of (12.5),

see [HL72].7

The partition function is a central quantity in statistical physics, and captures essen-

tially everything one needs to know about the thermodynamics of the system, including

quantities such as the free energy and the specific heat, and the location of phase transi-

tions. With this in mind, in the remainder of this section we will develop an algorithm

for computing ZG at an arbitrary point λ ≥ 0. We should also point out that ZG(λ) is of

independent combinatorial interest, being nothing other than the generating function for

matchings, or matching polynomial of G [LP86]. Thus, for example, ZG(1) enumerates

all matchings in G, and the coefficient mk enumerates matchings of cardinality k. We

shall have more to say about these connections in Section 12.5.1.

Our starting point is the observation that no feasible method is known for comput-

ing Z exactly for general monomer-dimer systems; indeed, for any fixed value of λ > 0,

the problem of computing ZG(λ) exactly for a given graph G is complete for the class #P

of enumeration problems, which, as we explained in Section 12.2, may be regarded as

convincing evidence that no polynomial time exact algorithm can exist for this prob-

lem [Val79b].8 It is therefore pertinent to ask whether there exists an FPRAS for this

problem. In this context, by an FPRAS we mean an algorithm which, given a pair (G,λ),

and a parameter ε > 0, outputs a number Y such that

Pr
(
(1 − ε)ZG(λ) ≤ Y ≤ (1 + ε)ZG(λ)

)
≥ 3

4
,

and runs in time polynomial in n and λ′ = max{1,λ}.9

6The assumption that the number of vertices in G is even is inessential and is made for notational

convenience.
7More generally, there may be a weight λe associated with each edge e ∈ E , and the weight of M is

then w(M) =
∏

e∈M λe. The algorithm we present here extends in a straightforward fashion to this more

general setting.
8An efficient algorithm does exist for computing the leading coefficient mn exactly, provided the

graph G is planar. This quantity has an interpretation as the partition function of a system of hard dimers,

in which no monomers are permitted. This algorithm, due independently to Fisher, Kasteleyn, and

Temperley [Fish61, Kast61, TF61] in 1961, is a landmark achievement in the design of combinatorial

algorithms. Unfortunately, it does not seem to extend either to non-planar graphs or to other coefficients.
9By analogy with the definition given in Section 12.2, this assumes that the edge weight λ is pre-

sented in unary. Thus, if the running time of the algorithm is to be polynomial in the size of the system, n,

then the edge weight λ must be polynomially bounded in n. This is not a severe restriction in practice

when computing the partition function.



12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 495

For a given graph G, we will construct an FPRAS for ZG by Monte Carlo simulation

of a suitable Markov chain Mmatch(λ), parameterized on the edge weight λ. The state

space, Ω , is the set of all matchings in G, and the transitions are constructed so that the

chain is ergodic with stationary distribution πλ given by

πλ(M) =
λ|M|

Z(λ)
. (12.6)

(Since G is fixed from now on, we drop the subscript from Z .) In other words, the station-

ary probability of each matching (monomer-dimer configuration) is proportional to its

weight in the partition function (12.5). The Markov chain Mmatch(λ), if simulated for suf-

ficiently many steps, provides a method of sampling matchings from the distribution πλ.

Distributions of this form are natural in statistical physics and are usually referred to

as canonical or Gibbs distributions. Note that an alternative interpretation of the partition

function is as the normalizing factor in this distribution. Sampling from this distribution

at various values of λ has many applications, such as estimating the expectation of certain

natural quantities associated with a configuration (e.g., the mean number of monomers,

or the mean distance between a pair of monomers in a dense configuration of dimers).

As we shall see shortly, it also allows one to approximate the partition function itself.

It is not hard to construct a Markov chain Mmatch(λ) with the right asymptotic

properties. Consider the chain in which transitions from any matching M are made

according to the following rule:

I. with probability 1
2

let M ′ = M; otherwise,

II. select an edge e = {u,v} ∈ E u.a.r. and set

M ′ =





M − e if e ∈ M;

M + e if both u and v are unmatched in M;

M + e − e′ if exactly one of u and v is matched in M

and e′ is the matching edge;

M otherwise;

III. go to M ′ with probability min{1,πλ(M ′)/πλ(M)}.

It is helpful to view this chain as follows. There is an underlying graph defined on the

set of matchings Ω in which the neighbors of matching M are all matchings M ′ that

differ from M via one of the following local perturbations: an edge is removed from M

(a type 1 transition); an edge is added to M (a type 2 transition); or a new edge is

exchanged with an edge in M (a type 0 transition). Transitions from M are made by first

selecting a neighbor M ′ u.a.r., and then actually making, or accepting the transition with

probability min{1,πλ(M ′)/πλ(M)}. Note that the ratio appearing in this expression is

easy to compute: it is just λ−1, λ or 1 respectively, according to the type of the transition.

As the reader may easily verify, this acceptance probability is constructed so that

the transition probabilities P(M, M ′) satisfy the detailed balance condition

Q(M, M ′) = πλ(M)P(M, M ′) = πλ(M ′)P(M ′, M), for all M, M ′ ∈ Ω,

i.e., Mmatch(λ) is reversible with respect to the distribution πλ. This fact, together with

the observation that Mmatch(λ) is irreducible (i.e., all states communicate, for example

via the empty matching) and aperiodic (by step 1, the self-loop probabilities P(M, M)



496 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

are all non-zero), ensures that Mmatch(λ) is ergodic with stationary distribution πλ, as

required.10

Having constructed a family of Markov chains with stationary distribution πλ, our

next task is to explain how samples from this distribution can be used to obtain a reliable

statistical estimate of Z(λ) at a specified point λ = λ̂ ≥ 0. Our strategy is to express Z (̂λ)

as the product

Z (̂λ) =
Z(λr )

Z(λr−1)
×

Z(λr−1)

Z(λr−2)
×·· ·

Z(λ2)

Z(λ1)
×

Z(λ1)

Z(λ0)
× Z(λ0), (12.7)

where 0 = λ0 < λ1 < λ2 < · · · < λr−1 < λr = λ̂ is a suitably chosen sequence of

values. Note that Z(λ0) = Z(0) = 1. We will then estimate each factor Z(λi )/Z(λi−1)

in this product by sampling from the distribution πλi
. This approach is analogous to that

described in Section 12.2 for the Knapsack problem (see Equation (12.2)). For reasons

that will become clear shortly, we will use the sequence of values λ1 = |E|−1 and λi =
(1+ 1

n
)i−1λ1 for 1 ≤ i < r . The length r of the sequence is taken to be minimal such that

(1 + 1
n
)r−1λ1 ≥ λ̂, so we have the bound

r ≤
⌈

2n
(
ln λ̂+ ln |E|

)⌉
+1. (12.8)

To estimate the ratio Z(λi )/Z(λi−1), we will express it, or rather its reciprocal, as

the expectation of a suitable random variable. Specifically, define the random variable

fi (M) =
(

λi−1

λi

)|M|
, where M is a matching chosen from the distribution πλi

. Then we

have

E fi =
∑

M

(
λi−1

λi

)|M|
λ

|M|
i

Z(λi )
=

1

Z(λi)

∑

M

λ
|M|
i−1 =

Z(λi−1)

Z(λi )
.

Thus, the ratio ρi = Z(λi−1)/Z(λi ) can be estimated by sampling matchings from the

distribution πλi
and computing the sample mean of fi . Following (12.7), our estimator

of Z (̂λ) will be the product of the reciprocals of these estimated ratios. Summarizing this

discussion, our algorithm can be written down as follows:

ALGORITHM A

Step 1: Compute the sequence λ1 = |E|−1 and λi =
(
1 + 1

n

)i−1
λ1 for 1 ≤ i < r ,

where r is the least integer such that
(
1 + 1

n

)r−1
λ1 ≥ λ̂. Set λ0 = 0 and

λr = λ̂.

Step 2: For each value λ = λ1,λ2, . . . ,λr in turn, compute an estimate X i of the

ratio ρi as follows:

(a) by performing S independent simulations of the Markov chain

Mmatch(λi ), each of length Ti , obtain an independent sample of size S

from (close to) the distribution πλi
;

10The device of performing random walk on a connected graph with acceptance probabilities of

this form is well known in Monte Carlo physics under the name of the “Metropolis process” [Met53].

Clearly, it can be used to achieve any desired stationary distribution π for which the ratio π(u)/π(v)

for neighbors u,v can be computed easily. It is also the standard mechanism used in combinatorial

optimization by simulated annealing: see Section 12.6.



12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 497

(b) let X i be the sample mean of the quantity
(

λi−1

λi

)|M|
.

Step 3: Output the product Y =
∏r

i=1 X−1
i .

To complete the description of the algorithm, we need to specify the sample size S in

Step 2, and the number of simulation steps Ti required for each sample. Our goal is to

show that, with suitable values for these quantities, Algorithm A is an FPRAS for Z(λ).

The issue of the sample size S is straightforward. Using elementary statistical cal-

culations, we can show the following:

PROPOSITION 12.3 In Algorithm A, suppose the sample size S in Step 2 is S =
⌈130eε−2r⌉, and that the simulation length Ti is large enough that the variation distance

of Mmatch(λi ) from its stationary distribution πλi
is at most ε/5er . Then the output

random variable Y satisfies

Pr
(
(1 − ε)Z (̂λ) ≤ Y ≤ (1 + ε)Z (̂λ)

)
≥ 3

4
.

Since r is a relatively small quantity (essentially linear in n: see (12.8)), this result

means that a modest sample size at each stage suffices to ensure a good final estimate Y ,

provided of course that the samples come from a distribution that is close enough to πλi
.

It is in determining the number of simulation steps, Ti , required to achieve this that

the meat of the analysis lies: of course, this is tantamount to investigating the mixing

time of the Markov chain Mmatch(λi ). Our main task in this section will be to show:

PROPOSITION 12.4 The mixing time of the Markov chain Mmatch(λ) satisfies

τX (ε) ≤ 4|E|nλ′(n(lnn + lnλ′)+ lnε−1
)
.

The proof of this result will make use of the full power of the machinery introduced in

Section 12.3. Note that Proposition 12.4 is a very strong statement: it says that we can

sample from (close to) the complex distribution πλ over the exponentially large space of

matchings in G, by performing a Markov chain simulation of length only a low-degree

polynomial in the size of G.11

According to Proposition 12.3, we require a variation distance of ε/5er , so Propo-

sition 12.4 tells us that it suffices to take

Ti =
⌈

4|E|nλ′
i

(
n(lnn + lnλ′

i )+ ln(5er/ε)
)⌉

. (12.9)

This concludes our specification of the Algorithm A.

Before proceeding to prove the above statements, let us convince ourselves that

together they imply that AlgorithmA is an FPRAS for Z(λ). First of all, Proposition 12.3

ensures that the output of Algorithm A satisfies the requirements of an FPRAS for Z . It

remains only to verify that the running time is bounded by a polynomial in n, λ̂′, and ε−1.

Evidently, the running time is dominated by the number of Markov chain simulations

11Incidentally, we should point out that Proposition 12.4 immediately tells us that we can sample

monomer-dimer configurations from the canonical distribution πλ, in time polynomial in n and λ′. This

is in itself an interesting result, and allows estimation of the expectation of many quantities associated

with monomer-dimer configurations.



498 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

steps, which is
∑r

i=1 STi ; since Ti increases with i , this is at most r STr . Substituting the

upper bound for r from (12.8), and values for S from Proposition 12.3 and Tr from (12.9),

we see that the overall running time of Algorithm A is bounded by12

O
(
n4|E |̂λ′(ln n̂λ′)3ε−2

)
,

which grows only polynomially with n, λ̂′ and ε−1. We have therefore proved

THEOREM 12.1 Algorithm A is an FPRAS for the partition function of an arbitrary

monomer-dimer system.

We return now to prove Proposition 12.3 and Proposition 12.4. The first of these can

be dispensed with quickly. It rests on the standard observation that the sample size S re-

quired at each value λ = λi to ensure that our final estimate is good with high probability

depends on the variances of the random variables fi , or more precisely on the quanti-

ties (Var fi )/(E fi )
2. Intuitively, if these quantities are not too large, a small sample will

suffice. Since fi takes values in the range [0,1], it is clear that Var fi ≤ E fi = ρi , so that

(Var fi )/(E fi )
2 ≤ ρ−1

i . Now, from the definition of Z and λi we have for 1 ≤ i ≤ r ,

ρ−1
i =

Z(λi )

Z(λi−1)
=

∑
k mkλ

k
i∑

k mkλ
k
i−1

≤
(

λi

λi−1

)n

≤
(

1 +
1

n

)n

≤ e.

(12.10)

Also, it is easy to see (using the fact that matchings are subsets of E) that Z
(
|E|−1

)
≤ e,

so (12.10) holds for i = 0 also. Thus, we have (Var fi )/(E fi )
2 ≤ e for all i . This explains

our choice of values for the λi .

Armed with this bound on the variances of the fi , one can prove Proposition 12.3

by a routine statistical calculation. The details are unedifying and are deferred to the

Appendix.

We turn now to the more challenging question of proving Proposition 12.4. Our

strategy will be to carefully choose a collection of canonical paths Ŵ = {γXY : X,Y ∈ Ω}
in the Markov chain Mmatch(λ) for which the “bottleneck” measure ρ̄(Ŵ) of Section 12.3

is small. We can then appeal to Proposition 12.1 to bound the mixing time. Specifically,

we shall show that our paths satisfy

ρ̄(Ŵ) ≤ 4|E|nλ′. (12.11)

Since the number of matchings in G is certainly bounded above by (2n)!, the station-

ary probability πλ(X) of any matching X is bounded below by πλ(X) ≥ 1/(2n)!λ′n .

Using (12.11) and the fact that lnn! ≤ n lnn, the bound on the mixing time in Propo-

sition 12.4 can now be read off Proposition 12.1.

It remains for us to find a set of canonical paths Ŵ satisfying (12.11). For a pair

of matchings X,Y in G, we define the canonical path γXY as follows. Consider the

symmetric difference X ⊕Y . A moment’s reflection should convince the reader that this

consists of a disjoint collection of paths in G (some of which may be closed cycles),

12In deriving the O-expression, we have assumed w.l.o.g. that Tr = O
(
|E |n2̂λ′ ln n̂λ′). This follows

from (12.9) with the additional assumption that lnε−1 = O(n lnn). This latter assumption is justified

since the problem can always be solved exactly by exhaustive enumeration in time O(n(2n)!), which is

O(ε−2) if lnε−1 exceeds the above bound.



12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 499

each of which has edges that belong alternately to X and to Y . Now suppose that we

have fixed some arbitrary ordering on all simple paths in G, and designated in each of

them a so-called “start vertex,” which is arbitrary if the path is a closed cycle but must

be an endpoint otherwise. This ordering induces a unique ordering P1, P2, . . . , Pm on the

paths appearing in X ⊕Y . The canonical path from X to Y involves “unwinding” each

of the Pi in turn as follows. There are two cases to consider:

(i) Pi is not a cycle. Let Pi consist of the sequence (v0,v1, . . . ,vl) of vertices, with v0

the start vertex. If (v0,v1) ∈ Y , perform a sequence of type 0 transitions replacing

(v2 j+1,v2 j+2) by (v2 j ,v2 j+1) for j = 0,1, . . . , and finish with a single type 2

transition if l is odd. If on the other hand (v0,v1) ∈ X , begin with a type 1 transition

removing (v0,v1) and proceed as before for the reduced path (v1, . . . ,vl ).

(ii) Pi is a cycle. Let Pi consist of the sequence (v0,v1, . . . ,v2l+1) of vertices, where

l ≥ 1, v0 is the start vertex, and (v2 j ,v2 j+1) ∈ X for 0 ≤ j ≤ l, the remaining edges

belonging to Y . Then the unwinding begins with a type 1 transition to remove

(v0,v1). We are left with an open path O with endpoints v0,v1, one of which must

be the start vertex of O. Suppose vk , k ∈ {0,1}, is not the start vertex. Then we

unwind O as in (i) above but treating vk as the start vertex. This trick serves to

distinguish paths from cycles, as will prove convenient shortly.

This concludes our definition of the family of canonical paths Ŵ. Figure 12.1 will help the

reader picture a typical transition t on a canonical path from X to Y . The path Pi (which

happens to be a cycle) is the one currently being unwound; the paths P1, . . . , Pi−1 to the

left have already been processed, while the ones Pi+1, . . . , Pm are yet to be dealt with.

We now proceed to bound the “bottleneck” measure ρ̄(Ŵ) for these paths, using the

injective mapping technology introduced in Section 12.3. Let t be an arbitrary edge in

the Markov chain, i.e., a transition from M to M ′ 6= M , and let cp(t) = {(X,Y ) : γXY ∋ t}
denote the set of all canonical paths that use t . (We use the notation t in place of e here to

avoid confusion with edges of G.) Just as in Section 12.3, we shall obtain a bound on the

total weight of all paths that pass through t by defining an injective mapping ηt : cp(t) →
Ω . By analogy with the hypercube example in Section 12.3, what we would like to do is

to set ηt (X,Y ) = X ⊕Y ⊕ (M ∪ M ′); the intuition for this is that ηt(X,Y ) should agree

with X on paths that have already been unwound, and with Y on paths that have not yet

been unwound (just as ηe(x, y) agreed with x on positions 1, . . . , i − 1 and with y on

positions i +1, . . . ,n −1). However, there is a minor complication concerning the path

that we are currently processing: in order to ensure that ηt (X,Y ) is indeed a matching,

we may — as we shall see — have to remove from it the edge of X adjacent to the start

vertex of the path currently being unwound: we shall call this edge eXY t . This leads us

to the following definition of the mapping ηt :

ηt (X,Y ) =

{
X ⊕Y ⊕ (M ∪ M ′)− eXY t , if t is type 0 and the

current path is a cycle;

X ⊕Y ⊕ (M ∪ M ′), otherwise.

Figure 12.2 illustrates the encoding ηt (X,Y ) that would result from the transition t on

the canonical path sketched in Figure 12.1.

Let us check that ηt (X,Y ) is always a matching. To see this, consider the set of edges

A = X ⊕Y ⊕(M ∪ M ′), and suppose that some vertex, u say, has degree two in A. (Since

A ⊆ X ∪Y , no vertex degree can exceed two.) Then A contains edges {u,v1},{u,v2} for



500 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

P1 PiX : Pi−1 · · ·Pi+1

t

Start vertex of (closed) path Pi

M: · · · · · ·

M ′:

Y :

· · ·

· · · · · ·

· · ·

...

...

Pm· · ·

FIGURE 12.1

A transition t in the canonical path from X to Y .

P1 Pi· · · Pi−1 Pi+1 Pm· · ·

FIGURE 12.2

The corresponding encoding ηt(X,Y ).

distinct vertices v1,v2, and since A ⊆ X ∪ Y , one of these edges must belong to X and

the other to Y . Hence, both edges belong to X ⊕Y , which means that neither can belong

to M ∪ M ′. Following the form of M ∪ M ′ along the canonical path, however, it is clear

that there can be at most one such vertex u; moreover, this happens precisely when the

current path is a cycle, u is its start vertex, and t is type 0. Our definition of ηt removes

one of the edges adjacent to u in this case, so all vertices in ηt (X,Y ) have degree at most

one, i.e., ηt(X,Y ) is indeed a matching.

We now have to check that ηt is injective. It is immediate from the definition of ηt



12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 501

that the symmetric difference X ⊕Y can be recovered from ηt (X,Y ) using the relation

X ⊕Y =





ηt (X,Y )⊕ (M ∪ M ′)+ eXY t, if t is type 0 and the

current path is a cycle;

ηt (X,Y )⊕ (M ∪ M ′), otherwise.

Note that, once we have formed the set ηt (X,Y )⊕(M ∪ M ′), it will be apparent whether

the current path is a cycle from the sense of unwinding. (Note that eXY t is the unique

edge that forms a cycle when added to the path.) Given X ⊕ Y , we can at once infer

the sequence of paths P1, P2, . . . , Pm that have to be unwound along the canonical path

from X to Y , and the transition t tells us which of these, Pi say, is the path currently

being unwound. The partition of X ⊕ Y into X and Y is now straightforward: X has

the same parity as ηt(X,Y ) on paths P1, . . . , Pi−1, and the same parity as M on paths

Pi+1, . . . , Pm . Finally, the reconstruction of X and Y is completed by noting that X ∩Y =
M − (X ⊕Y ), which is immediate from the definition of the paths. Hence, X and Y can

be uniquely recovered from ηt (X,Y ), so ηt is injective.

We are almost done. However, the fact that ηt is injective is not sufficient in this case

because, in contrast to the hypercube example, the stationary distribution πλ is highly

non-uniform. What we require in addition is that ηt be “weight-preserving,” in the sense

that Q(t)πλ(ηt (X,Y )) ≈ πλ(X)πλ(Y ). More precisely, we will show in a moment that

πλ(X)πλ(Y ) ≤ 2|E|λ′2 Q(t)πλ(ηt (X,Y )). (12.12)

First, let us see why we need a bound of this form in order to estimate ρ̄. We have

1

Q(t)

∑

γXY ∋t

πλ(X)πλ(Y )|γXY | ≤ 2|E|λ′2
∑

γXY ∋t

πλ(ηt (X,Y )) |γXY |

≤ 4|E|nλ′2
∑

γXY ∋t

πλ(ηt (X,Y ))

≤ 4|E|nλ′2 , (12.13)

where the second inequality follows from the fact that the length of any canonical path

is bounded by 2n, and the last inequality from the facts that ηt is injective and πλ is a

probability distribution.

It remains for us to prove inequality (12.12). Before we do so, it is helpful to notice

that Q(t) = (2|E|)−1 min{πλ(M),πλ(M ′)}, as may easily be verified from the definition

of Mmatch(λ). We now distinguish four cases:

(i) t is a type 1 transition. Suppose M ′ = M − e. Then ηt (X,Y ) = X ⊕ Y ⊕ M , so,

viewed as multisets, M ∪ηt (X,Y ) and X ∪Y are identical. Hence, we have

πλ(X)πλ(Y ) = πλ(M)πλ(ηt (X,Y ))

=
2|E|Q(t)

min{πλ(M),πλ(M ′)}
×πλ(M)πλ(ηt (X,Y ))

= 2|E|Q(t)max{1,πλ(M)/πλ(M ′)}πλ(M)πλ(ηt(X,Y ))

≤ 2|E|λ′Q(t)πλ(ηt(X,Y )),

from which (12.12) follows.



502 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

(ii) t is a type 2 transition. This is handled by a symmetrical argument to (i) above,

with the roles of M and M ′ interchanged.

(iii) t is a type 0 transition and the current path is a cycle. Suppose M ′ = M +e−e′,
and consider the multiset M ∪ηt (X,Y ). Then ηt (X,Y ) = X ⊕Y ⊕(M +e)−eXY t ,

so the multiset M ∪ηt (X,Y ) differs from X ∪Y only in that e and eXY t are missing

from it. Thus, we have

πλ(X)πλ(Y ) ≤ λ′2πλ(M)πλ(ηt(X,Y ))

= 2|E|λ′2 Q(t)πλ(ηt (X,Y )),

since in this case πλ(M) = πλ(M ′), and so Q(t) = (2|E|)−1πλ(M). Therefore,

(12.12) is again satisfied.

(iv) t is a type 0 transition and the current path is not a cycle. This is identical with (iii)

above, except that the edge eXY t does not appear in the analysis. Accordingly, the

bound is

πλ(X)πλ(Y ) ≤ 2|E|λ′Q(t)πλ(ηt (X,Y )).

This concludes our proof of (12.12). We may now deduce from (12.13), that ρ̄(Ŵ) ≤
4|E|nλ′2. However, one additional observation will allow us to improve the bound to

ρ̄(Ŵ) ≤ 4|E|nλ′, which is what we claimed in (12.11). Looking at the above case analysis

we see that, in all cases except case (iii), (12.12), and hence (12.13), actually hold with

λ′2 replaced by λ′. But in case (iii) we can argue that ηt (X,Y ) must have such a restricted

form that
∑

γXY ∋t πλ(ηt (X,Y )) is bounded above by λ′−1
. Using this fact in the final

inequality in (12.13), we get the improved upper bound of 4|E|nλ′ in this case, and hence

in all cases. This will complete our verification of the bound (12.11) on ρ̄(Ŵ).

To justify the above claim, note that ηt (X,Y ) has at least two unmatched vertices,

namely the start vertex of the current cycle and the vertex that is common to both e

and e′. Moreover, in ηt (X,Y )⊕ M these vertices are linked by an alternating path that

starts and ends with an edge of M . So we may associate with each matching ηt(X,Y )

another matching, say η′
t (X,Y ), obtained by augmenting ηt (X,Y ) along this path. But

this operation is uniquely reversible, so all matchings η′
t (X,Y ) created in this way are

distinct. Moreover, πλ(ηt (X,Y )) = λπλ(ηt (X,Y )). Hence we have
∑

πλ(ηt(X,Y )) =
λ−1

∑
πλ(η

′
t (X,Y )) ≤ λ−1, so

∑
πλ(ηt (X,Y )) ≤ λ′−1

as claimed.

MORE APPLICATIONS

12.5

In this section we review some further applications of the techniques described in Sec-

tion 12.3 to problems in combinatorial enumeration and integration. In each case, as with

the monomer-dimer problem of Section 12.4, the Markov chain Monte Carlo method

provides the only known basis for an efficient algorithm in the FPRAS sense.



12.5 MORE APPLICATIONS 503

12.5.1 THE PERMANENT

Historically, the first major application of the methods of Section 12.3 was to the approxi-

mation of the permanent function. The permanent of an n × n integer matrix

A = (ai j : 0 ≤ i, j ≤ n −1) is defined by

per A =
∑

π

n−1∏

i=0

ai,π(i) ,

where the sum is over all permutations π of [n] = {0, . . . ,n − 1}. For convenience, we

take A to be a 0,1-matrix, in which case the permanent of A has a simple combinatorial

interpretation: namely, per A is equal to the number of perfect matchings (1-factors) in

the bipartite graph G = (V1,V2, E), where V1 = V2 = [n], and (i, j) ∈ E iff ai j = 1.

Valiant [Val79a] demonstrated that evaluating the permanent of a 0,1-matrix is com-

plete for the class #P; thus, just as in the case of the monomer-dimer partition function,

we cannot expect to find an algorithm that solves the problem exactly in polynomial

time.13 Interest has therefore centered on finding computationally feasible approxima-

tion algorithms.

It turns out that the Markov chain Monte Carlo method can be used to construct

such an algorithm (in the FPRAS sense) for almost all instances of this problem. To state

the result precisely, we will use the perfect matching formulation. Let G = (V1,V2, E)

be a bipartite graph with |V1| = |V2| = n. A special role will be played in the result by

the number of near-perfect matchings in G, i.e., matchings with exactly two unmatched

vertices. Following the notation of the previous section, let us write mk = mk(G) for

the number of k-matchings in G. Then the number of perfect matchings is mn , and

the number of near-perfect matchings is mn−1. Jerrum and Sinclair [JS89] showed that

there exists a randomized approximation scheme for the number of perfect matchings mn

whose running time is polynomial in n, ε−1 and the ratio mn−1/mn.

Note that this algorithm is not in general an FPRAS, since there exist (n +n)-vertex

graphs G for which the ratio mn−1/mn is exponential in n. However, it turns out that

these examples are wildly atypical in the sense that the probability that a randomly

selected G on n + n vertices violates the inequality mn−1/mn ≤ 4n tends to 0 as n →
∞.14 Thus, the above algorithm constitutes an FPRAS for almost all graphs; moreover,

the condition that the ratio mn−1/mn be bounded by a specified polynomial in n can be

tested for an arbitrary graph in polynomial time [JS89]. It is also known [Bro86] that

every sufficiently dense graph (specifically, those in which every vertex has degree at

least 1
2
n) satisfies mn−1/mn = O(n2). Moreover, it has recently been shown by Kenyon,

Randall, and Sinclair [KRS96] that the ratio mn−1/mn is guaranteed to be small for a

wide class of homogeneous graphs G, including the important case of geometric lattice

graphs in any number of dimensions. We should also point out that, although the above

description has been couched in terms of matchings in bipartite graphs because of the

connection with the permanent, everything extends to general 2n-vertex graphs.

13In contrast, as is well known, the determinant of an n × n matrix can be evaluated in O(n3)

arithmetic operations using Gaussian elimination.
14For more refined results along these lines, see Frieze [Friez89] or Motwani [Mot89].



504 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

It was Broder [Bro86, Mih89a] who first proposed a Markov chain Monte Carlo

approach to approximating the permanent via Markov chain simulation. His idea was to

sample perfect matchings in a bipartite graph G almost u.a.r. by simulating a Markov

chain whose states are perfect and near-perfect matchings in G; then, using a reduction

similar in spirit to the one described in Section 12.2 for the Knapsack problem, the

number of perfect matchings could be counted. Broder’s Markov chain was first proved

to be rapidly mixing (under the above condition on G) by Jerrum and Sinclair [JS89],

using a canonical paths argument as in Section 12.3.

An alternative, more natural approximation algorithm for the permanent follows

quite painlessly from our results about the monomer-dimer problem derived in the pre-

vious section. Note that mn is precisely the leading coefficient of the partition func-

tion ZG(λ) of the monomer-dimer system associated with G (see (12.5)). In the previous

section, we saw how to sample matchings in G from the distribution

πλ(M) =
λ|M|

ZG(λ)
=

λ|M|
∑n

k=0 mkλk
(12.14)

for any desired λ > 0, in time polynomial in n and λ′ = max{λ,1}, by Monte Carlo

simulation of the Markov chain Mmatch(λ). We also saw how this fact can be used to

compute ZG(λ) to good accuracy in time polynomial in n and λ′. Suppose then that

we have computed a good estimate ẐG(λ) of ZG(λ). Then we can get a good estimator

for mn by sampling matchings from the distribution πλ and computing the proportion,

X , of the sample that are perfect matchings; since E X = mnλ
n/ZG(λ), our estimator is

Y = Xλ−n ẐG(λ).

The sample size required to ensure a good estimate depends on the variance of a

single sample, or more precisely on the quantity (E X)−1. Clearly, by making λ large

enough, we can make this quantity, and hence the sample size, small: this corresponds

to placing very large weight on the perfect matchings, so that their proportion can be

estimated well by random sampling. How large does λ have to be? This analysis is eased

by the beautiful fact that the sequence m0,m1, . . . ,mn is log-concave, i.e., mk−1mk+1 ≤
m2

k for k = 1,2, . . . ,n−1. (This is well known [HL72]; a direct combinatorial proof may

be found in [JS89].) As a consequence, it follows that mk−1/mk ≤ mn−1/mn for all k, and

hence that mk/mn ≤ (mn−1/mn)
n−k . This means that, if we take λ ≥ mn−1/mn, we get

E X =
mnλ

n

ZG(λ)
=

mnλ
n

∑n
k=0 mkλk

≥
1

n +1
, (12.15)

which implies that the sample size required grows only linearly with n. Thus, it is enough

to take λ about as large as the ratio mn−1/mn. Since the time required to generate a sin-

gle sample grows linearly with λ (see Proposition 12.4), the running time of the overall

algorithm is polynomial in n, ε−1 and the ratio mn−1/mn , as claimed.

OPEN PROBLEM 12.2 Is there an FPRAS for the permanent of a general 0,1 ma-

trix? Note that this problem is not phrased as a question about the mixing time of a

specific Markov chain, and certainly the chain Mmatch(λ) described here is not directly

applicable: as we have seen, it seems to be useful only when the ratio mn−1/mn for the

associated bipartite graph is polynomially bounded. However, the Markov chain Monte

Carlo method seems to offer the best hope for a positive resolution of this question. Es-

sentially, the issue is whether the Markov chain Mmatch(λ) can be suitably adapted to



12.5 MORE APPLICATIONS 505

provide a general solution, or perhaps used as a “black box” following some ingenious

preprocessing of the input matrix. (This latter idea has been used in a weaker way by Jer-

rum and Vazirani [JV92] to obtain a randomized approximation scheme for the general

0,1 permanent whose running time, while still not polynomial, is asymptotically signif-

icantly faster than that of more naı̈ve methods.)

We conclude our discussion of the permanent by mentioning some extensions. First

of all, it is not hard to see, again using the log-concavity property, that the above tech-

nique can be extended to approximate the entire sequence (mk), or equivalently all the

coefficients of the monomer-dimer partition function [JS89]. The running time per co-

efficient is no worse than for mn . Secondly, many other approximate enumeration (and

sampling) problems can be reduced to enumeration of perfect matchings; examples in-

clude counting Hamiltonian cycles in dense or random graphs (Dyer, Frieze, and Jer-

rum [DFJ94], Frieze and Suen [FS92]), counting graphs with given degree sequence

(Jerrum and Sinclair [JS90a], Jerrum, McKay, and Sinclair [JMS92]), and counting Eu-

lerian orientations of an undirected graph (Mihail and Winkler [MW91]).

12.5.2 VOLUME OF CONVEX BODIES

A problem that has attracted much attention in the context of the Markov chain Monte

Carlo method is that of estimating the volume of a convex body in high-dimensional

space. Computing the volume of a polytope in n = 3 dimensions is not a computationally

demanding task, but the effort required rises dramatically as the number n of dimensions

increases. This empirical observation is supported by a result of Dyer and Frieze [DF88]

to the effect that evaluating the volume of a polytope exactly is #P-hard.

In contrast, by applying the Markov chain Monte Carlo method, Dyer, Frieze, and

Kannan [DFK91] were able to construct an FPRAS for the volume of a convex body in

Euclidean space of arbitrary dimension. The convex body K in question is presented

to the algorithm using a very general mechanism called a membership oracle: given

a point x , the membership oracle simply reveals whether or not x ∈ K . Other ways

of specifying the body K — for example as a list of vertices or (n − 1)-dimensional

facets — can be recast in the oracle formulation. The algorithm must also be provided

with a guarantee in the form of two balls, one contained in K and of non-zero radius,

and the other containing K . This seemingly technical condition is essential, for without

such a guarantee the task is hopeless.

There are several difficult technical points in the construction and analysis of the

volume approximation algorithm of Dyer et al., but, at a high enough level of abstraction,

the method is quite simple to describe. The idea is to divide space into n-dimensional

(hyper)cubes of side δ, and to perform a random walk on the cubes that lie within the

body K . Suppose the random walk is at cube C at time t . A cube C ′ that is orthogonally

adjacent to C is selected uniformly at random; if C ′ ∈ K then the walk moves to C ′,
otherwise it stays at C . It is easy to check that the walk (or something close to it) is

ergodic, and that the stationary distribution is uniform on cubes in K . The cube size δ is

selected so as to provide an adequate approximation to K , while permitting the random

walk to “explore” the state space within a reasonable time. Rapid mixing (i.e., in time



506 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

polynomial in n) is proved via the conductance argument of Section 12.3, by considering

the geometry of the state space of the random walk and applying classical isoperimetric

inequalities.

Once the sampling problem has been solved, the volume of K can be computed by

the technique of Section 12.2. Let B0 ⊂ B1 ⊂ ·· · ⊂ Bm be a sequence of concentric balls

chosen so that B0 ⊆ K ⊆ Bm and the volume of Bi exceeds that of Bi−1 by (say) a factor

of 2. Consider the sequence of convex bodies

B0 = K ∩ B0 ⊆ K ∩ B1 ⊆ ·· · ⊆ K ∩ Bm = K . (12.16)

The volume of the first is known, while the ratios of volumes of successive bodies can

be estimated by Monte Carlo sampling using simulation of the random walk described

earlier. Random sampling is effective in this context because the volumes of adjacent

bodies in sequence (12.16) differ by a factor of at most 2. By multiplying the estimates

for the various ratios, the volume of the final body K ∩ Bm = K may be computed to any

desired degree of approximation.

Although there are many situations in which a source of random bits seems to aid

computation, the current example is particularly interesting in that randomness is of

provable value. It has been shown by Elekes [Elek86] that a deterministic algorithm that

is restricted to a subexponential number of oracle calls is unable to obtain a good (say,

to within a ratio of 2) approximation to the volume of a convex body.

The close relationship of volume estimation to (approximate) multi-dimensional

integration has provided strong practical impetus to research in this area. Since the ap-

pearance of the original paper of Dyer et al., much effort has gone into extending the

algorithm to a wider class of problems, and into reducing its running time, which, though

polynomial in n, is still rather high in practical terms. Applegate and Kannan [AK91]

have generalized the algorithm to the integration of log-concave functions over convex

regions in arbitrary dimensional space, while Dyer and Frieze [DF91], and Lovász and

Simonovits [LS93] have devised many improvements that have successively reduced the

time complexity of the algorithm. The success of the latter pursuit may be judged from

the dramatic improvement in the dependence of the time-complexity on the dimension n:

from O(n27) for the original algorithm of Dyer et al., to Õ(n7) as claimed recently by

Kannan, Lovász, and Simonovits [KLS94a].15 Some of the ideas that have led to these

improvements are sketched below; for more detail the reader is referred to Kannan’s sur-

vey article [Kan94], and the references therein.

One source of inefficiency in the early approach was that the random walk in K

could, in principle, get stuck for long periods near “sharp corners” of K . Indeed, in the

first algorithm, Dyer et al. found it necessary to “round off” the corners of K before sim-

ulating the random walk. Applegate and Kannan obtained a substantial improvement in

efficiency by providing the random walk with a fuzzy boundary. Rather than estimating

the volume of K directly, their version of the algorithm estimates the integral of a func-

tion F that takes the value 1 on K , and decays to 0 gracefully outside K . The random

walk on cubes is modified so that its stationary distribution is approximately proportional

15The Õ( ) notation hides not merely constants, but also arbitrary powers of logn. Kannan et al.’s

algorithm requires just Õ(n5) oracle calls, but the cost of effecting a single step of their random walk

may be as high as O(n2).



12.5 MORE APPLICATIONS 507

to the function F . As we saw in Section 12.4, in the context of the matching Markov

chain Mmatch(λ), this end is easily achieved by using a Metropolis-style rule to determine

transition probabilities. Provided F decays sufficiently rapidly outside K , the integral

of F over the whole of R
n will be a close approximation to the volume of K .

Another strategy that has been employed in the pursuit of efficiency is to attempt

to reduce the length m of sequence (12.16), which amounts to arranging for the extreme

balls B0 and Bm to be as close as possible in volume. In the earlier papers, the body K

is subjected to a linear transformation that allows the transformed convex body to be

sandwiched between balls whose radii differ by a factor O(n3/2). By contenting them-

selves with a less demanding notion of “approximate sandwiching,” Kannan, Lovász,

and Simonovits [KLS94b] have recently reduced this factor to O(
√

n ), which is best

possible. Observe that this improvement in the sandwiching ratio reduces the length of

sequence (12.16) roughly by a factor n.

Finally, much thought has gone into potentially more efficient random walks for

sampling from within K . This is an attractive line of inquiry, as the original “cubes

walk,” which only ever makes short steps, intuitively seems rather inefficient. Lovász

and Simonovits [LS93] consider instead a “ball walk” with continuous state space, which

operates as follows. Suppose x ∈ K is the position of the walk at time t , and denote by

B(x,δ) the ball with centre x and radius δ. The probability density of the position of

the walk at time t +1, conditional on its position at time t being x , is uniform over the

region K ∩ B(x,δ), and zero outside. The parameter δ is chosen to exploit the trade-off

discussed briefly in the context of the cubes walk. The conductance argument can be

extended to the continuous case without essential change. The ball walk saves a factor n

in the number of oracle calls; unfortunately, as the moves of the random walk are now

more complex than before, there is no saving in net time complexity (i.e., excluding

oracle calls).

An interesting problem related to volume estimation is that of approximately count-

ing contingency tables: given m + n positive integers r1, . . . ,rm and c1, . . . ,cn , com-

pute an approximation to the number of m × n non-negative integer matrices with

row-sums r1, . . . ,rm and column-sums c1, . . . ,cn . This problem arises in the interpre-

tation of the results of certain kinds of statistical experiment; see, for example, Diaconis

and Efron [DE85].

It is easy to see that the contingency tables with given row- and column-sums are

in 1-1 correspondence with integer lattice points contained in an appropriately defined

polytope of dimension nm −n −m. We might hope that a sufficiently uniform distribu-

tion on lattice points could be obtained by sampling from the (continuous) convex poly-

tope and rounding to a nearby lattice point. Dyer, Kannan, and Mount [DKM95] show

that this can be done, provided that the row- and column-sums are sufficiently large;

specifically, that each sum is at least (n + m)nm. The case of small row- and column-

sums remains open. There is no hope of an FPRAS for unrestricted 3-dimensional con-

tingency tables (unless NP = RP), as Irving and Jerrum [IJ94] have shown that deciding

feasibility (i.e, whether there is at least one realization of the contingency table) is NP-

complete in 3-dimensions, even when the row- column- and file-sums are all either 0 or 1.

OPEN PROBLEM 12.3 An elegant direct approach to sampling contingency tables

has been proposed by Diaconis. Consider the Markov chain MCT, whose state space

is the set of all matrices with specified row and column sums, and whose transition



508 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

probabilities are defined as follows. Let the current state (matrix) be A = (ai j). Select

a pair of rows (i, i ′) with i 6= i ′, and a pair of columns ( j, j ′) with j 6= j ′, both u.a.r.

Form a new matrix A′ from A by incrementing by one the array elements ai j ,ai ′ j ′ ,

and decrementing by one the elements ai j ′,ai ′ j . Note that A′ has the same row- and

column-sums as A. If A′ is non-negative then we accept it as the next state; otherwise

the chain remains at state A. It is easy to verify that MCT is ergodic and reversible

with uniform stationary distribution. Moreover, it appears to work well in practice as

a uniform sampling procedure for contingency tables. However, its mixing time is not

known to be bounded by any polynomial in the size of the input. (For obvious reasons,

we must assume that the row- and column-sums are expressed in unary notation when

defining the input size.)

12.5.3 STATISTICAL PHYSICS

We have already seen, in Section 12.4, a detailed example of the use of the Markov

chain Monte Carlo method in statistical physics. It was in fact in this area that the first

computational use of the technique was made, and today Markov chain simulations

related to physical systems account for vast quantities of CPU time on high performance

machines. These methods, while often ingenious, are hardly ever statistically rigorous,

so the numerical results obtained from them have to be treated with some degree of

caution. One of the most exciting applications of the analytical techniques presented

here is the potential they open up for the rigorous quantification of these methods. In

this subsection, we sketch the progress that has been made in this direction to date.

The most intensively studied model in statistical physics is the Ising model, intro-

duced in the 1920s by Lenz and Ising as a means of understanding the phenomenon of

ferromagnetism. An instance of the Ising model is specified by giving a set of n sites, a

set of interaction energies Vi j for each unordered pair of sites i, j , a magnetic field in-

tensity B, and an inverse temperature β. A configuration of the system defined by these

parameters is one of the 2n possible assignments σ of ±1 spins to each site. The energy

of a configuration σ is given by the Hamiltonian H (σ ), defined by

H (σ ) = −
∑

{i, j}
Vi jσiσ j − B

∑

k

σk .

The more interesting part of H (σ ) is the first sum, which consists of a contribution from

each pair of sites. The contribution from the pair i, j is dependent on the interaction

energy Vi j , and whether the spins at i and j are equal or unequal. The second sum has a

contribution from each site i whose sign depends on the sign of the spin at i . In physically

realistic applications, the sites are arranged in a regular fashion in 2- or 3-dimensional

space, and Vi j is non-zero only for “adjacent” sites. From a computational point of view,

this special structure seems difficult to exploit. For more detail on this and other models

in statistical physics, viewed from a computational perspective, consult the survey by

Welsh [Wel90].

A central problem in the theory is evaluating the partition function Z =∑
σ exp(−βH (σ )), where the sum is over all possible configurations σ . This is analo-

gous to the monomer-dimer partition function in Section 12.4, which is also a weighted



12.5 MORE APPLICATIONS 509

sum over configurations. The significance of Z is that it is the normalizing factor in the

Gibbs distribution, which assigns probability exp(−βH (σ ))/Z to each state (configu-

ration) σ in the steady state. Other problems relate to the evaluation of the expectation

of certain random variables of σ , when σ is sampled according to the Gibbs distribution:

the mean magnetic moment and mean energy are two such.

When the interaction energies are unconstrained (this corresponds to a so-called spin

glass) the partition function is hard even to approximate [JS93], so we restrict attention

to the important ferromagnetic case, where Vi j ≥ 0 for all pairs {i, j} of sites. Even here,

exact computation of the partition function is #P-complete [JS93], so it is again natu-

ral to ask whether an FPRAS exists. Jerrum and Sinclair [JS93] answered this question

in the affirmative, and in addition presented an FPRAS for the mean magnetic moment

and mean energy. Applying the Markov chain Monte Carlo method to the Ising model

required an additional twist, as the “natural” random walk on configurations, in which

two configurations are adjacent if they differ in just one spin, is not rapidly mixing.16

The twist is to simulate an apparently unrelated Markov chain on a different set of con-

figurations — based on edges rather than vertices — which happens to have essentially

the same partition function as the Ising model proper. Using the canonical paths argu-

ment, it can be shown that the new, edge-based Markov chain is rapidly mixing. The

twist just described is one factor that makes this application one of the most intricate so

far devised.

In addition to the Ising model and monomer-dimer systems, other models in sta-

tistical physics that have been solved in the FPRAS sense are the six-point ice model

[MW91] and the self-avoiding walk model for linear polymers [BS85, RS94]. The for-

mer problem is again connected with matchings in a graph, but rather remotely, and a

fair amount of work is required to establish and verify the connection [MW91]. The

latter makes use of a Markov chain that is much simpler in structure to those consid-

ered here [BS85], and whose analysis requires a far less sophisticated application of the

canonical paths approach. The analysis in fact relies on a famous conjecture regarding

the behavior of self-avoiding walks: the resulting algorithm is somewhat novel in that it

either outputs reliable numerical answers, or produces a counterexample to the conjec-

ture [RS94].

12.5.4 MATROID BASES: AN OPEN PROBLEM

A particularly appealing open problem in this area, and one that would be very rich in

terms of consequences, is to determine useful bounds on the mixing time of the basis-

exchange Markov chain for a general matroid. (A matroid is an algebraic structure that

provides an abstract treatment of the concept of linear independence.) The states of

this Markov chain are the bases (maximum independent sets) of a given matroid, and

a transition is available from base B to base B ′ if the symmetric difference of B and B ′

consists of precisely two elements of the ground set. All transition probabilities are equal,

so the chain is ergodic and reversible with uniform stationary distribution.

16A more elaborate random walk on spin configurations proposed by Swendsen and Wang [SW87]

may be rapidly mixing, but nothing rigorous is known.



510 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

A concrete example is provided by the graphic matroid associated with an undi-

rected graph G. In this case, the bases are spanning trees of G, and a transition from

a given tree T is effected by adding a single edge (selected u.a.r.) to T , thus creating a

cycle, and then breaking the cycle by deleting one of its edges (selected u.a.r.). The basis-

exchange Markov chain is known to be rapidly mixing for graphic matroids, and, some-

what more generally, for matroids satisfying a certain “balance condition” (see Feder and

Mihail [FM92]). A proof of rapid mixing in the general case would imply the existence

of an FPRAS for a number of important problems in combinatorial enumeration, all of

which are #P-complete, including counting connected spanning subgraphs of a graph

(network reliability), forests of given size in a graph, and independent subsets of vectors

in a set of n-vectors over GF(2).

THE METROPOLIS ALGORITHM AND
SIMULATED ANNEALING

12.6

We conclude this survey with a rather different application of the Markov chain Monte

Carlo method. Like the applications we have discussed so far, Markov chain simulation

will again be used to sample from a large combinatorial set according to some desired

probability distribution. However, whereas up to now we have used this random sam-

pling to estimate the expectations of suitably defined random variables over the set, we

will now use it to optimize a function. This is the key ingredient of several randomized

search heuristics in combinatorial optimization, the most celebrated of which is known

as simulated annealing.

As usual, let Ω be a large combinatorial set, which we think of now as the set of

feasible solutions to some optimization problem. Let f : Ω → R
+ be an objective func-

tion defined on Ω ; our goal is to find a solution x ∈ Ω for which the value f (x) is

maximum (or, symmetrically, minimum). As an illustrative example, let us take the max-

imum cut problem. Here Ω is the set of partitions of the vertices of a given undirected

graph G = (V, E) into two sets S and S = V − S. Our goal is to find a partition that

maximizes the number of edges between S and S.

Here is a very general approach to problems of this kind. First, we define a con-

nected, undirected graph H on vertex set Ω : this graph is often referred to as a neigh-

borhood structure. Typically, the neighbors of a solution x ∈Ω are close to x under some

measure of distance that is natural to the combinatorial structures in question: for exam-

ple, in the maximum cut problem, the neighbors of a particular partition (S, S) might be

all partitions of the form (S−s, S +s) and (S+ t, S − t) obtained by moving one element

across the partition. Next we construct a Markov chain in the form of a biased random

walk on the graph H of a special form. Let d(x) denote the degree of vertex x in H , and

let D be an upper bound on the maximum degree. Then transitions from any state x ∈ Ω

are made as follows:

I. with probability 1
2

let y = x ; otherwise,



12.6 THE METROPOLIS ALGORITHM AND SIMULATED ANNEALING 511

II. select y ∈ Ω according to the distribution

Pr(y) =





1
D

if y is a neighbor of x ;

1 − d(x)

D
if y = x ;

0 otherwise;

III. go to y with probability min{1,α f (y)− f (x)}.

Here α ≥ 1 is a fixed parameter whose role will become clear shortly. We shall refer to

this Markov chain as MC(α). Note that MC(α) always accepts transitions to neighbors

with better values of f , but rejects transitions to poorer neighbors with a probability that

depends on α.17

Let us observe some general properties of this Markov chain. First, since H is

connected, the chain is irreducible, and since all self-loop probabilities are non-zero it is

aperiodic; hence it is ergodic. Now define

πα(x) =
α f (x)

Z(α)
, for x ∈ Ω, (12.17)

where Z(α) is a normalizing factor to make πα a probability distribution. Then it is an

easy matter to check that the chain is reversible with respect to πα, i.e., the transition

probabilities P(x, y) satisfy the detailed balance condition

πα(x)P(x, y) = πα(y)P(y,x), for all x, y ∈ Ω.

All this implies that the Markov chain converges to the stationary distribution πα . A

Markov chain of this form is known as a Metropolis process, in honor of one of its

inventors [Met53].

Now let us examine the stationary distribution more closely. From (12.17) it is clear

that, for any value of α ≥ 1, πα is a monotonically increasing function of f (x). Hence it

favors better solutions. Moreover, the effect of this bias increases with α: as α → ∞,

the distribution becomes more sharply peaked around optimal solutions. At the other

extreme, when α = 1 the distribution is uniform over Ω .

Our optimization algorithm is now immediate: simply simulate the Markov chain

MC(α) for some number, T , of steps, starting from an arbitrary initial solution, and out-

put the best solution seen during the simulation. We shall refer to this algorithm as the

Metropolis algorithm at α. How should we choose the parameter α? For sufficiently

large T , we can view the algorithm as essentially sampling from the stationary distri-

bution πα . If we want to be reasonably sure of finding a good solution, we want to make

α small so that πα is well concentrated. On the other hand, intuitively, as α increases the

chain becomes less mobile and more likely to get stuck in local optima: indeed, in the

limit as α → ∞, MC(α) simply becomes a very naı̈ve “randomized greedy” algorithm.

This tradeoff suggests that we should use an intermediate value of α.

To precisely quantify the performance of the Metropolis algorithm at a given value

of α, we would need to analyze the expected hitting time from the initial solution to the

set of optimal (or near-optimal) solutions. However, we can get an upper bound on the

time taken to find a good solution by analyzing the mixing time. Certainly, if MC(α) is

close to stationarity after T steps, then the probability that we find a good solution is at

17In the case where we wish to minimise f , everything we say carries over with α replaced by α−1.



512 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

least the weight of such solutions in the stationary distribution πα. We shall illustrate this

approach by adapting the matching example of Section 12.4, for which we have already

developed all the necessary technology.

Consider the classical optimization problem of finding a matching of maximum

cardinality in a graph. Thus Ω is the set of all matchings in a graph G = (V, E), and we

are trying to maximize the function f : Ω → R given by f (M) = |M|. It is well known

that this problem can be solved in polynomial time, but the algorithm for non-bipartite

graphs is far from trivial [Edm65]. We shall show that the much simpler Metropolis

algorithm solves the problem for most graphs, and finds a good approximate solution for

all graphs, with high probability in polynomial time. The key to the algorithm’s success

is a carefully chosen value of the parameter α.

We have in fact already defined a suitable Metropolis process for the maximum

matching problem: it is the Markov chain Mmatch(λ) from Section 12.4. A glance at

the definition of this chain reveals that it is a Metropolis process whose neighborhood

structure is defined by edge additions, deletions, and exchanges, and with D = |E|
and α = λ. We saw in Section 12.4 that Mmatch(λ) gets very close to its stationary

distribution, πλ, in time polynomial in λ and the number of vertices in G.

Let us first consider the case of 2n-vertex graphs G for which the ratio mn−1/mn

is polynomially bounded, i.e., mn−1/mn ≤ q(n) for some fixed polynomial q .18 (Of

course, for such graphs maximum matchings are perfect matchings.) As we have seen

in Section 12.5.1, this actually covers almost all graphs, as well as several interesting

special families such as dense graphs. We also saw in Section 12.5.1 that, if we take λ =
q(n) ≥ mn−1/mn, then the weight of perfect matchings in the stationary distribution πλ

is at least 1
n+1

(see equation (12.15)). Hence, by running the Metropolis algorithm O(n)

times (or, alternatively, by increasing λ by a constant factor), we can be almost certain

of finding a perfect matching. The running time for each run is polynomial in n and λ =
q(n), and hence polynomial in n. The same result holds more generally for graphs with

a maximum matching of size k0, provided that mk0−1/mk0
is polynomially bounded.

The above analysis breaks down for arbitrary graphs because the value of λ required

to find a maximum matching could be very large. However, for arbitrary graphs, we

can prove the weaker result that the Metropolis algorithm will find an approximately

maximum matching in polynomial time. Let G be an arbitrary graph, and suppose we

wish to find a matching in G of size at least k = ⌈(1 − ε)k0⌉, where k0 is the size of

a maximum matching in G and ε ∈ (0,1). We claim that, if we run the Metropolis

algorithm for a polynomial number of steps with λ = |E|(1−ε)/ε, then with probability

at least 1
n+1

we will find such a matching. (Note, however, that the running time is

exponential in the accuracy parameter ε−1.) Once again, the success probability can be

boosted by repeated trials, or by increasing λ by a small constant factor.

To justify the above claim, we use the log-concavity property of matchings and the

fact that mk0
≥ 1 to deduce that

mk−1 = mk0

k0∏

j=k

m j−1

m j

≥
(mk−1

mk

)k0−k+1

. (12.18)

But since j -matchings in G are subsets of E of size j , there is also the crude upper bound

18Recall that mk denotes the number of k-matchings in G.



12.6 THE METROPOLIS ALGORITHM AND SIMULATED ANNEALING 513

mk−1 ≤ |E|k−1. Hence, from (12.18) we conclude that

mk−1

mk

≤ |E|(1−ε)/ε = λ.

Now we use log-concavity again to argue that, for 0 ≤ i < k, we have mi/mk ≤
(mk−1/mk)

k−i ≤ λk−i . It follows that the weight of i -matchings in the stationary dis-

tribution πλ is bounded above by the weight of the k-matchings. Hence, the probability

of being at a matching of size k or more is at least 1
n+1

, as we claimed.

Rigorous results like this about the performance of the Metropolis algorithm on

non-trivial optimization problems are few and far between. The above result on approx-

imating maximum matchings was obtained via a more complex argument by Sasaki

and Hajek [SH88], who also show that this result is best possible in the sense that the

Metropolis algorithm cannot be expected to find a truly maximum matching in arbitrary

graphs in polynomial time, even if the algorithm is allowed to vary the parameter α in

an arbitrarily complicated fashion. Negative results of a similar flavor for other prob-

lems can be found in [Sas91] and [Jer92]. Jerrum and Sorkin [JS93] prove a positive

result for the graph bisection problem analogous to the one above for finding a maximum

matching in random graphs: they show that, for almost every input graph in a suitable

random graph model, the Metropolis algorithm run at a carefully chosen value of the

parameter α will find a minimum bisection of the graph in polynomial time with high

probability. Their approach is different from the one presented here, in that they argue

directly about the hitting time rather than analyzing the mixing time as we have done.

Finally, a recent paper of Kannan, Mount, and Tayur [KMT94] shows how the Metropo-

lis algorithm can be used to efficiently find approximate solutions to a class of convex

programming problems.

We close with a brief discussion of the popular optimization heuristic known as sim-

ulated annealing, first proposed in [KGV83]. This heuristic is widely used in combina-

torial optimization: for a comprehensive survey of experimental results, see for example

[JAMS88, JAMS91]. Essentially, the idea is to simulate the Metropolis process while at

the same time varying the parameter α according to a heuristic scheme. Thus, a simu-

lated annealing algorithm is specified by a Metropolis process MC(α), together with an

increasing function α : N → [1,∞). At time t , the process makes a transition according

to MC(α(t)); we can therefore view it as a time-inhomogeneous Markov chain on Ω .

After some specified number of steps, the algorithm terminates and returns the best so-

lution encountered so far.

The function α is usually referred to as a cooling schedule, in accordance with the

interpretation of α−1 as a “temperature.” Increasing α thus corresponds to decreasing

temperature, or cooling. The term “simulated annealing” derives from the analogy with

the physical annealing process, in which a substance such as glass is heated to a high

temperature and then gradually cooled, thereby “freezing” into a state whose energy is

locally minimum. If the cooling is done sufficiently slowly, this state will tend to be a

global energy minimum, corresponding to maximum strength of the solid.

This more complex process is even harder to analyze than the Metropolis algorithm

itself. Since the Markov chain is not time-homogeneous, even the question of asymptotic

convergence is non-trivial. Holley and Stroock [HS88] proved the existence of a cooling

schedule that guarantees convergence to a global optimum: however, the schedule is so

slow that the time taken to converge is comparable with the size of Ω , which makes the



514 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

algorithm uncompetitive with naı̈ve exhaustive search. It remains an outstanding open

problem to exhibit a natural example in which simulated annealing with any non-trivial

cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen

fixed value of α.

Acknowledgments Mark Jerrum was supported in part by a Nuffield Foundation

Science Research Fellowship, Grant GR/F 90363 of the UK Science and Engineering

Research Council, and EU Esprit Working Group No. 7097, “RAND”. Alistair Sinclair

was supported in part by NSF Grant CCR-9505448 and a UC Berkeley Faculty Research

Grant.

REFERENCES

[Ald81] D. Aldous. Random walks on finite groups and rapidly mixing Markov chains,

Séminaire de Probabilités XVII, Springer Lecture Notes in Mathematics 986,

1981/82, 243–297.

[Ald82] D. Aldous. Some inequalities for reversible Markov chains, Journal of the London

Mathematical Society, 25(2):564–576, 1982.

[Ald87] D. Aldous. On the Markov chain simulation method for uniform combinatorial

distributions and simulated annealing, Probability in the Engineering and Infor-

mational Sciences, 1:33–46, 1987.

[Ald90] D. Aldous. The random walk construction for spanning trees and uniform labeled

trees, SIAM Journal on Discrete Mathematics, 3:450–465, 1990.

[AD86] D. Aldous and P. Diaconis. Shuffling cards and stopping times, American Mathe-

matical Monthly, 93:333–348, 1986.

[Alon86] N. Alon. Eigenvalues and expanders, Combinatorica, 6:83–96, 1986.

[AM85] N. Alon and V.D. Milman. λ1, isoperimetric inequalities for graphs and supercon-

centrators, Journal of Combinatorial Theory Series B, 38:73–88, 1985.

[AK91] D. Applegate and R. Kannan. Sampling and integration of near log-concave func-

tions, Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,

156–163, 1991.

[BS85] A. Berretti and A.D. Sokal. New Monte Carlo method for the self-avoiding walk,

Journal of Statistical Physics, 40:483–531, 1985.

[Bro86] A.Z. Broder. How hard is it to marry at random? (On the approximation of the

permanent), Proceedings of the 18th Annual ACM Symposium on Theory of Com-

puting, ACM Press, 50–58, 1986. Erratum in Proceedings of the 20th Annual ACM

Symposium on Theory of Computing, p. 551, 1988.

[Bro89] A.Z. Broder. Generating random spanning trees, Proceedings of the 30th Annual

IEEE Symposium on Foundations of Computer Science, 442–447, 1989.

[BDJ96] R. Bubley, M. Dyer, and M. Jerrum. A new approach to polynomial-time random

walks for volume computation (preprint), 1996.

[Che70] J. Cheeger. A lower bound for the smallest eigenvalue for the Laplacian, Problems

in Analysis (R.C. Gunning, ed.), Princeton University Press, Princeton NJ, 1970,

195–199.



REFERENCES 515

[CdBS55] E.G.D. Cohen, J. de Boer, and Z.W. Salsburg. A cell-cluster theory for the liquid

state II, Physica, XXI:137–147, 1955.

[DLMV88] P. Dagum, M. Luby, M. Mihail, and U. V. Vazirani. Polytopes, permanents and

graphs with large factors, Proceedings of the 29th Annual IEEE Symposium on

Foundations of Computer Science, 412–421, 1988.

[Dia88] P. Diaconis. Group representations in probability and statistics, Lecture Notes

Monograph Series Vol. 11, Institute of Mathematical Statistics, Hayward, CA,

1988.

[DE85] P. Diaconis and B. Efron. Testing for independence in a two-way table, Annals of

Statistics, 13:845–913, 1985.

[DSC93] P. Diaconis and L. Saloff-Coste. Comparison techniques for reversible Markov

chains, Annals of Applied Probability, 3:696–730, 1993.

[DS91] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains,

Annals of Applied Probability, 1:36–61, 1991.

[DF88] M.E. Dyer and A.M. Frieze. On the complexity of computing the volume of a

polyhedron, SIAM Journal on Computing, 17:967–975, 1988.

[DF91] M. Dyer and A. Frieze. Computing the volume of convex bodies: a case where

randomness provably helps, Probabilistic Combinatorics and its Applications,

Proceedings of AMS Symposia in Applied Mathematics, 44:123–170, 1991.

[DFJ94] M. Dyer, A. Frieze, and M. Jerrum. Approximately counting Hamilton cycles

in dense graphs, Proceedings of the 4th Annual ACM-SIAM Symposium on Dis-

crete Algorithms, 336–343, 1994. Full version to appear in SIAM Journal on

Computing.

[DFK91] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm for

approximating the volume of convex bodies, Journal of the ACM, 38:1–17, 1991.

[DFKKPV93] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic, and U. Vazirani. A

mildly exponential time algorithm for approximating the number of solutions to a

multidimensional knapsack problem, Combinatorics, Probability and Computing,

2:271–284, 1993.

[DKM95] M. Dyer, R. Kannan, and J. Mount. Sampling contingency tables (preprint), 1995.

[Edm65] J. Edmonds. Paths, trees and flowers, Canadian Journal of Mathematics, 17:449–

467, 1965.

[Elek86] G. Elekes. A geometric inequality and the complexity of computing volume, Dis-

crete and Computational Geometry, 1:289–292, 1986.

[FM92] T. Feder and M. Mihail. Balanced matroids, Proceedings of the 24th Annual ACM

Symposium on Theory of Computing, 26–38, 1992.

[Fish61] M.E. Fisher. Statistical mechanics of dimers on a plane lattice, Physics Review,

124:1664–1672, 1961.

[Friez89] A.M. Frieze. A note on computing random permanents (unpublished manuscript),

1989.

[FS92] A. Frieze and S. Suen. Counting the number of Hamiltonian cycles in random

digraphs, Random Structures and algorithms, 3:235–241, 1992.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the The-

ory of NP-Completeness, Freeman, San Francisco, CA, 1979, p. 176.



516 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

[Gill93] D. Gillman. A Chernoff bound for random walks on expander graphs, Proceedings

of the 34th Annual IEEE Conference on Foundations of Computer Science, 680–

691, 1993.

[Gugg52] E.A. Guggenheim. Mixtures, Clarendon Press, Oxford, 1952.

[HL72] O.J. Heilmann and E.H. Lieb. Theory of monomer-dimer systems, Communica-

tions in Mathematical Physics, 25:190–232, 1972.

[HS88] R. Holley and D.W. Stroock. Simulated annealing via Sobolev inequalities, Com-

munications in Mathematical Physics, 115:553–569, 1988.

[IJ94] R.W. Irving and M.R. Jerrum. 3-D statistical data security problems, SIAM Jour-

nal on Computation, 23:170-184, 1994.

[Jer87] M.R. Jerrum. Two-dimensional monomer-dimer systems are computationally

intractable, Journal of Statistical Physics, 48:121–134, 1987. Erratum in Journal

of Statistical Physics, 59:1087–1088, 1990.

[Jer92] M.R. Jerrum. Large cliques elude the Metropolis process, Random Structures and

Algorithms, 3:347–359, 1992.

[Jer93b] M. Jerrum. Uniform sampling modulo a group of symmetries using Markov chain

simulation, Expanding Graphs, DIMACS Series in Discrete Mathematics and

Computer Science 10 (J. Friedman, ed.), American Mathematical Society, 1993,

37–47.

[Jer94] M. Jerrum. The computational complexity of counting, Proceedings of the In-

ternational Congress of Mathematicians, Zürich 1994, Birkhäuser, Basel, 1995,

1407–1416.

[Jer95] M. Jerrum. A very simple algorithm for estimating the number of k-colourings of

a low-degree graph, Random Structures and Algorithms, 7:157–165, 1995.

[JMS92] M. Jerrum, B. McKay, and A. Sinclair. When is a graphical sequence stable?

Random Graphs 2 (A. Frieze and T. Łuczak, eds), Wiley, 1992, 101–115.

[JS89] M.R. Jerrum and A.J. Sinclair. Approximating the permanent, SIAM Journal on

Computing, 18:1149–1178, 1989.

[JS90a] M.R. Jerrum and A.J. Sinclair. Fast uniform generation of regular graphs, Theo-

retical Computer Science, 73:91–100, 1990.

[JS93] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the

Ising model, SIAM Journal on Computing, 22:1087–1116, 1993.

[JS94] M. Jerrum and G.B. Sorkin. Simulated annealing for graph bisection, Proceedings

of the 34th Annual IEEE Conference on Foundations of Computer Science, Com-

puter Society Press, 94–103, 1993.

[JVV86] M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combinato-

rial structures from a uniform distribution, Theoretical Computer Science,

43:169–188, 1986.

[JV92] M. Jerrum and U. Vazirani. A mildly exponential approximation algorithm for the

permanent, Proceedings of the 33rd Annual IEEE Conference on Foundations of

Computer Science, Computer Society Press, 320–326, 1992.

[JAMS88] D.S. Johnson, C.R. Aragon, L.A. McGeogh, and C. Schevon. Optimization by

simulated annealing: an experimental evaluation; Part I, graph partitioning, Op-

erations Research, 37:865–892, 1988.



REFERENCES 517

[JAMS91] D.S. Johnson, C.R. Aragon, L.A. McGeogh, and C. Schevon. Optimization by

simulated annealing: an experimental evaluation; part II, graph coloring and num-

ber partitioning, Operations Research, 39:378–406, 1991.

[Kah94] N. Kahale. Large deviation bounds for Markov chains, DIMACS Technical Re-

port 94-39, June 1994. To appear in Combinatorics, Probability and Computing.

[Kah95] N. Kahale. A semidefinite bound for mixing rates of Markov chains, DIMACS

Technical Report 95-41, September 1995.

[Kan94] R. Kannan. Markov chains and polynomial time algorithms. Proceedings of the

35th Annual IEEE Symposium on Foundations of Computer Science, 656–671,

1994.

[KLS94a] R. Kannan, L. Lovász, and M. Simonovits. Random walks and a faster algorithm

for convex sets (manuscript).

[KLS94b] R. Kannan, L. Lovász, and M. Simonovits. Isoperimetric problems for convex sets

and a localization lemma, Discrete and Computational Geometry, 13:541–559,

1995.

[KMT94] R. Kannan, J. Mount, and S. Tayur. A randomized algorithm to optimize over

certain convex sets, Mathematics of Operations Research, 20:529–550, 1995.

[KL83] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and reliability

problems, Proceedings of the 24th Annual IEEE Symposium on Foundations of

Computer Science, 56–64, 1983.

[KK90] A. Karzanov and L. Khachiyan. On the conductance of order Markov chains,

Technical Report DCS 268, Rutgers University, June 1990.

[Kast61] P.W. Kasteleyn. The statistics of dimers on a lattice I: The number of dimer ar-

rangements on a quadratic lattice, Physica, 27:1209–1225, 1961.

[KRS96] C. Kenyon, D. Randall, and A. Sinclair. Approximating the number of monomer-

dimer coverings of a lattice, Journal of Statistical Physics, 83:637–659, 1996.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-

ing, Science, 220:671–680, 1983.

[LS88] G.F. Lawler and A.D. Sokal. Bounds on the L2 spectrum for Markov chains and

Markov processes: a generalization of Cheeger’s inequality, Transactions of the

American Mathematical Society, 309:557–580, 1988.

[LP86] L. Lovász and M.D. Plummer. Matching Theory, North-Holland, Amsterdam,

1986.

[LS93] L. Lovász and M. Simonovits. Random walks in a convex body and an improved

volume algorithm, Random Structures and Algorithms, 4:359–412, 1993.

[LRS95] M. Luby, D. Randall, and A. Sinclair. Markov chain algorithms for planar lattice

structures, Proceedings of the 36th Annual IEEE Symposium on Foundations of

Computer Science, 150–159, 1995.

[Mat91] P. Matthews. Generating random linear extensions of a partial order, The Annals

of Probability, 19:1367–1392, 1991.

[Met53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.

Equation of state calculation by fast computing machines, Journal of Chemical

Physics, 21:1087–1092, 1953.

[Mih89a] M. Mihail. On coupling and the approximation of the permanent, Information

Processing Letters, 30:91–95, 1989.



518 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

[Mih89b] M. Mihail. Conductance and convergence of Markov chains: a combinatorial

treatment of expanders, Proceedings of the 30th Annual IEEE Symposium on

Foundations of Computer Science, 526–531, 1989.

[MP94] M. Mihail and C.H. Papadimitriou. On the random walk method for protocol test-

ing, Proceedings of the 6th International Conference on Computer Aided Verifi-

cation, Springer Lecture Notes in Computer Science 818, 1994, 132–141.

[MW91] M. Mihail and P. Winkler. On the number of Eulerian orientations of a graph,

Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,

138–145, 1992.

[Mot89] R. Motwani. Expanding graphs and the average-case analysis of algorithms for

matchings and related problems, Proceedings of the 21st Annual ACM Symposium

on Theory of Computing, ACM Press, 550–561, 1989.

[PW95] J. Propp and D. Wilson. Exact sampling with coupled Markov chains and appli-

cations to statistical mechanics (preprint), 1995. To appear in Random Structures

& Algorithms, 1996.

[RS94] D. Randall and A.J. Sinclair. Testable algorithms for self-avoiding walks, Pro-

ceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM

Press, 593–602, 1994.

[Rob35] J.K. Roberts. Some properties of adsorbed films of oxygen on tungsten, Proceed-

ings of the Royal Society of London A, 152:464–480, 1935.

[Sas91] G.H. Sasaki. The effect of the density of states on the Metropolis algorithm, In-

formation Processing Letters, 37:159–163, 1991.

[SH88] G.H. Sasaki and B. Hajek. The time complexity of maximum matching by simu-

lated annealing, Journal of the ACM, 35:387–403, 1988.

[Sin92] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicom-

modity flow, Combinatorics, Probability and Computing, 1:351–370, 1992.

[Sin93] A.J. Sinclair. Randomised algorithms for counting and generating combinatorial

structures, Advances in Theoretical Computer Science, Birkhäuser, Boston, 1993.

[SJ89] A.J. Sinclair and M.R. Jerrum. Approximate counting, uniform generation and

rapidly mixing Markov chains, Information and Computation, 82:93–133, 1989.

[SW87] R.H. Swendsen and J-S. Wang. Nonuniversal critical dynamics in Monte Carlo

simulations, Physical Review Letters, 58:86–88, 1987.

[TF61] H.N.V. Temperley and M.E. Fisher. Dimer problem in statistical mechanics—an

exact result, Philosophical Magazine, 6:1061–1063, 1961.

[Tod89] S. Toda. On the computational power of PP and ⊕P, Proceedings of the 30th

Annual IEEE Symposium on Foundations of Computer Science, Computer Society

Press, 514–519, 1989.

[Usp37] J.V. Uspensky. Introduction to mathematical probability, McGraw Hill, 1937.

[Val79a] L.G. Valiant. The complexity of computing the permanent, Theoretical Computer

Science, 8:189–201, 1979.

[Val79b] L.G. Valiant. The complexity of enumeration and reliability problems, SIAM Jour-

nal on Computing, 8:410–421, 1979.

[Wel90] D.J.A. Welsh. The computational complexity of some classical problems from

statistical physics, Disorder in Physical Systems, Oxford University Press, 1990,

307–321.



APPENDIX 519

APPENDIX

Proof of Proposition 12.3. The proof essentially hinges on the bound

(Var fi )/(E fi )
2 ≤ e, which we established for the random variable fi . However, this ran-

dom variable is defined with respect to the distribution πλi
, whereas our samples come

from a distribution π̂λi
obtained from a finite-length simulation of the Markov chain,

whose variation distance from πλi
satisfies

‖π̂λi
−πλi

‖ ≤
ε

5er
. (A.1)

We shall therefore work with the random variable f̂i , defined analogously to fi ex-

cept that the matching M is selected from the distribution π̂λi
rather than πλi

. Since f̂i

takes values in (0,1], its expectation E f̂i = ρ̂i clearly satisfies |ρ̂i −ρi | ≤ ε/5er , which

by (12.10) implies
(

1 −
ε

5r

)
ρi ≤ ρ̂i ≤

(
1 +

ε

5r

)
ρi . (A.2)

Moreover, again using (12.10), the variance of f̂i satisfies

(Var f̂i )/(E f̂i )
2 ≤ ρ̂i

−1 ≤ 2ρ−1
i ≤ 2e, (A.3)

where we have also used (A.2) crudely to deduce that ρ̂i ≥ 1
2
ρi .

We can now compute the sample size needed to ensure a good final estimate. Let

X
(1)
i , . . . , X

(S)
i be a sequence of S independent copies of the random variable f̂i obtained

by sampling S matchings from the distribution π̂λi
, and let X i = S−1

∑S
j=1 X

( j)

i be the

sample mean. Clearly, E X i = E f̂i = ρ̂i , and Var X i = S−1 Var f̂i . Our estimator of

ρ = Z (̂λ)−1 is the random variable X =
∏r

i=1 X i . The expectation of this estimator is

E X =
∏r

i=1 ρ̂i = ρ̂, which by (A.2) satisfies
(

1 −
ε

4

)
ρ ≤ ρ̂ ≤

(
1 +

ε

4

)
ρ. (A.4)

Also, by (A.3), the variance satisfies

Var X

(E X)2
=

r∏

i=1

(
1 +

Var X i

(E X i)2

)
−1

≤
(

1 +
2e

S

)r

−1

≤ exp(2er/S)−1

≤ ε2/64,

provided we choose the sample size S = ⌈130eε−2r⌉. (Here we are using the fact that

exp(x/65) ≤ 1+ x/64 for 0 ≤ x ≤ 1.) Now Chebyshev’s inequality applied to X yields

Pr(|X − ρ̂| > (ε/4)ρ̂) ≤
16

ε2

Var X

(E X)2
≤

1

4
,



520 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

so we have, with probability at least 3
4
,

(
1 −

ε

4

)
ρ̂ ≤ X ≤

(
1 +

ε

4

)
ρ̂. (A.5)

Combining (A.4) and (A.5) we see that, with probability at least 3
4
, Y = X−1 lies within

ratio 1 ± ε of ρ−1 = Z (̂λ), which completes the proof.


