
Liftings of Tree-Structured Markov Chains
(Extended Abstract)

Thomas P. Hayes1 and Alistair Sinclair2

1 Department of Computer Science, University of New Mexico!

2 Computer Science Division, University of California at Berkeley!!

Abstract. A “lifting” of a Markov chain is a larger chain obtained by replacing
each state of the original chain by a set of states, with transition probabilities de-
fined in such a way that the lifted chain projects down exactly to the original one.
It is well known that lifting can potentially speed up the mixing time substan-
tially. Essentially all known examples of efficiently implementable liftings have
required a high degree of symmetry in the original chain. Addressing an open
question of Chen, Lovász and Pak, we present the first example of a successful
lifting for a complex Markov chain that has been used in sampling algorithms.
This chain, first introduced by Sinclair and Jerrum, samples a leaf uniformly at
random in a large tree, given approximate information about the number of leaves
in any subtree, and has applications to the theory of approximate counting and to
importance sampling in Statistics. Our lifted version of the chain (which, unlike
the original one, is non-reversible) gives a significant speedup over the origi-
nal version whenever the error in the leaf counting estimates is o(1). Our lifting
construction, based on flows, is systematic, and we conjecture that it may be ap-
plicable to other Markov chains used in sampling algorithms.

1 Introduction
1.1 Background and motivation
As the field of Markov chain Monte Carlo (MCMC) algorithms matures, attention is
turning to refinements of these algorithms with improved running times. A general
framework for speeding up MCMC algorithms, known as “lifting,” was introduced ten
years ago by Chen, Lovász and Pak [2]. A lifting of a Markov chain M is a larger
chain M′ obtained by replacing each state of M by a set of states; the lifting is re-
quired to preserve the structure of M in the sense that the obvious projection obtained
by merging appropriate states of M′ gets us back to M itself. (See Section 2 for a
precise definition.) The intriguing fact, first observed by Diaconis, Holmes and Neal [4]
and explored further by Chen, Lovász and Pak [2], is that lifting can in certain cases
reduce the mixing time of the chain substantially, and hence potentially improve the
running time of algorithms in which it is used.

The simplest example of lifting, due to [4], is for simple random walk on the path
of length n, with uniform stationary distribution. The mixing time of this chain is well
known to be Θ(n2). This chain can be lifted by replacing each node by a pair of nodes,
! Email: hayes@cs.unm.edu

!! Email: sinclair@cs.berkeley.edu. Supported in part by NSF grant CCF-0635153 and by a UC
Berkeley Chancellor’s Professorship.

1/2

1/2

1/2

1/n

1-1/n

1-1/n

1/n1-1/n 1/n

1-1/n

1-1/n

0 n

1/2

(a)

(b)

1 2

Fig. 1. (a) Simple random walk on a path of length n. (b) The lifted walk; dotted ovals indicate
nodes that project to the same node in the original walk.

with the two sets of copies connected in two directed paths with opposite senses, and
bidirected crossing edges between the paths. (See Fig. 1.) If the crossing probabilities
are chosen appropriately (of order 1/n), then the mixing time drops to Θ(n). The lift-
ing achieves this speedup by almost eliminating the diffusive behavior of the original
symmetric walk, and instead giving the walking particle “momentum” in its current
direction of travel. In particular, after t < n steps the lifted walk will typically be at
distance Θ(t) from its starting point, in contrast to Θ(

√
t) for the original walk.

This idea was extended by Chen et al. [2] to random walks on Cayley graphs. The
strategy, roughly, is to lift the state space Ω to Ω×{1, . . . , r} where each i ∈ {1, . . . , r}
is associated with a generator, and then to give the walk momentum around a carefully
chosen cycle through the generators. The authors give several examples of significant
speedups using this construction.

Chen et al. also give a general lifting construction that applies to arbitrary Markov
chains, and achieves a mixing time of O(ρ), where ρ is a multicommodity flow param-
eter (in the original chain) that is almost the inverse of the more familiar “conductance”
(or sparsest cut); they also show that this is essentially best possible. Unfortunately,
however, this construction is in general not feasible to implement, as simulating even
one step of the lifted chain may be as hard as sampling from the stationary distribu-
tion π. Chen et al. pose the open question whether lifting can be used to speed up actual
sampling algorithms.

In this paper we prove what is apparently the first result in this direction. We re-
visit a Markov chain introduced by Sinclair and Jerrum [26] which samples a leaf of
a tree uniformly at random given crude estimates of the number of leaves in each sub-
tree. This Markov chain was used in [26] to prove that approximate counting for all
self-reducible problems in #P is robust, in the sense that such problems either have
a fully-polynomial randomized approximation scheme, or cannot be approximated in
polynomial time within any polynomial factor (even, say, n100). It was also used in
the same paper to give a polynomial time algorithm for uniformly generating random
graphs with specified vertex degrees, based on analytic estimates for the number of such
graphs [22].

To describe the setting more precisely, let T be a binary1 tree, all of whose leaves
are at the same depth d. Our goal is to sample a leaf of T uniformly at random, in time
polynomial in d. This fundamental problem goes back at least to Knuth [17]. Suppose
we are given partial information about T in the form of an estimate Ñv of the number

1 We make this assumption for simplicity of presentation only; T may in fact have an arbitrary
branching factor.

2

of leaves Nv in the subtree rooted at each node v. This estimate is guaranteed to be
within ratio 1 + δ, i.e., (1 + δ)−1Nv ≤ Ñv ≤ (1 + δ)Nv . (Such estimates may be
available, e.g., from a crude approximate counting algorithm as in the abstract frame-
work of [26], from analytic approximations as for graphs with given degrees in [22],
or from the solution of idealized approximations as in the derivative pricing framework
discussed in [3]. In the Statistics literature, the use of such estimates is often referred
to as “importance sampling.”) If δ = O(1

d) then we can solve the problem rather easily
by choosing a random path from the root to a leaf, branching left or right at each node
with probabilities proportional to the counting estimates at its two children. Because of
the bound on δ, we will accumulate at most a constant bias at the leaves, which can be
eliminated by “rejection sampling” with a constant number (in expectation) of repeated
trials. (In rejection sampling, if a leaf & is sampled with probability p! then we output
the leaf with probability p∗/p!, where p∗ is a lower bound on p! for all &, and start again
otherwise. The reader is referred to the full version of the paper for a detailed discussion
of rejection sampling, including a comparison with the Markov chain approach.)

For larger values of δ the above approach breaks down. To overcome this obsta-
cle, Sinclair and Jerrum [26] introduced a more involved sampling algorithm that runs
in polynomial time provided δ is bounded by any constant (or indeed, by any polyno-
mial in d). This algorithm works by simulating a Markov chain on T whose transition
probabilities are proportional to the edge weights Ñv (where we think of Ñv as being
associated with the edge whose lower endpoint is v). Note that transitions from a node
to its parent are allowed, so backtracking occurs. The stationary distribution of this
Markov chain is easily seen to be uniform over leaves, and to put a constant fraction
of its weight on the leaves.2 Perhaps surprisingly, the mixing time for δ = O(1) was
shown in [26] to be Õ(d2), implying that the algorithm outputs a uniformly random
leaf with bias ε in expected time Õ(d2 log ε−1). The intuition for the effectiveness of
this algorithm is that an overestimate Ñv , which leads the chain to choose a downward
edge to v with too large probability, also acts to increase the probability of backtracking
from v; thus the process is “self-correcting.” We note also that the Ω(d2) dependence
on d is unavoidable as, even in the case of perfect estimates (δ = 0), the process reduces
to symmetric random walk on the levels [0, d].

1.2 Results

In this paper we consider lifting the above Markov chain in the regime δ ∈ [1d , 1].
(Recall that the problem is trivial for δ = O(1

d).) Our main result is a (non-reversible)
lifting that speeds up the mixing time to O(δd2) throughout this range. Thus our lifted
chain interpolates smoothly between a trivial linear time rejection sampling algorithm
when δ = O(1

d) and the Sinclair-Jerrum quadratic time algorithm when δ = Ω(1). In
particular, for all δ = o(1) the lifted chain overcomes the Ω(d2) diffusion lower bound
on the mixing time of the original chain. (For example, when δ = O(1√

d
), we are able

to sample leaves in time O(d3/2).) We leave open the question of whether a fast lifting
exists for larger values of δ.

2 The original chain in [26] puts weight O(1/d) on the leaves; a simple modification, which we
provide, improves this to a constant with the same bound on mixing time.

3

We believe that the main interest value of this result is as the first application of
lifting to a complex Markov chain used in random sampling.3 However, we briefly
mention as an example one potential concrete application. Let g = (g1, . . . , gn) be
a graphical degree sequence on n vertices, and suppose we wish to sample a random
graph in which vertex i has degree gi for each i. We can construct such graphs edge-by-
edge, giving rise to a “self-reducibility tree” in which each node corresponds to a partial
graph (of edges previously chosen) and a residual degree sequence; the leaves of the tree
are precisely the desired graphs (see [26] for details). Note that the depth of this tree
is d = |E(g)|, the number of edges in the graphs. Classical work of McKay [22] (see
also [10, 23]) provides analytical estimates for the number of graphs with given vertex
degrees that are within ratio 1+O(g4

max
|E(g)|), where gmax = maxi gi. In [26] the Sinclair-

Jerrum Markov chain was used with these estimates to sample graphs from sequences
in which gmax = O(|E(g)|1/4). The lifting in the present paper would potentially
improve the mixing time of this Markov chain from Õ(|E(g)|2) to O(g4

max|E(g)|),
which is significantly less when gmax % |E(g)|1/4.

Since our construction is the main contribution of the paper, we say a few words
about it here. We stress that the construction is purely local and can be implemented
efficiently, unlike the optimal liftings discussed in [2]. Our lifting creates two copies
of the tree, having “upward” and “downward” momentum respectively. To eliminate
diffusive behavior, we need to arrange for small crossing probabilities between the two
copies; this we achieve using a “flow cancellation” idea that is facilitated by our view
throughout the paper of Markov chains as flows. Another key ingredient is smoothing of
the holding time distribution at some nodes; we achieve this by lifting certain self-loops
in the original chain to two-state “traps.” This smoothing makes possible our analysis
of the mixing time via a non-Markovian coupling argument.

While some of the above features can be identified with hindsight in the efficient
liftings of [4, 2], our construction is considerably more general and systematic. In par-
ticular, we do not exploit strong symmetries in the original Markov chain which make
the liftings in those papers rather simpler to construct and to analyze. Indeed, in our
case the original Markov chain is not at all symmetrical, as the tree may have arbitrary
structure and its edge weights may vary arbitrarily within their respective ranges. For
the same reason, the tree is also very far from the one-dimensional processes analyzed
in [4, 7, 8]. We conjecture that our flow-based approach may lead in future to a system-
atic framework for constructing liftings in a larger class of Markov chains where it is
possible to identify generalized “directions” along which momentum can be defined.

In the full version of the paper, we discuss alternative approaches to the leaf-sampling
problem for δ ∈ (0, 1] based on rejection sampling combined with Markov chain Monte
Carlo.

1.3 Related work

The first authors to implicitly discuss lifting of Markov chains to speed up mixing were
Diaconis, Holmes and Neal [4], who observed that the mixing time of simple random

3 We mention that, in hindsight, the “hit-and-run” Markov chain [19] used for sampling points
in a convex body has the flavor of a “lifting” of the more classical “ball walk” [20]. We return
to this point in Section 5.

4

walk on a path of length n can be improved from Θ(n2) to Θ(n). They also proposed
an extension to more general one-dimensional chains with non-uniform stationary dis-
tribution, but did not provide bounds on the mixing time. Such an extension was subse-
quently analyzed by Hildebrand [7, 8], who showed that a similar acceleration to Θ(n)
occurs when the stationary distribution is log-concave.

Chen, Lovász and Pak [2] studied lifting in a more general framework. In addition to
giving several examples of liftings for random walks on Cayley graphs, they also proved
general results on the scope and limitations of lifting. For example, they show that the
best possible lifting of any given Markov chain has mixing time (suitably defined) Θ(ρ),
where ρ is the flow parameter mentioned earlier. Since the mixing time is always Õ(ρ2),
the optimal speedup via lifting is at most roughly a square root. Chen et al. also give a
theoretical construction that achieves this optimal lifting (up to a constant factor) for an
arbitrary Markov chain; however, as mentioned earlier, this construction is in general
not efficiently implementable. Moreover, they show that if the lifted Markov chain is
reversible then the speedup obtainable is (relatively) negligible; hence any useful lifting
needs to be non-reversible (as are all the liftings mentioned in this paper).

Jung, Shah and Shin [14] build on the work of Chen et al. by considering the prob-
lem of minimizing the size of the lifted Markov chain while still achieving a similar
speedup. This measure has applications to distributed algorithms for computing aver-
ages in networks, which the same authors discuss in [15].

We mention that all of the above lifting constructions, like our own, seek to elimi-
nate or reduce diffusive behavior in the Markov chain. This is also the idea behind other,
more classical techniques for speeding up Markov chain Monte Carlo algorithms, no-
tably Hybrid Monte Carlo [5] and Horowitz’s method [9] (see also [27] for more recent
work in this direction). However, to the best of our knowledge, these methods lack
rigorous analysis in non-trivial examples.

The problem of sampling leaves of a tree can be traced back at least to Knuth [17] in
his work on estimating the efficiency of branching programs. Knuth sampled leaves by
branching uniformly to children regardless of the number of leaves in the corresponding
subtree, which yields a non-uniform distribution {p!} over leaves &; he then used the
quantity p−1

! as an unbiased estimator of the number of leaves in the tree. This can be
seen as the origin of the rejection sampling approach mentioned earlier. A paper by
Rosenbaum [24] provides some further analysis and refinement of Knuth’s scheme.

The Markov chain approach to leaf sampling appeared in the work of Sinclair and
Jerrum [26], where the main application was to show robustness of approximate count-
ing for self-reducible problems. The version of the Sinclair-Jerrum chain presented here
is slightly more efficient than the original one. The same paper also applied this Markov
chain to give the first polynomial time sampling algorithm for subgraphs of a given
graph that have specified vertex degrees, under certain constraints on the maximum de-
gree, using the fact that analytic approximations exist for the number of such graphs
(see, e.g., [22]). For subsequent developments on this problem, see [11, 16, 1].

2 Preliminaries
2.1 Markov chains, liftings and mixing times
Markov chains. Let Ω be a finite state space. We shall specify Markov chains on Ω
using the following weighted graph framework.

5

A reversible chain is specified by an undirected graph G = (Ω, E) (possibly with
self-loops) with a positive weight Qe on each edge e ∈ E. Transitions from any vertex
u ∈ Ω are made with probabilities proportional to the edge weights: i.e., the transition
probability from u to v is P (u, v) = Q(u,v)

Wu
, where Wu =

∑
e%u Qe is the sum of the

edge weights incident at u.
This Markov chain is easily seen to be reversible with respect to the distribution

π(u) = Wu
W , where W :=

∑
u Wu (i.e., π is proportional to the weighted vertex de-

grees). As is well known, if G is connected and not bipartite (e.g., a single self-loop
suffices) then it is ergodic and converges to π from any initial state. Note that the edge
weights Qe are, up to scaling by W , the ergodic flows in the stationary distribution; i.e.,
Q(u,v) = Wπ(u)P (u, v) = Wπ(v)P (v, u) = Q(v,u).

The above framework can be extended to general, non-reversible Markov chains by
making G directed and requiring that the edge weights Qe satisfy the flow condition∑

u:(u,v)∈E Q(u,v) =
∑

u:(v,u)∈E Q(v,u) =: Wv for all v ∈ Ω. If G is strongly con-
nected and aperiodic (again, a single self-loop suffices) then it again converges to the
unique stationary distribution π(v) ∝ Wv . Again Qe is proportional to the ergodic flow
along (directed) edge e.

Mixing times. For an ergodic Markov chain (Xt)t≥0 on Ω with stationary distribu-
tion π, any x ∈ Ω and any ε ∈ (0, 1], we define

τx(ε) = min{t : ‖ηx,t − π‖ ≤ ε},

where ηx,t denotes the distribution of Xt (the state at time t) starting from initial state
X0 = x, and ‖ · ‖ is total variation distance. We will refer to τx(ε) as the mixing time
starting from state x. The mixing time, τ(ε), is defined as the maximum over x ∈ Ω of
τx(ε). We shall sometimes abuse terminology by dropping the dependence on ε from
the mixing time.

In this paper we will bound the mixing time using couplings. By a coupling of
a Markov chain, we mean a joint distribution (Xt, Yt)t≥0 such that the two random
processes (Xt)t≥0 and (Yt)t≥0, considered separately, each obey the transition rule for
the given chain. In addition, if Xt = Yt then we require Xt′ = Yt′ for all t′ ≥ t.
One way of defining such a coupling is to specify a suitable transition matrix indexed
by the product space Ω × Ω, thereby defining a Markov chain with this state space.
As long as the two marginal transition probabilities agree with the original Markov
chain, this defines a coupling, often referred to as a “Markovian coupling.” However, in
general, couplings are not required to be Markovian, and in fact, even conditioned on the
previous states Xt−1, Yt−1, it is perfectly possible for the state Xt to be correlated non-
trivially with the sequence of states Y0, . . . , Yt−2 (as will be the case for the coupling
we define in Section 4).

When we speak of couplings in the present paper, we will always mean that a class
of couplings has been defined, one for each possible initial pair of states (X0, Y0). We
say that the coupling has coalesced by time t if the event {Xt = Yt} occurs. The
following theorem relates the mixing time to the worst-case time until coalescence, and
dates back to work of Doeblin in the 1930’s (see [18]).

6

Theorem 2.1 (Coupling Theorem). Let (Xt, Yt)t≥0 be any coupling of a Markov
chain on state space Ω, and define

τcouple(ε) = max
(X0,Y0)∈Ω×Ω

min{t : Pr[Xt *= Yt] ≤ ε}.

Then, for every ε > 0, τ(ε) ≤ τcouple(ε).

Liftings. Let M and M̂ be Markov chains on finite state spaces Ω, Ω̂ respectively. We
use Q,π to denote the flows and stationary distribution of M, and Q̂, π̂ for the same
quantities in M̂.

We say that M̂ is a lifting of M if there is a function f : Ω̂ → Ω such that

Q(u,v) =
∑

x∈f−1(u), y∈f−1(v)

Q̂(x,y) for all u, v ∈ Ω. (1)

Informally, if we “collapse” M̂ by merging into a single state all states that have the
same image under f , and aggregate the flows between these merged states, then we
obtain precisely the chain M. Note that equation (1) can be viewed as a homomorphism
between flows. An immediate consequence of (1) is that π(v) =

∑
x∈f−1(v) π̂(x) for

all v ∈ Ω. The reader may wish to verify that the construction in Fig. 1 is indeed a valid
lifting. We observe that our definition of lifting based on flows makes it particularly easy
to design liftings for a given Markov chain (cf. the equivalent definition given in [2]).

Note that M̂ may be non-reversible even when M is reversible. Indeed, as Chen
et al. [2] show, to substantially speed up a reversible chain one must consider non-
reversible liftings. (Note that the lifting in Fig. 1(b) is non-reversible.)

2.2 Approximate counting and leaf sampling
Framework. Let T = (V,E) be a binary4 tree with root r, all of whose leaves are at
the same depth d. As discussed in the Introduction, our goal is to sample a leaf of T
u.a.r. We think of T as being very large, so we want an algorithm that is polynomial in
the depth d of T .

For each node v, let Nv denote the number of leaves in the subtree rooted at v. (Thus
N := Nr is the total number of leaves of T , and Nv = 1 for each leaf v.) We are given
an estimate Ñv of each Nv satisfying

(1 + δ)−1Nv ≤ Ñv ≤ (1 + δ)Nv, (2)

and Ñv = Nv = 1 for leaves v.5
Throughout the paper, unless otherwise stated, we will assume that δ lies in the

range [1d , 1]. The case when δ = O(1/d) is of little interest, since in this case, as noted

4 The assumption that the tree is binary is made for simplicity of presentation only.
5 Note that it is not necessary to know the structure of T a priori: since (2) implies that Nv = 0

(the subtree below v is empty) iff eNv = 0, we can actually infer the structure of T locally
from the estimates eNv for all vertices v.

7

in the Introduction, there is a simple linear time sampling algorithm based on rejection
sampling. On the other hand, for larger values, δ = Ω(1), our lifting construction cannot
offer more than a constant factor speedup over the original Sinclair-Jerrum Markov
chain, which we now describe.

The Sinclair-Jerrum chain. Sinclair and Jerrum [26] proposed a reversible Markov
chain for sampling leaves from a uniform distribution in polynomial time, even when
δ is an arbitrarily large constant (or indeed polynomially large in d). We specify the
chain by giving the flows Qe on each edge of T . We set Qe = Ñv , where v is the lower
endpoint of e. Additionally we introduce at each non-leaf node a self-loop of weight
Q(v,v) equal to the total weight of the other edges incident at v, and at each leaf v a
self-loop of weight Q(v,v) = 4d − 1. (Thus the self-loop probabilities are 1

2 for non-
leaves and 1 − 1

4d for leaves.) The self-loops of 1
2 are a standard device to make the

chain aperiodic (the resulting chain is usually called “lazy”). The large self-loops at the
leaves are included to ensure that the stationary distribution puts large weight on the
leaves6.

As discussed above, the stationary distribution is given by π(v) ∝ Wv , where
Wv :=

∑
e%v Qe is the sum of the edge weights incident at v. Now for any non-leaf

node v, since Wv = 2(Ñv +
∑

u a child of v
Ñu) we have Wv ∈ [4(1+δ)−1Nv, 4(1+δ)Nv].

And for any leaf v we have Wv = 4d. This implies the following properties of the sta-
tionary distribution π:

1. π is uniform over the leaves.
2.

∑
v a leaf π(v) ≥ 1

2+δ . [To see this, note that the sum of Wv over all nodes v in any
level above the leaves is at most 4(1 + δ)

∑
v Nv = 4(1 + δ)N , while the sum

of Wv over leaves is 4dN .]

Therefore, we can sample leaves as follows. Simulate the Markov chain, starting
from the root, until the distribution is close to π. If the final node is a leaf then output
it, else fail and repeat. This gives us an almost uniformly distributed leaf (within any
desired variation distance ε) in expected time O(τr(ε)), where τr(ε) is the mixing time
starting from the root r. The following theorem, which is a slightly improved version
of the original result of Sinclair and Jerrum [26], bounds the mixing time. A proof is
given in the full version of the paper.

Theorem 2.2. For any δ ≥ 0, the mixing time of the Sinclair-Jerrum chain starting
from the root satisfies τr(ε) = O(d2(1 + δ)2 log(dε−1)).

Thus, for δ bounded by a constant (which is our range of interest in this paper), the
mixing time is Õ(d2). (The Theorem actually also shows that the mixing time remains
polynomial for any δ ≤ poly(d).)

We note that a lower bound of Ω(d2) follows easily, even in the case where the
counting estimates are all exact (i.e., Ñv = Nv ∀v), since the height of the walking
particle then behaves like symmetric random walk on [0, d]. Our main goal in this paper
is to give a lifting that improves the above mixing time to O(δd2), thus beating the
Ω(d2) lower bound for all δ = o(1).

6 The construction in [26] did not include these large self-loops; this simple modification actu-
ally leads to greater efficiency, since without it a leaf is sampled only with probability O(1

d),
leading to a factor O(d) overhead in the time to output a leaf.

8

3 The lifted chain
We will define a non-reversible lifted Markov chain having exactly two states for every
node of the tree, with the exception of the root which will only have one lifted state.
Roughly speaking, one set of these nodes correspond to “particles with downward mo-
mentum,” and the others to “particles with upward momentum.” The root and the leaves
are exceptions. In the case of the root there is no need for the “upward” copy, so we re-
tain just a single root node. In the case of a leaf we correspondingly have no need for a
“downward” copy; however, we do need a second copy to act as a “trap” node, whose
purpose will be to give the distribution of the departure time from the leaf a heavier tail
than that provided by the self-loop in the original chain. We describe our construction
in three steps:

Step 1: Lazy edges become 4-cycles. Let e be any non-loop edge in the original
tree, joining nodes v, w, and with bidirectional flow Qe through it. In the lifted chain,
the original node v corresponds to two nodes, v+ and v−, and likewise for w. Suppose v
is the parent of w. The new chain has a directed 4-cycle, (v+, w+, w−, v−), with each of
the four directed edges carrying flow Qe. Under the “projection” sending v+, v− -→ v
and w+, w− -→ w, this directed 4-cycle maps down to the original bidirectional flow Qe

on edge e, plus self-loops at v and w, each also of flow Qe. Note that Qe is exactly the
contribution of edge e to the lazy self-loops at v, w in the original chain. (See Fig. 2(a).)

v+ v−

w−w+

v

w
Qe

Qe Qe

Qe

Qe

Qe

Qe

v+

v

w

Qe Qe

Qe

Qe

Qe

v−

wtrap

wmain

4d−1 1/(δd)

4d−1−2/(δd)(a) (b)

Fig. 2. (a) Lifting of an internal edge {v, w}. (b) Lifting of a leaf node w.

Applying the above construction to every non-loop edge e in the original tree yields
a directed flow which exactly projects back onto the original undirected flow, with the
sole exception of the large self-loops on the leaves.

Before proceeding, we first modify the above construction slightly. In the case when
w is a leaf and e = {v, w} is the edge joining it to its parent, our lifted flow looks
slightly different. In this case, the self-loop of flow Qe at v, and the bidirectional flow
Qe on e lift to a directed 3-cycle, (v+, wmain, v−), with each of the three edges carrying
flow Qe. Similarly, in the case when v = r is the root and e = {v, w} is the edge joining
it to one of its children, the self-loops of flow Qe at v and w, and the bidirected flow Qe

on e lift to a directed 3-cycle, (r, w+, w−), plus a self-loop at r, with each of these four
edges carrying flow Qe.

Step 2: Set traps at the leaves. Let w be any leaf of the original tree. In the lifted
chain, there will be two nodes, wmain and wtrap, corresponding to w. We next describe

9

the lifted version of the self-loop of flow 4d − 1 at w. This consists of a self-loop of
flow 4d− 1− 2

δd at wtrap, together with a bidirectional flow of 1/(δd) between wmain

and wtrap. (See Fig. 2(b).)
Step 3: Cancel the crossing edges. After the above two steps we have a lifted flow

which projects down onto the original flow. However, in order to avoid the diffusive
behavior of the original Markov chain, we need to reduce the “crossing flows” between
nodes v+ and v−. We do this in a systematic way which preserves the projection onto
the original flow. Let v be a non-leaf node in the tree, with flow Qup to its parent and
aggregated flow Qdown to its children. Then, as described in Step 1, we have crossing
flows of value Qup from v+ to v−, and Qdown from v− to v+.

Let Qmin = min{Qup, Qdown}. We now cancel Qmin of the crossing flow in each
direction, replacing it with self-loops at v+ and v−, each of flow Qmin. This leaves
us with crossing flow in just one direction, of value |Qup − Qdown|. Note that this
modification does not violate the flow condition, nor does it change the projection onto
the original Markov chain. (See Fig. 3.)

w+
1 w−1 w−2w+

2

v+ v−

u−u+

Q2

Q2Q2 Q1
Q1

Q1

Qup

Qup Qup

Qup

Qdown

w+
1 w−1 w−2w+

2

v+ v−

u−u+

Q2

Q2Q2 Q1
Q1

Q1

Qup Qup

Qup

Qdown Qdown

Qup−Qdown

Fig. 3. Cancelling the crossing edges. Here Qdown = Q1 + Q2, where Q1, Q2 are the flows
between node v and its two children. The diagram assumes that Qup ≥ Qdown.

Since each step of the above construction preserves the lifting condition (1), the
resulting chain is indeed a lifting of the Sinclair-Jerrum chain defined in Section 2.2.
An immediate consequence is that the stationary distribution π̂ is the pull-back of π
along the projection, and hence has the desired properties on the lifted copies of the
leaves, namely that it projects down to a uniform distribution over the leaves having
probability mass at least 1/(2+δ). Thus, in order to use our lifted chain as an improved
sampler of leaves, all that remains is to prove that its mixing time is faster than the
original undirected chain.

4 Analysis of the lifted chain
In this section we prove our main result, which is the following bound on the mixing
time of the lifted chain of the previous section. As we have noted earlier, the mixing
time overcomes the Ω(d2) diffusion lower bound for the original chain for all δ = o(1),
and interpolates smoothly between the trivial O(d) rejection sampling algorithm for
δ = O(1

d) and the original Õ(d2) Sinclair-Jerrum algorithm for δ = Ω(1).

10

Theorem 4.1. For any δ ∈ [1d , 1], the mixing time of the lifted Markov chain defined in
Section 3 satisfies τ(ε) = O(δd2 log(1/ε)).

Proof. We proceed by constructing a non-Markovian coupling for the lifted chain. Let
X0 *= Y0 be arbitrary states of this lifted chain. We will define a coupled joint evo-
lution (Xt, Yt)t≥0 in such a way that each of (Xt) and (Yt), considered separately,
obeys the law of our lifted Markov chain. We will do this in three asynchronous stages.
First, let (Xt), (Yt) each run independently until reaching the root, r, at times ρX , ρY ,
respectively.

Subsequently, let both (Xt) and (Yt) follow the same trajectory until they reach a
“leaf trap” node, at respective times σX and σY = σX +(ρY −ρX). Since ρX may not
equal ρY , this portion of the coupling is non-Markovian.

The third stage is empty for whichever chain had reached the root later, and lasts for
|ρX − ρY | steps for the chain that reached the root earlier. This means that at the end
of the third stage, the same (random) number of time steps will have elapsed for both
chains. Also note that, since both chains begin stage 3 at the same leaf trap node, there
is at least a probability of

(1− 1/((δd)(4d− 1− δd)))|ρX−ρY | = exp(−O(|ρX − ρY |/(δd2))) (3)

that both chains remain at this node throughout stage 3, and have therefore coalesced
by the end. If not, we can simply start over again with the first stage.

Our analysis of this coupling rests on two lemmas.

Lemma 4.2. There exists an absolute constant C such that, from any initial node X0 =
v, the expected hitting time from v to the root is ≤ Cδd2.

Proof. We split the proof into three cases, according to whether v is a downward node,
a leaf node, or an upward node. (In the case when v is the root, the hitting time is 0.)
Case 1: v = w+ is a downward node. Since v is a downward node, every non-self-loop
move either increases the depth by 1, or crosses to a rootward-oriented node. Hence,
since the self-loop probability at v is at most 1/2, in expected time at most 2d = O(δd2)
we will reach one of the other two cases. Thus, it suffices to handle cases 2 and 3.
Case 2: v = wmain or v = wtrap is a leaf node. Let u denote the parent of w in the
original tree. Now, in our lifted chain, starting from X0 = v, the first node reached by
Xt that is not in {wmain, wtrap} must be u−. What is the hitting time to u−? Solving
a system of two linear equations in two unknowns, we find that this hitting time is 4d
when starting from wmain, and (4δd2−δd−1+4d) when starting from wtrap. Since in
both cases this is O(δd2), and u− is an upward node, it thus suffices to handle case 3.
Case 3: v = w− is an upward node. Let u be the parent of w in the original tree. As
in case 2, note that, starting from X0 = w−, the first node that will be reached by Xt

that does not project into the subtree rooted at w must be u−.
Let Qup = Ñw denote the flow up from w, and Qdown the aggregated flow down

from w to its children. When Qup ≥ Qdown (as in Fig. 3), the only edges out from w−

are a self-loop and the edge (w−, u−), so it is easy to calculate that the expected hitting
time from w− to u− equals 1 + Qdown/Qup, which is at most 1 + (1 + δ)2 = O(1).

Claim. Suppose Qup < Qdown. Let H denote the hitting time from w− to u−. Then
E(H) = O(δd).

11

Assuming the Claim is true, we have shown that the expected hitting time from w−

to u− is always O(δd). It follows by induction that the hitting time from w− to r is
O(δd2), since the depth of w is at most d, which completes our analysis of case 3 and
the proof of the lemma.

All that remains is to prove the Claim. To see this, consider what happens to our
lifted walk if we re-route the flow on the edge (w−, u−) to instead go along the edge
(w−, w+). In this case, starting from w−, we can never leave the subtree rooted at w,
and in fact the random walk is exactly the same as would be produced by our lifting
construction applied just to the subtree rooted at w, except that the transition probabil-
ities at the leaves are still based on d rather than on the height of the subtree below w.
Let us compute the stationary probability of w− in this modified chain.

Using the well-known fact that the stationary probability at any node is the recipro-
cal of the expected return time to that node, it follows that

1
π̃(w−)

= 1 +
Qdown

Qdown + Qup
E(H ′), (4)

where H ′ is the hitting time from w+ to w−, and π̃ is the stationary distribution for
the modified lifted chain rooted at w. A straightforward calculation yields π̃(w−) ≥
1/((1 + δ)2(2d + i)) ≥ 1/(4d), where i is the height of node w, whence by (4) it
follows that E(H ′) ≤ 2(4d− 1).

Returning now to the full lifted chain, since from w− the flows out are Qup to u−,
Qup in a self-loop, and Qdown −Qup to w+, it follows that

E(H) = 1 +
Qup

Qdown + Qup
E(H) +

Qdown −Qup

Qdown + Qup
E(H ′),

which implies

E(H) = 1 +
Qup

Qdown
+

(
Qdown −Qup

Qdown

)
E(H ′) ≤ 2 + 2Pcross(w−)E(H ′),

where Pcross(w−) = O(δ) is the transition probability from w− to w+ in the lifted
chain. Since we already know that E(H ′) = O(d), it follows that E(H) ≤ 2+O(δd) =
O(δd). This concludes the proof of the Claim, and of Lemma 4.2. ./

Lemma 4.3. There exists an absolute constant C ′ such that the expected hitting time
from the root to the set of “leaf trap” nodes is ≤ C ′δd2.

Proof. Consider an infinite run of the Markov chain, and partition the positive integers
into epochs, where the even epochs end at the first time (after they start) that the root
is reached, and the odd epochs end at the first time (after they start) that a leaf trap
is reached. Let us denote by L the set of all leaf trap nodes. Since no leaf traps are
visited during the odd epochs, the fraction of time in even epochs is at least π(L).
But the average length of an even epoch is at most Cδd2, by Lemma 4.2. Hence the
average length of an odd epoch must be at most Cδd2/π(L), which is O(δd2) since we
arranged for π(L) = Θ(1). This concludes the proof, as the average length of an odd
epoch equals the expected hitting time from the root to the set of leaf trap nodes. ./

12

We now continue with the proof of Theorem 4.1. By Lemmas 4.2 and 4.3, the ex-
pected total length of stages 1 and 2 combined is O(δd2). Hence, by Markov’s inequal-
ity, with probability at least 7/8, the total length is at most eight times the expecta-
tion, which is O(δd2). An application of the triangle inequality implies that therefore
E(|ρX − ρY |) = O(δd2) (where the O hides an explicit constant of moderate size). By
Markov’s inequality, it follows that with probability Ω(1), |ρX − ρY | = O(δd2). By
(3), the coupling has coalesced by the end of the third stage with probability Ω(1). Thus
the chain coalesces within O(δd2 log(1/ε)) time steps with probability at least 1 − ε.
The corresponding bound on the mixing time follows from Theorem 2.1. ./

5 Conclusions and future work
We have shown that non-reversible liftings can be used to speed up MCMC sampling
(and hence also approximate counting) algorithms, even without the high degree of
symmetry present in previous examples. Although it is still highly specialized, the class
of Markov chains we consider, being random walks on trees with an approximation
oracle for the number of leaves, is nevertheless natural in the context of computation,
and encompasses many combinatorial problems with interesting and complex structure.

The first open question is whether our construction can be improved to reduce the
mixing time of the lifted chain down to the asymptotically optimal value O(ρ), where
ρ = O(d(1 + δ)2) is the flow parameter for the original chain, while retaining the local
character of the current construction which makes it a practical tool for sampling. In the
case of large bias, δ = Ω(1), our current lifting exhibits (potentially) nearly as much
diffusive behavior as the unlifted chain; intuitively this happens because “excursions”
upward or downward may typically be of length 1/δ = O(1), as is the case for symmet-
ric random walk. However, at least in the special case when the tree is a path, we have
developed a more complex (yet still local) construction that eliminates this diffusive be-
havior to a large extent; the idea is to keep track of multiple momentum values (rather
than just “up” and “down”). This will be discussed in the full version of the paper.

A second natural question is whether our techniques can be profitably applied to
other Markov chains used in sampling algorithms. Prime candidates here are Markov
chains for matchings [12, 13] and for sampling points in a convex body [6, 21]. The
latter example seems particularly intriguing as there is a well-defined notion of “di-
rection” along which momentum can be preserved. Indeed, we note that lifting ideas
have already appeared, albeit not explicitly, in this example: the “hit-and-run” Markov
chain [19], which at each step moves to a random point on a randomly chosen chord of
the body through the current point, has the flavor of a “lifting” of the more local “ball
walk”[20],7 which moves to a random point within a ball centered at the current point.
We conjecture that understanding this connection more formally within a lifting frame-
work may illuminate previous work on random walks on convex bodies, and perhaps
even lead to further algorithmic improvements.

References
1. M. BAYATI, J.-H. KIM and A. SABERI. A sequential algorithm for generating random

graphs. Proc. APPROX-RANDOM 2007, pp. 326–340.
7 See the full version for a more precise discussion of this point.

13

2. F. CHEN, L. LOVÁSZ and I. PAK. Lifting Markov chains to speed up mixing. Proc. 17th
Annual ACM Symposium on Theory of Computing, 1999, pp. 275–281.

3. S.R. DAS and A. SINCLAIR. A Markov chain Monte Carlo method for derivative pricing
and risk assessment. J. Investment Management 3 (2005), pp. 29–44.

4. P. DIACONIS, S. HOLMES and R. NEAL. Analysis of a nonreversible Markov chain sampler.
Annals of Applied Probability 10 (2000), pp. 726–752.

5. S. DUANE, A. KENNEDY, B. PENDLETON and D. ROWETH. Hybrid Monte Carlo. Physics
Letters B 195 (1987), pp. 216–222.

6. M. DYER, A. FRIEZE and R. KANNAN. A random polynomial-time algorithm for approxi-
mating the volume of convex bodies. JACM 38 (1991), pp. 1–17.

7. M. HILDEBRAND. Rates of convergence of the Diaconis-Holmes-Neal Markov chain sam-
pler with a V-shaped stationary probability. Markov Proc. Rel. Fields 10 (2004), pp. 687–704.

8. M.HILDEBRAND. Analysis of the Diaconis-Holmes-Neal Markov chain
sampler for log-concave probabilities. Preprint, 2002. Available from
http://nyjm.albany.edu:8000/∼martinhi/preprints.html

9. A.M. HOROWITZ. A generalized guided Monte Carlo algorithm. Physics Letters B 268
(1991), pp. 247–252.

10. S. JANSON. The probability that a random multigraph is simple. Combinatorics, Probability
and Computing 18 (2009), pp. 205–225.

11. M. JERRUM and A. SINCLAIR. Fast uniform generation of regular graphs. Theoretical Com-
puter Science 73 (1990), pp. 91–100.

12. M. JERRUM and A. SINCLAIR. Approximating the permanent. SIAM Journal on Computing
18 (1989), pp. 1149–1178.

13. M.JERRUM, A.SINCLAIR and E.VIGODA. A polynomial-time approximation algorithm for
the permanent of a matrix with non-negative entries. JACM 51 (2004), pp. 671–697.

14. K. JUNG, D. SHAH and J. SHIN. Distributed averaging via lifted Markov chains. Preprint,
August 2009. Available at arxiv.org/pdf/0908.4073v1

15. K. JUNG, D. SHAH and J. SHIN. Fast and slim lifted Markov chains. Allerton Conference
on Communication, Control and Computing, 2007.

16. J.-H. KIM and V. VU. Generating random regular graphs. Proc. 21st Annual ACM Sympo-
sium on Theory of Computing, 2003, pp. 213–222.

17. D. KNUTH. Estimating the efficiency of backtrack programs. Mathematics of Computa-
tion 29 (1975), pp. 121–136.

18. T. LINDVALL. Lectures on the coupling method. Dover, Mineola, NY, 2002.
19. L. LOVÁSZ. Hit-and-run mixes fast. Mathematical Programming 86 (1998), pp. 443–461.
20. L. LOVÁSZ and M. SIMONOVITS. Random walks in a convex body and an improved volume

algorithm. Random Structures & Algorithms 4 (1993), pp. 359–412.
21. L. LOVÁSZ and S. VEMPALA. Simulated annealing in convex bodies and an O∗(n4) volume

algorithm. J. Computer and System Sciences 72 (2006), pp. 392–417.
22. B. MCKAY. Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars Com-

binatorica 19A (1985), pp. 15–25.
23. B.D. MCKAY and N. WORMALD. Asymptotic enumeration by degree sequence of graphs

with degrees o(n1/2). Combinatorica 11 (1991), pp. 369–382.
24. P. ROSENBAUM. Sampling the leaves of a tree with equal probabilities. Journal of the Amer-

ican Statistical Association 88 (1993), pp. 1455–1457.
25. A. SINCLAIR. Improved bounds for mixing rates of Markov chains and multicommodity

flow. Combinatorics, Probability and Computing 1 (1992), pp. 351–370.
26. A. SINCLAIR and M. JERRUM. Approximate counting, uniform generation and rapidly mix-

ing Markov chains. Information & Computation 82 (1989), pp. 93–133.
27. K. TURITSYN, M. CHERTKOV and M. VUCELJA. Irreversible Monte Carlo algorithms for

efficient sampling. Preprint, 2008. Available at arxiv.org/pdf/0809.0916v2

14

