Random Walks on Truncated Cubes
and Sampling 0-1 Knapsack Solutions *

BEN MORRIs’ ALISTAIR SINCLAIR?

July 12, 2002

Abstract

We solve an open problem concerning the mixing time of symmetric random walk on the n-
dimensional cube truncated by a hyperplane, showing that it is polynomial in n. As a conse-
quence, we obtain a fully-polynomial randomized approximation scheme for counting the feasible
solutions of a 0-1 knapsack problem. The results extend to the case of any fixed number of hy-
perplanes. The key ingredient in our analysis is a combinatorial construction we call a “balanced
almost uniform permutation,” which seems to be of independent interest.

1 Introduction

For a positive real vector a = (a;)j; and real number b, let {2 denote the set of 0-1 vectors
x = (x;)j~, for which

n
a-szaixi <b.

i=1
Geometrically, we can view {2 as the set of vertices of the n-dimensional cube {0,1}" which lie on
one side of the hyperplane a - x = b. Combinatorially, {2 is the set of feasible solutions to the 0-1
knapsack problem defined by a and b: if we think of the a; as the weights of a set of n items, and
b as the capacity (weight limit) of a knapsack, then there is a 1-1 correspondence between vectors
x € {2 and subsets of items X whose aggregated weight does not exceed the knapsack capacity,
given by X = {i: z; = 1}. We shall write a(X) for the weight of X, i.e., a(X) = > ,cx a;.

This paper is concerned with the problem of computing |{2|, i.e., counting the number of feasible
solutions to the knapsack problem. The problem is #P-complete in exact form, so we aim for a good
approximation algorithm, specifically a fully-polynomial randomized approzimation scheme (fpras).
By a well-known relationship based on self-reducibility [12, 11], this is equivalent to constructing a
polynomial time algorithm for sampling elements of {2 (almost) uniformly at random.

In recent years there has been a steady stream of results of this kind for #P-complete counting
problems (see, for example, [13, 11, 8] for surveys); however, the 0-1 knapsack problem still stands

*A preliminary version of this paper appeared in Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science, October 1999, pp. 230-240.

"Department of Statistics, Evans Hall, University of California, Berkeley CA 94720. Email:
morris@stat.berkeley.edu. Supported by NSF graduate and post-doctoral fellowships and by NSF grant ECS-
9873086.

tComputer Science Division, Soda Hall, University of California, Berkeley CA 94720-1776. Email:
sinclair@cs.berkeley.edu. Supported in part by NSF grants CCR-9505448 and CCR-9820951.

as one of a small handful of canonical problems that have so far resisted attack. Indeed, it has been
quoted as an open problem in several places [4, 11, 13, 15]. This interest stems in part from its
combinatorial significance and its appealing geometric structure, and in part from the challenge it
poses to existing methods. In this paper, we resolve this issue by constructing an fpras for the 0-1
knapsack problem. Along the way we introduce some new machinery that we believe will be useful
for tackling other problems of a similar flavor, and possibly beyond.

Almost all known approximate counting algorithms proceed by simulating a suitable random
walk on the set of interest (2. The walk is constructed so that it converges to the uniform distribution
over §2; simulation of the walk for sufficiently many steps therefore allows one to sample (almost)
uniformly from (2, and thus to approximate [{2|. In any application of this method, the key step
is to establish that the random walk is rapidly mizing, i.e., gets close to the uniform distribution
after a polynomial number of steps.

In the case of 0-1 knapsack solutions, a particularly simple and natural random walk on (2 has
been proposed. If the current state is X C {1,...,n}, then

1. pick an item i € {1,...,n} uniformly at random (u.a.r.);

2. if i € X, move to X — {i}; if i ¢ X and a(X U {i}) < b, move to X U {i}; otherwise, do
nothing.

This process may equivalently be viewed as a nearest neighbor random walk on the portion of the
cube {0,1}" truncated by the hyperplane a - x = b, in which the probability of moving to any
neighbor is %; we will call this graph G. To avoid technical issues involving periodicity, we add
to every state a holding probability of %: i.e., with probability % do nothing, else make a move as
described above.

It is easy to check that this random walk converges to the uniform distribution over 2. However,
despite much recent activity in the analysis of mixing times of random walks, this deceptively simple
example is still not known to be rapidly mixing. There is strong geometric intuition that it should
be: random walk on the entire cube {0,1}" is rapidly mixing, and truncation by a hyperplane
presumably cannot create “bottlenecks” that would severely slow down convergence. Nonetheless,
the best known bound on the mixing time remains exp(O(y/n(logn)/?)) [4], which beats the trivial
bound of exp(O(n)) but is still exponential.

In this paper we prove that the above random walk is indeed rapidly mixing, with a mixing time
of O(ng/ 2+€) steps for any € > 0. This immediately implies the existence of an fpras for counting
0-1 knapsack solutions.

We also present a non-trivial extension of these results to the case of multiple hyperplanes (more
precisely, multiple constraints of the form a;-x < b; for non-negative vectors a]-).1 Here we are also
able to prove a mixing time of O(n®) (where c is a constant) for any fixed number of hyperplanes.
(The exponent ¢ depends on the number d of hyperplanes, but this is inevitable as it is not hard
to prove a lower bound of n%® on the mixing time. Moreover, it is possible to encode NP-hard
problems if the number of hyperplanes is permitted to depend on n, so we would not expect any
polynomial time sampling algorithm for this case.)

To prove rapid mixing we use a technique based on multicommodity flow (see [16]): if we can
route unit flow between each pair of vertices X,Y in G, simultaneously in such a way that no edge
carries too much flow, then the random walk is rapidly mixing. This technique is well known, but
most previous applications (e.g., [9, 10]) have made use of “degenerate” flows in which all X — Y

!We mention in passing that all our results extend from the 0-1 case to more general cubes of the form [0,..., L]".
This extension is purely technical and does not require any substantial new ideas, so we omit the details.

flow is routed along a single canonical path (though see [1, 16] for exceptions). Our analysis seems
to rely essentially on spreading out the flow along multiple paths.

The key ingredient in our analysis is the specification of these paths, which we achieve via an
auxiliary combinatorial construction that we believe is of independent interest and will find further
applications elsewhere. Note that a shortest path between a pair of vertices X,Y of G can be
viewed as a permutation of the symmetric difference X @ Y, the set of items that must be added
to or removed from the knapsack in passing from X to Y. A natural approach to defining a good
flow is to use a random permutation, so that the flow is spread evenly among all shortest paths
and no edge is overloaded. However, a fundamental problem with this approach is that a random
permutation will tend to violate the knapsack constraint, as too many items will have been added
at some intermediate point. Slightly less obviously, a symmetric problem arises because a random
permutation will tend to remove too many items at some intermediate point, causing congestion
among edges of the hypercube near the origin. To avoid these problems, we want our permutations
to remain “balanced,” in the sense that items are added and removed at approximately the correct
rates throughout the path; but we also want them to be “sufficiently random” to ensure a well
spread flow. More specifically, it turns out that we require the distribution of the initial segment
{n(1),...,m(k)}, viewed as an unordered set, to be “almost uniform.” We call permutations with
these properties balanced almost uniform permutations. A main contribution of this paper is to
show the existence of such permutations.

The remainder of this paper is structured as follows. We begin with some necessary background
on flows and rapid mixing in section 2. We then establish rapid mixing of the knapsack random
walk in the technically simpler case when the item weights a; lie in the range [1, B], for some
constant B. This analysis is in two parts: in section 3 we show how to construct balanced almost
uniform permutations, and in section 4 how to use these to define a good flow. We then extend
everything to the general case in section 6. The extension to multiple constraints is handled in
section 6; this involves extending our construction of balanced almost uniform permutations from
scalar weights to vectors in arbitrary dimension. This again may be of independent interest.

2 The mixing time and multicommodity flow

As indicated earlier, we will view elements of (2 either as 0-1 vectors x = (z;)j-; or, more commonly,
as subsets X C {1,...,n}, under the equivalence X = {i : ; = 1}. Recall that a(X) = Y} ,cx a;
is the weight of X, so that 2 = {X : a(X) < b}. Without loss of generality, we will assume that
a; <b for all 7.

We consider the symmetric random walk on the portion G, of the hypercube {0,1}" defined in
the Introduction. This walk is connected (all states communicate via the zero vector) and aperiodic
(because of the holding probabilities), and since the transition probabilities are symmetric, the
distribution at time ¢ converges to the uniform distribution over {2 as ¢ — oo, regardless of the
initial state. Our goal is to bound the rate of convergence as measured by the mizing time, defined
as

Tinix = maxmin{t NPy —U|| < % vt > t},
Xo

where X is the initial state, P; is the distribution of the walk at time ¢, ¢/ is the uniform distribution
over (2, and || - || denotes variation distance.? Thus Tpix is the number of steps required, starting
from any initial state, to get the variation distance from the uniform distribution down to i. By

*For probability distributions y, on 2, the variation distance is defined as ||p — v|| = 1 Yveo (r) —v(z)| =
maxsc o |u(S) — v(S)]-

standard facts about geometric convergence, O(Tmicloge™!) steps suffice to reduce the variation
distance to any desired e.

Fairly standard techniques (see [16]) allow us to estimate Tmyix by setting up a suitable multi-
commodity flow on the underlying graph G. Our task is to route one unit of flow from X to Y,
for each ordered pair of vertices X,Y € (2 simultaneously. For any such flow f, and any oriented
edge e in G, let f(e) denote the total flow along e; i.e., f(e) is the sum over all ordered pairs
X,Y of the X — Y flow carried by e. Define C(f) = ﬁ max, f(e), the maximum flow along any
edge normalized by |£2|, and L(f) to be the length of a longest flow-carrying path. The following
theorem?® is a special case of results in [16] (see also [3, 2]):

Theorem 2.1 [16] For any flow f, the mizing time is bounded by Tmix < 4n(n + 1)C(f)L(f).

We will bound myix by constructing a flow with small values of C and £. To bring out the main
conceptual ideas, we will focus initially on what we term the bounded ratio case, where all weights a;
lie in the range [1, B] for some constant B. We will derive a bound of the form 7, = nOB?) in
this case. By introducing some additional technical complications, we will go on to get a uniform
bound of Tpix = O(n9/2+5) for the general case, for any € > 0.

Remark: We note that our bound on the mixing time is only slightly larger than the upper bound of
O(n?) which one obtains by applying Theorem 2.1 to the hypercube itself (without the hyperplane
constraint): see, e.g., [17]. This is in turn somewhat off from the true mixing time of O(nlogn).
On the other hand, it is fairly easy to obtain a lower bound of Q(n?/logn) for the mixing time
of the truncated cube: consider, for example, an instance in which logn items have weight 1, the
other n — logn items have weight n, and the knapsack capacity is b = n. O

As explained in the Introduction, our flow will be based on the idea of a balanced almost uniform
permutation. We devote the next section to this topic and then return to the knapsack random
walk in section 4.

3 Balanced almost uniform permutations

We begin by defining the notions of “balanced” and “almost uniform” permutations. We will write
Sm to denote the set of all permutations of {1,...,m}.

Definition 3.1 Let {w;}", be a set of real (not necessarily positive) weights, with M = max; |w;]|
and W = 3", w;. A permutation m € Sy, is balanced if, for every k with 1 < k < m,

k
min{W,0} — M < Zwﬁ(i) < max{W,0} + M. (1)
i=1
Thus a balanced permutation is one whose partial sums do not fluctuate widely. In particular, if
>, w; = 0 then condition (1) becomes | °F_, wriy| < M.

Definition 3.2 Let m be a random permutation in S,,, and let A € R. We call m a A\-uniform
permutation if)

Prir{l,... .k} =U] <A x ()~ (2)
for every k with 1 <k < m and every U C {1,...,m} of cardinality k. (Here w{1,...,k} denotes
the initial segment {m(1),...,m(k)}.)

3We note that this theorem applies to symmetric random walk on any connected subgraph of the hypercube {0,1}",
in which transitions are made to each neighbor with probability %

Note that, if 7 were a uniform random permutation, the probability in (2) would be exactly (7;)71

for every U. In a A-uniform permutation the probabilities are permitted to vary with U, but only by
an amount specified by the parameter A. In our applications, A will be a fixed polynomial function
of m; in this case we call © an almost uniform permutation.

The perhaps surprising result of this section is that, if the ratios of the weights are bounded,
it is possible to construct an almost uniform permutation that is guaranteed to be balanced. In
section 5.1 we will show how to dispense with any restrictions on the weights.

Theorem 3.3 Let {w;}I~, be any set of weights with |w;| € [1,B] for a constant B > 1. Then
there exists a balanced almost uniform permutation © on {w;}.

Proof: Let M = max;|w;| and W = 7", w;. Assume first that W = 0; we will show how to
discharge this assumption later. Let I} = {i : w; > 0}, Iz = {i : w; < 0}, my = |[;| and mg = |I3|.
Define the means puy = le > ier, wi and pp = —mLQ > icr, wi- Note that myu; = mops since W = 0.

Consider an arbitrary permutation v € S,,. This induces permutations v, v on I, I» respectively.*
We call 11 a-good if, for every ki with 1 < ky < mjq,

k
‘21: Wy, (i) — k1u1‘ <alM - 1)\/71‘, (3)
i=1

where k} = min{ky,m; — k1}, with an analogous definition for v,. We call v a-good if both 14
and vy are a-good. Thus in a good permutation, the partial sums of both positive and negative
weights are close to their expected values.

Now suppose v is chosen u.a.r. from S,,. A routine application of Hoeffding’s bound to the
partial sums (see Lemma A.1.1 in the Appendix) yields

Pr[v is not a-good] < 2m exp(—2a?). (4)

If we set @ = v/Inm, this probability is at most % < % for m > 4.

Consider now a modified sample space in which v is selected u.a.r. among all vInm-good
permutations. We shall write Pr ;¢ for probabilities in the original uniform space to distinguish
them from those in this modified space. By the above calculation, for any event £ C S,,, we have

Pr[€] < 2Pryni¢[€]. (5)

We are now in a position to construct our balanced almost uniform permutation. Let v be
chosen u.a.r. from all vInm-good permutations, and let v;,vo be the induced permutations on
I, I,. To get a balanced permutation w, we interleave v; and vy as follows. We take the first
element from vy, i.e., set (1) = v1(1). Thereafter, for each £ > 1 in turn we set 7(k) to be the
next element in vy if Zf;ll Wr(;) > 0, and the next element in v otherwise. Since 3 ; w; = 0 this
process is well-defined and yields a permutation © € S,,. Moreover, since |w;| < M for all 7 it is
clear that 7 satisfies the balance condition (1).

We now need to verify the uniformity condition (2), for A = poly(m). Let U C {1,...,m} be
arbitrary with |U| =k, and let Uy = U NI, Us = U N Iy, k1 = |Uy|, ka = |Uz|. Then we have

PI‘[T({I,...,k}ZU] S Pr[ul{l,...,kl}:Ul and VQ{l,...,kQ}:UQ]
S QPI‘unif[Ul{l, [N ,kl} = U1 and Vg{l, e ,kQ} = UQ]

2
- v
k1/ \ko
‘Formally, we view v, as a bijection from {1,...,m1} to Ii, and similarly for v». Throughout we shall adopt this

convention where appropriate, without comment.

where the second inequality follows from (5). Now some routine calculations involving Stirling’s for-
mula (see Lemma A.1.2 in the Appendix) allow us to relate (") (,”) to (7211’]?22) = (7). Specifically,
(6) becomes
Cm?!/? Pyl 11
Prin{l,...,k} =U] < TZ exp 2||(—+—) , (7)

%) a(l —a)\my; ms
k [= mika—mokq

where a = -, , and C' > 0 is a universal constant. The quantity [measures the
deviation of the numbers ki, ko of positive and negative elements in U from the “expected” values
am1,ams respectively. But since 7 is balanced, v is good, and the element sizes do not vary too
much, |/| cannot in fact be very large. To formalize this intuition, note first that

mao

I = (kapo — k1p1)——, 8
(K2p2 1#1)Mm (8)
since 2 = /:—; Now by the goodness condition (3) on v, v, we have
k k1 ko
‘Z Wr(i) — (ki — k2M2)‘ = ‘(Z Wy, (i) + wa(i)) — (k1 — kg,uQ)‘
i=1 i=1 i=1

< 2M —1)Vk* Inm,
where k* = min{k, m — k}. Since 7 is balanced we also know that | 2% _, wr(;)| < M, and therefore
k1o — kapa| < 2(M — 1)VE* Inm + M.
Together with (8) and our assumption that M < B, this implies the following bound on ||:

Il < (2B =)VE Tnm + B) =
Him

Plugging in this value for |I|, the exponent in (7) is bounded above, for sufficiently large m, by

m3 m? m

5(B —1)%k*1
()K" nm pu2m? k(m — k) mymg

k*m 1
k(m — k) pipo
< 10(B —1)*lnm, (9)

= 5B -1)7°lnm

since k(m — k) > £ and py, pp > 1. Thus (7) becomes

Prin{l,...,k} = U] < C'(7) " 'm!0B-1+1/2, (10)

which verifies the uniformity condition (2) with A = ¢’m!0(B=1+1/2,

This concludes the proof of the theorem for the special case W =), w; = 0. We can extend
the argument to general values of W using a simple trick. We will assume W > 0; the case W < 0
is entirely symmetrical. We begin by padding the sequence of weights with d = [W/M] values
Wint1s - - - s Wmtq €ach of which (except possibly the last) is —M, so that Z?E{d w; = 0. Note that
d < m. By the above argument for the W = 0 case, we can construct a balanced almost uniform
permutation 7’ on this padded sequence (though see the remark immediately following this proof).
Let 7 be the induced permutation on the weights {w;}7_;. We claim that 7 is also balanced and
almost uniform.

To see that 7 is balanced, note that

kl
W (3) > Zwﬂ’(i) > —M; and
i=1

kl
Wiy <D Wersy + W < M+ W,
i=1

>
>

=1

for some k' > k, using the balance property of 7’
To see that 7 is almost uniform, let us call the indices {1,...,m} true and the remainder fake.
Let U be an arbitrary subset of true indices of cardinality k. We need to show that

Pr[n{l,...,k} = U] < (™) " poly(m). (11)

Since 7 is induced by 7', this probability is bounded above by > ¢ Pr[€s], where for S C {1,...,m+
d}, Eg is the event that «'{1,...,]S|} = S and the sum is over all S of the form U U U’, where all
elements of U’ are fake. Now by the almost uniformity of 7/, this sum is at most

poly(m + d) Y Pryyic[Es], (12)
S

where Prynir denotes probability under the uniform distribution on permutations in S, 4. But the
sum in (12) is just the expectation, under the uniform distribution, of the random variable X =
Y g Xg, where Xg is the indicator r.v. of £5. Thus X counts the number of events £s that occur.
We claim that

B(X) = (1) (14 5%). (13)

This will complete the verification of condition (11); for replacing the sum in (12) by E(X) gives
Prfr{1,....k} = U] < (7) " (14 54) poly(m + d),

which is of the required form since d < m.

To see the claim in (13), let & be the event that 7{l,...,k} = U. Clearly Pryn;[] = (7;)71,
and X = 0 unless £ occurs, so we have

B(X) = (7) 7 B(X[€). (14)

Conditioning now on &, let 7 be the position in 7’ of the last element of U, so that U C «'{1,...,r}
and 7'(r) € U. Also, let s be the position of the nezt true element, i.e., 7'(s) is true and #'(¢) is
fake for r < ¢t < s. (If no such element exists, let s = m +d+ 1.) Then Eg holds for precisely those
sets S = 7'{1,...,t}, where r <t < s. The number of such sets is just the number of fake elements
that fall between the true element at position r and the next true element (at position s), plus
one. The expectation of this quantity under the uniform distribution is plainly 1 4 mL—l—l' Plugging
this into (14) we get the value claimed in (13), which concludes the proof that 7 is almost uniform.
0

Remark: We should point out that the padded sequence we introduced in the second part of the
above proof might contain one weight whose absolute value is less than one. Thus it is not, in a
strict sense, a special case of the earlier W = 0 case, where we assumed that all the weights had

absolute values in the range [1, B]. However, a more careful treatment of the analysis leading up
to equation (10) shows that this equation still holds even when there is a single small weight (or
even a constant number of small weights). Furthermore, we can make the constant C’ that appears
in (10) independent of B.

Now, following through the algebra in the second part of the proof, starting from equation (10),
and noting that d < m, it is not hard to check that the resulting permutation 7 is A—uniform for
A = 20" (2m) 0B +1/2 — Opm10(B=1)*+1/2 where the constant Cp increases with B. Moreover,
it is also easy to verify that the permutation 7 actually satisfies a slightly stronger uniformity
property, namely

~1
Prlr{l,...,k} = U and n(k + 1) =[] < Clym!%B-D*+1/2 m 15
{1, K} = Uand (ks +1) =1] < Cym ())
for any U with |U| = k and any [¢ U, where C; = Cp(B + 1). (To get this value for C, note
that 7 must first choose U and then [; this second choice introduces the factor B + 1.) We will
make use of these facts in section 5 when we discuss permutations of general weights. O

4 A good flow in the bounded ratios case

We now return to the random walk for the knapsack problem, and flesh out the sketch of a flow
presented in the Introduction, making heavy use of the balanced almost uniform permutations from
section 3. We continue to consider only the bounded ratio case, i.e., we assume that all weights a;
lie in the range [1, B]. To avoid trivialities, we also assume B < b.

Let X,Y be two arbitrary vertices of G, viewed as subsets of {1,...,n}. We need to specify
how to route one unit of flow from X to Y. First, write X = Xy U X1, where Xy, X; are disjoint,
a(X1) <b—B, and | Xy| < B; this can always be done since a; € [1, B]. Write Y = YyUY} similarly.
All the flow leaving X will pass through X7, and all the flow arriving at Y will pass through Y;.
Between X7 and Y7, we will route the flow using an almost uniform permutation. (Note that there
is an obvious correspondence between unit flows from X; to Y; and probability distributions on
paths between them.) Let S = X; @Y (where @ denotes symmetric difference) and m = |S].
Let {w;};”, be an arbitrary enumeration of the weights of the items in S, where weights in SNY;
appear with a positive sign and weights in S N X; with a negative sign. Thus W = a(Y71) — a(X7).

We can now describe the flow from X to Y in three stages:

Stage 1: Send the entire unit flow along a single path from X to X; by removing the elements
of Xy in index order.

Stage 2: Distribute the unit flow along geodesic paths from X; to Y] according to a balanced
almost uniform permutation 7 of the weights {w;} of the items in S.

Stage 3: Send the entire unit flow along a single path from Y7 to Y by adding the elements of Y,
in index order.

The role of stages 1 and 3 is simply to ensure that the endpoints of the random paths in stage 2 are
at least a small distance below the bounding hyperplane, to accommodate the (small) fluctuations
still present in balanced permutations.

Let us first observe that the above flow is valid. For this, we just need to check that all the
flow-carrying paths remain within the set 2. This is obvious for stages 1 and 3. For stage 2 it

follows from the balance property of m: for if Z is the kth point along a flow-carrying path from X,
to Yi, then

k
a(Z) = a(X1)+Zw7T(Z~)
i=1

< a(Xy) + max{a(Y1) — a(X1),0} + B (16)
= max{a(Y}1),a(X1)} + B
< b

where in the last line we have used the fact that a(X;),a(Y7) are both < b— B. Hence Z € (2.

Next we must bound the quantities C(f) and L(f) for this flow f, as defined in section 2.
L(f), the length of a longest flow-carrying path, is plainly at most n + 2B. To estimate C(f), we
must bound the flow along any edge of Gy,. For convenience we will in fact bound the flow f(Z)
through any vertex Z; clearly this is also an upper bound on the flow along any edge.

So let Z be an arbitrary vertex of Gy. Define P(Z) to be the set of pairs (X,Y) such that
some X — Y flow passes through Z. Note that P(Z) = J2_, P;(Z), where P;(Z) are the pairs
whose paths pass through Z in stage i. We shall bound the contribution to f(Z) from each P;(Z)
separately. For 7 = 1,3 this is simple: since stage-1 paths have length at most B, the number of
vertices X such that (X,Y) € P1(Z) is (crudely) at most Bn®, so the contribution to f(Z) from
such paths is no more than Bn?[f2|. The same bound holds symmetrically for P3(Z). The main
portion of the paths, Py(Z), presents more of a challenge.

We shall actually work with Py(Z), the set of pairs (X1,Y]) such that Z lies on the stage-2
path with endpoints X1, Y;. By the observation in the previous paragraph, the flow contribution
from Py(Z) will be at most B?n?P times that from P3(Z). Recall that we are really interested

in the ratio %, rather than in f(Z) itself. Accordingly, following earlier analyses of this general

type (see, e.g., [9, 10]), we measure the set P»(Z) by associating with each of its elements (X1, Y7)
an “encoding” Z’, which belongs to 2. This is defined as the complement of Z in the multiset
X1 UY71; more precisely,

A Xi19Y o Z.

To see that Z' € £2, we need to check that a(Z’) < b. But this follows because

a(Z") = a(X1) +a(Y1) — a(Z)

)_
)_

< a(Xy) +a(Y7) — (min{a(X1),a(Y1)} — B)
= max{a(X1),a(Y1)} + B
< ba

where in the second line we have used the balance property of 7 as in (16) to bound a(Z), this
time from below.

How many pairs (X1, Y7) could be mapped to a given Z’? First note that Z’ uniquely determines
both S = X7 @Y7 and I = X NY; via the relations

S=27'aZ; I=72'nZ.

Thus in particular such pairs share the same symmetric difference, S, of cardinality m, say. To
determine X7 and Y7 uniquely, it suffices to specify the subset U C S of elements that have already
been processed (i.e., added or deleted) by the stage-2 path by the time it reaches Z. For then we

know, from the fact that all stage-2 paths are geodesic, that X; agrees with Z on § — U and with
Z' on U, and vice versa for Y;. More formally,

X\=ZoU, Yi=Zal.

The upshot of the foregoing discussion is that we can define a mapping from P3(Z) to pairs of
the form (Z',U), where Z' € 2 and U is a subset of Z @ Z'. Moreover, and crucially, this mapping
is injective. It therefore effectively enumerates the set Py(Z).

Finally, we need to take account of the actual quantity of flow traveling along the paths. Con-
sider a pair (X1,Y7) € P2(Z), corresponding to the pair (Z’,U). Recall that the flow distribution
between X; and Y; is determined by a balanced almost uniform permutation 7w of the weights
in S = X1 @Y. The proportion of this flow that passes through Z is precisely

Prr{1,..., U]} = U] < (i)~ poly(m),

by the almost uniform property of .
Putting all this together, we can bound the total contribution to f(Z) from Py(Z) as follows:

S Y Per{l,..., U} =0

Z'eR UCZDZ!

>, > > () poly(m)

7'eR k UCZHZ'
[U|=k

poly(n) 3= 3 (M) ()™
Z'e? k
npoly(n)| 2,

IA

IN

IN

where in the summations m = |Z & Z'|. The total contribution from all stage-2 paths is thus at
most BZn2B+1 poly(n)|02].

Combining this with our earlier bounds for stages 1 and 3, we obtain that f(Z) < poly(n)|{?|
(for a different polynomial), and hence C(f) < poly(n). Since both L(f) and C(f) are bounded
polynomially in n, we now obtain immediately from Theorem 2.1 that the mixing time, 7y, is
polynomial in n. By keeping track of the polynomial factors, we see that the exponent is dominated
by the poly(n) term arising from the almost uniformity condition (2), which is of the form n®(®?)
(see the Remark at the end of section 3).

We summarize our analysis in the following theorem.

Theorem 4.1 Let £2 be the set of solutions to a knapsack problem whose weights a; lie in the range

[1, B] for some constant B. The mizing time of the random walk on G is Tmix = nO(B?).

As mentioned in the Introduction, this immediately yields an fpras for computing |{2| in this case,
via a standard reduction to random sampling (whose details are spelled out in [11]).

5 The general case

We now generalize the results of the previous two sections to the case of arbitrary weights. The
essential ideas are the same, but there are several non-trivial technical complications that need to
be addressed.

10

5.1 Balanced almost uniform permutations

To handle arbitrary weights, we first need to extend our construction of balanced almost uniform
permutations. The chief obstacle here is that it is no longer true (as in the bounded ratio case) that
each item of positive weight can be balanced by a bounded number of items of negative weight.
To overcome this difficulty, we will need to group items into “intervals” so that each interval has
approximately the same (positive or negative) weight. We can then reduce to the bounded ratio
case.

First we need a slightly more liberal balance condition:

Definition 5.1 Let {w;}/"; be a set of real weights, with M = max;<,, |w;| and W = Y, w;,
and let A > 1 be a nonnegative number. A permutation m € S, is A-balanced if, for all k with

1<k <m,
k

min{W,0} — AM < w,(;) < max{W,0} + AM. (17)
i=1
Our earlier definition (Definition 3.1) thus corresponds to A = 1.

Relaxing our earlier terminology slightly, we shall call # € S, a “balanced almost uniform
permutation” if w is A-balanced for a fixed constant A, and A-balanced for A a fixed polynomial
function of m. The following theorem is a generalization of Theorem 3.3; it says that we can
construct a balanced almost uniform permutation for an arbitrary set of weights. Moreover, we can
bound the uniformity parameter A by a polynomial whose degree is arbitrarily close to 1/2 at the
cost of a modest increase in the balance parameter A. This is almost the best that one can hope
for: it is easy to check that, if we have m/2 weights of +1 and m/2 of —1, then for any constants
A, C and p < 1/2, there can be no A-balanced CmP-uniform permutation if m is sufficiently large.

For technical reasons, we shall actually prove a slightly stronger uniformity property. Call 7
strongly A-uniform if

Prir{l,....k} =U and n(k+1) =] <Ax (, ., ™,)" (18)

for every k with 1 <k <m, every U C {1,...,m} of cardinality k, and every [¢ U. Note that the
expression on the right-hand side of (18) is just A times the probability of the given event if m were
chosen uniformly at random. Plainly (18) is a strengthening of equation (2) in Definition 3.2; recall
from equation (15) that our permutations in the previous section also had this stronger property.

Theorem 5.2 Fiz 0 < e <1 and let A =1+ /90/e. For any m and set of weights {w;};",, there
exists a A-balanced strongly Cm'/**€—uniform permutation, where C is a universal constant.

Proof: Let M = max; |w;| and set A= %. Let 8 be a uniform random permutation in S,,. Let
T; be the smallest # such that the partial sum Y _; wpg(;) has absolute value greater than AM (or
Ty = m if no such ¢ exists). Similarly, let T be the smallest ¢ > T} such that | Y5_p, 4 wgiy| > AM.

Define T3,Ty,... in the same way. Then let I; be the sequence {ﬁ(i)}iT:ll, and I the sequence
{B(T} +i)}27". Continue in this way, dividing g into intervals I, ..., I, (so that T, = m).

Now let «; be the aggregated weight of interval I; for ¢ = 1,2,...,q¢ — 1. Note that |o;| €
[AM, (A + 1)M] for all i < ¢, so the ratio of the weights of any two of these intervals is at
most (3 +1)/ A. Thus, by the results of section 3, there exists a 1-balanced A-uniform permutation

~ ~ 2
on {a;}9~] for A = Cqm((AH)/A_I) +1/2 = 0gl/2+€. By the Remark at the end of that section, we
can in fact assume that this permutation is strongly A-uniform and (since (A + 1)/A is bounded

11

above by a constant, namely 1 + /1/10) that the constant C' does not depend on e. Call this
permutation w;. We claim that the permutation

7= Iy lrp2) - Irp(a-1) g

obtained by rearranging the first ¢ — 1 intervals according to 7 is a A-balanced Cm'/?t¢—uniform
permutation on the original m weights.
We prove the balance property first. Let W' = Zg:_ll a; = W — aq4. Since 7y is 1-balanced, m

satisfies
T

min{0, W'} — (A +)M < 3w,y < max{0, W'} + (A +)M
i=1

for all 1 < 5 < g. Hence we have, for all j,

j
min{0, W'} — (2A + 1)M <> wy ;) < max{0, W'} + (2A + 1) M,
=1

since the partial sums within any interval lie in the range [-AM,AM)]. Finally, note that |W —
W'l = |ay| < AM. It follows that for all j,
~ j ~
min{0, W} — (3A + 1)M <> w,(;y < max{0, W} + (3A + 1) M,
i=1

and hence 7 is A-balanced.

To verify the strong uniformity property, consider first an alternative experiment in which the
permutation 7 is chosen uw.a.r. from S, 1 without regard to the balance property. Note that,
conditional on the value of g, the distribution of (I,...,I,_1) is exchangeable. Thus, re-arranging
the intervals according to a uniform 7 is a measure-preserving transformation, so 7 itself has the
uniform distribution. Thus we need to show that for any U and any index [¢ U, the likelihood
ratio

Pr[n{1,...,k} =U and w(k + 1) =]
Prynie[7{1,...,k} =U and n(k + 1) =]

where we write Pryyie for the probability when 7; is uniform and Pr for the probability when
77 is CmY/2 < —uniform. In fact, it suffices to show that the above bound on the likelihood ratio
holds conditional on any S. So fix a permutation . In order for the numerator to be non-zero,
only the interval containing [can contain elements from both U and U¢ (the complement of U).
Additionally, in the interval containing I, all the elements before | must be in U and all those
after [must be in U°. Let A; be the collection of intervals in {Ii}g;ll containing only elements
of U, and Ay the collection of intervals containing only elements of U¢. Then |A;|+ |As| must have
value either ¢ — 1 or ¢ — 2. Writing &; for the event n;{1,...,|A1|} = A; and &, for the event
mr{g—1,...,q — |A2|} = Ag, the above likelihood ratio is

S Cm1/2+€’

Pr[&; and &)]

< 1/2+e€ < 1/2—1—6.
Prunif[gl and 52] - Cq - Cm

In the case where |A;|+|As| = ¢—1 this is just the Cq'/?*¢—uniformity property; when |A;|+|A4z| =
q — 2 it is the strong C¢*/2t¢—uniformity property. Thus = is strongly Cm!'/2*¢—uniform, and the
proof is complete. O

12

5.2 The flow

Now that we have balanced almost uniform permutations for general weights, we can follow a
similar strategy to that in section 4 for constructing a good flow in the general case. Our goal will
be to obtain a flow f of cost C(f) = O(n3/?*¢) for any € > 0. So we assume from now on that e is
arbitrary but fixed.

Let X,Y be arbitrary vertices of G. Recall the scheme for constructing a flow from X to Y in
the bounded ratio case in section 4: we essentially followed a balanced almost uniform permutation
of X &Y, except that we removed a constant number of items from X and Y from consideration
(processing them at the beginning and end of the path) to ensure that the path remained within Gy,.
The idea in the general case is basically the same, except that we will now remove a fixed number
of items from X UY and add/delete these repeatedly along the path to maintain fine balance.
Moreover, before applying the random permutation, we first need to “pre-process” the pair (X,Y)
so that neither X nor Y is too close to the hyperplane: in contrast to the bounded ratio case, this
is not guaranteed by the removal of a fixed number of items because of the possibly large variations
in weights. However, we can overcome this obstacle by randomly switching items between X and Y
to roughly balance their weights. The resulting flow-carrying paths will not in general be geodesics,
as before, though they will have length only O(n).

In preparation for describing the flow, we first describe the pre-processing operation. We assume
that a(X) 4+ a(Y) < 2b —6AM, where M = max;cxqy a; and A = A(e) is the constant appearing
in Theorem 5.2. (In our application, we will reduce to this case by deleting a fixed number of items
from X UY.) Call a pair of vertices (X', Y") full if either a(X') > b— AM or a(Y') > b— AM.
Our goal is to shift items randomly between X and Y and thereby reach a pair (X', Y”) that is not
full.

Consider the following random walk on {(X',Y') : X’ UY' = X UY, X'nY' = Xn
Y, a(X'),a(Y’") < b}. If the current state is (X', Y’), choose an index i € X' &Y' w.a.r. With
probability %, do nothing; else move i from X’ to Y’ or Y’ to X' if possible. We call this the
“pre-processing random walk” (PRW). We claim in the following lemma that, if we run the PRW
for a number of steps chosen randomly between 1 and O(n), we will with reasonable probability
arrive at a pair (X', Y”) that is not full. The proof uses a martingale argument and is deferred to
the Appendix.

Lemma 5.3 Let (X,Y) be a full pair of vertices in Gg with a(X) + a(Y) < 2b — 6AM, where
M = max;cxgy a;. Pick T u.a.r. from {1,2,...,Cim}, where m = |X @ Y| and C} is a suitable
constant (which depends only on A), and let (X',Y') be the result of running the PRW for T
steps starting from (X,Y). Then Pr[(X',Y") is not full] > 1/Cy for a positive constant Coy (again
depending only on A).

We are now ready to construct and analyze the flow in the general case.

Lemma 5.4 For arbitrary weights and any e¢ > 0, it is possible to construct a multicommodity

flow f in Gg with C(f) = O(n®?*€) and L(f) = O(n).

Proof: Let X,Y be arbitrary vertices of Gy. Viewing X and Y as subsets of {1,...,n}, let H be
the h = [6A] elements of X @Y having largest weight (or let H = X @Y if | X @ Y| < h), with ties
broken according to index order. Define X' =X —H,Y' =Y —H and S = X'@®Y’. Let m = |5,
and let {w;}/”; be an arbitrary enumeration of the weights of the items in S, with the weights of
items in X', Y appearing with negative and positive signs respectively. Let M = max; |w;|.

13

We will say that a set of indices Z is good if Z — H € 2 and (Z® X dY) — H € (2. For a set
of indices Z and an index i, define

7i— { Zo{i} if Zo {i} is good;
VA otherwise.

Define Ziyio = ((Zi1)i2) and so on. Note that if Y = X4y ---4; then the sequence i1,...,i; defines
a path from X to Y in the unit hypercube of length at most /. This path need not in general lie
within G ; however, it is “close to” G, in the sense that for every point Z of the path, Z — H € (2.

If (X',Y") is not full then set T = 0, otherwise choose T uw.a.r. from {1,...,Cym}, where Cy is
the constant in Lemma 5.3. Next, let ¢1,...,i7 be i.i.d. uniform over S. Define X" = X'iy---ip
andY"=X"® X' ®Y' =Y'iy---ip. Thus (X”,Y") is the result of running the PRW for T steps
starting from (X',Y’). Note that a(X') + a(Y') < 2b —a(H) < 2b — 6AM. So, by Lemma 5.3, we
can condition on the event that the pair (X”,Y"”) is not full and thus increase the probability of
any path by a factor of at most Cs.

Now let 7 be a A-balanced, strongly Crn'/?t¢—uniform permutation on the weights {w;}, whose
existence is guaranteed by Theorem 5.2. We claim that the sequence

il,...,’iT,W(l),...,ﬂ(m),iT...,il (19)

defines a path from X to Y in the hypercube. This is true because the condition that (X", Y") be
not full, together with the fact that 7 is balanced, guarantees that all of the transitions indicated
by 7 will actually take place.

Set
1) if1<k<LT;
Jp=1% w(k-T) UT<k<T+m;
7:2T+m—k:—1 ifT4+m<k<2T +m,

and let [= 2T +m. Then ji,...,7 is the sequence in (19). Our flow from X to Y will essentially
follow the sequence ji, except that along the way elements of H will be used to keep the knapsack
as full as possible, but will be removed as necessary to make room for new items j; to be added.
Thus each intermediate state Z will be of the form H @ Xj; - - - j;, for some H C H and k <.

Suppose that, after processing the first k& < [elements of the sequence in (19), we have Z =
H @ Xy ---jj for some H C H. The transition rule will be as follows.

1. If k <l and jgi1 ¢ Z then move to Z jgyq if possible (i.e., if the result is an element of (2);
otherwise delete an element from H.

2. If k <l and jg41 € Z then add an element from H if possible; otherwise move to Z ji41.
3. If £ = [then add an element from H NY if possible; otherwise delete an element from H N X.

The fact that all of the sets X ji---ji are good ensures that sufficient elements of H can
always be removed so as to make room to add the next element j;,; when necessary; hence the
above rule defines a feasible random path from X to Y. Similarly, goodness also implies that
a(Z® X ®dY — H) <b for every intermediate state Z; since our rule keeps the weight as large as
possible this implies that, at any intermediate edge (Z, W) along the path, there exists (at most)
one element u € H such that

a(ZdX DY —{u,z}) <b, (20)

14

where z is the index such that {z} = Z @ W. Then (Z' — {u,z}) € §2, where exactly as in the
analysis in section 4, we define the “encoding” Z' by

Z'=XoYe®Z

Thus, for any given edge (Z, W), the number of encodings Z’ is at most n|£2|.

Note that the path from X to Y can be naturally divided into three stages, corresponding to
the three parts of the sequence ji. We will write the flow through any given edge (Z, W) € G, as
F(ZW) = fL(Z, W) + fo(Z,W) + f3(Z, W), where f;(Z,W) is the contribution of stage 7 paths.
We will bound f by bounding each of the three contributions f; separately.

Consider stage 1 first, and focus on a particular edge (Z,W). For any pair (X,Y’) that sends
flow through (Z, W) in stage 1, we can write Z = H & Xji ... j, where ji,..., 7, are the first k
elements processed along the path. Thus the pair (X,Y’) is completely specified by &, j1, ..., jk, Z'
and H, via the easily verified relations

X=HoZjj; Y=H&Zj j
The amount of flow corresponding to a given sequence ji, ..., ji is bounded above by the probability
that ji,..., 7k, 2 were the first £ + 1 indices chosen in the pre-processing random walk, which is

at most Cgm_(k+1). (The factor Cy here arises from our earlier conditioning on the event that
(X", Y") is not full.) Thus we can bound the stage-1 flow f1(Z, W) as in section 4. We have

hzw) < 303 3 3 cm Y

Jirendk H
Zz2h02m
Z! k
S ZC’lmZhC’Qm_l

ZI
C1C2"n |12,

IN

IN

where the factors Cym and 2" arise from summing over k and H respectively.

The flow f3(Z, W) from stage-3 paths can be handled symmetrically, so consider now the stage-2
paths. For a given edge (Z, W), every pair (X,Y’) that sends flow through (Z, W) in stage 2 can
be completely specified by Z’,T,k, j1,...,j7,U and H, where k is the number of elements of the
sequence in (19) processed along the path from X to Z and U = {n(1),...,n(k —T)}, via

X=Ho(ZaU)jr--5; Y=Ha&(Z &U)jr - j.

Let ¥ = k—T. The amount of flow corresponding to a given ji,...,jr and U is bounded above by

-1
1/2+€ m
Cm (k’,m—k’—l,l)]

where the first factor comes from the pre-processing random walk, the second factor is the prob-
ability of choosing a particular T, and the third factor is an upper bound on the probability
Pr[r{l,...,k'} = U and n(k' + 1) = 2], which comes from the strong almost uniformity of 7. Thus
we can again bound the flow fo(Z, W) as in section 4. We have

-1
pEw) £ T T Y ¥ ST em o,)

JiesjTr U H

(Com™")(Cym)~!

15

> (Cim)ymm” (mk_’ 1) 2"(Coym™T)(Cim)~!

Z/
-1
-1 m
2"Cy |m ("™
; ’ m(%)(k’,m—k’—l,l)

=Y 2hcyomli
Z/
< 2h002n3/2+6|9|’

IA

—1
Cml/2+e m
m (k’,m—k’—l,l

Cm1/2+e

where the factors in the second line are written in the same order as the sums they arise from.
Adding the contributions fi, f and f3, we see that the above flow satisfies C(f) = O(n?/2t¢),
while plainly £(f) = O(n). Since € > 0 was arbitrary, this completes the proof. O

Given such a flow, we need only invoke Theorem 2.1 to derive our main result.

Theorem 5.5 Let (2 be the set of solutions to an arbitrary instance of the 0-1 knapsack problem.
The mizing time of the random walk on Gg is Tmix = O(n%21€) for any € > 0.

This immediately implies the existence of an fpras for computing |{2| in the general case.

Remark: The mixing time bound of O(n%2%€) in Theorem 5.5 is reasonably tight for this type
of analysis. If we apply Theorem 2.1 to analyze random walk on the entire cube {0,1}", we get a
bound of O(n?) even with an optimal flow. Thus the truncation introduces an extra factor of only
O(n?/?*€) into the bound. It is instructive to see where this extra factor comes from: O(n'/?*¢) is
due to the balanced almost uniform permutation construction (Theorem 5.2, which is tight), while
O(n) comes from the fact that the “encoding” Z’ may lie just outside (2. 0

6 Multiple hyperplanes

6.1 Introduction

In this section, we will extend our earlier results to handle multiple hyperplanes. For a non-negative
real d x n matrix A and a positive real vector b = (b',...,b%), let £2 denote the set of 0-1 vectors
x = (z;)7_; for which Ax < b. The vertices in {2 constitute the set of feasible solutions to the
multidimensional knapsack problem with the d simultaneous constraints

n
aj-XEZagxigbj for 1 <j <d, (21)
i=1

where a{ = aj;. (In equation (21) the superscript j indexes the jth linear constraint; we will follow
this convention throughout.)

Geometrically, (2 is obtained by truncating the unit cube by d hyperplanes, each of which corre-
sponds to a knapsack constraint. The essential geometric property of these “knapsack” hyperplanes
is that their normal vectors all lie in the same quadrant. The results of this section will easily extend
to any collection of hyperplanes with this property®.

SHowever, we cannot allow the hyperplanes to be arbitrary. If arbitrary truncations were allowed, then it would
be possible to use just two hyperplanes to cause exponential bottlenecks or even disconnect the graph Gp.

16

Following our earlier notation, we identify a 0-1 vector x = (z;)]; with the set of indices
X = {i: z; = 1}, and write a(X) = (a'(X),...,a%(X)) for the (now d-dimensional) weight of X.
As before we denote by G, the subgraph of the hypercube {0, 1}" induced by the vertices in €2, and
we again study symmetric random walk on Gg; i.e., transitions from a given state X C {1,...,n}
are made as follows:

1. pick an item i € {1,...,n} uv.a.r;

2. ifi € X, move to X — {i}; ifi ¢ X and o/ (X U{i}) < ¥ for all 5, move to X U {i}; otherwise,
do nothing.

Again, to avoid issues involving periodicity, we add to every state a holding probability of %

In this section we will prove that this random walk on G has mixing time that is polynomially
bounded in n, for any fixed dimension d. Just as in the one-dimensional case, this immediately
gives a polynomial time algorithm for sampling (almost) uniformly at random from (2, and a fpras
for computing |£2]|.

We note that the degree of our polynomial upper bound for the mixing time will depend on
the dimension d, but this is unavoidable as the following simple example shows. Consider a d-
dimensional knapsack problem in which there are g5 items having each of the d weight vectors
(n,0,...,0),(0,n,...,0),...,(0,...,0,n), and the remaining % items have weight vector (1, 1,...,1);
the knapsack capacity is b = (n,...,n). Let S be the set of feasible solutions in {2 which do not
contain any of the (1,...,1) items. Then |S| = (g5 + l)d, but S is connected to 2 — S only through
the origin. It follows easily that the mixing time is n(@.

In fact, for arbitrary d there can be no uniform polynomial upper bound for the running time
of any sampling algorithm unless RP = NP. This follows immediately by reduction from the
problem of sampling independent sets in a graph. By theorem 1.17 of [17], there is no algorithm
for (almost) uniformly sampling independent sets in a graph unless RP = NP. Now if G = (V, E)
is an arbitrary (undirected) graph, there is a 1-1 correspondence between the independent sets in
G and the feasible solutions to the knapsack problem with |V'| variables and the |E| constraints
Ty + z,y < 1 for all {u,v} € E.

To prove rapid mixing of the random walk on Gy, for any fixed d, we use the multicommodity
flow technique as before. Recall that Theorem 2.1, which bounds the mixing time in terms of the
cost of a flow f, holds for symmetric random walk on any connected subset of the hypercube, so it
again suffices to come up with a flow of small cost. As before, the idea is to spread each X — Y
flow evenly using a balanced almost uniform permutation. However, since the weight function a(-)
is now vector-valued, we first need to extend the definition of balance to higher dimensions.

Definition 6.1 Fiz an integer d > 0, and let {w;}7, be a set of weights in R? satisfying 371 w; = 0.
For a positive real number A, a permutation © € Sp, is A-balanced if

k
j ~ .
max ‘ ;wﬂ(i)‘ <AM? for1<j<d, (22)
1=
where w; = (w},...,w) and M7 = max;<;<m |wf|

Thus 7 is balanced with respect to vector weights {w;} if and only if it satisfies the d one-dimensional
balance conditions given by (22). Note that this generalizes our earlier Definition 5.1 for the one-
dimensional case (except that, for simplicity, we have assumed that >, w; = 0).

17

Constructing balanced almost uniform permutations is significantly more difficult in higher
dimensions since one has to control fluctuations in all dimensions simultaneously. In fact, for
d > 2, it is non-trivial to prove for an arbitrary set of vector weights that even a single balanced
permutation exists. (For d = 1 of course this is trivial.) The existence of such a permutation follows
at once from a lemma due to Grinberg and Sevast’yanov [6], which was proved in an entirely different
context:

Lemma 6.2 [6] Let x1,...,z, be vectors in R? such that > i;x; =0. Then there exists a permuta-
tion v € Sy, such that

k
le,(i) €dxconv{zy,...,zp,} for1 <k <mn,
i=1

where conv denotes the convexr hull.

Of course, we need something much stronger than this, namely almost uniform permutations
with a similar balance property. Perhaps surprisingly, we will show that balanced almost uniform
permutations exist in arbitrary dimension d. To illustrate the main ideas involved in extending
from one to higher dimensions, we now give a sketch of the proof in the special case where d = 2
and the weights satisfy 1 < |w]| < 2 for all i and j.

In this setting, let I; = {i : w? > 0}, I = {i : w? < 0}, and define v = 3,7, w;. For every
i < m, let y; be the projection of w; onto v-. Let m be an almost uniform permutation on I,
which is balanced (in the one-dimensional sense) with respect to {y;}icr,, with a similar definition
for my. Finally, interleave m; and 7y to give a permutation on {1,...,m} which is balanced with
respect to {UJ? ™ . (the projections of the w; onto the second coordinate axis). Since m; and 7 are
both almost uniform, so is 7, by an argument similar to that in the proof of Theorem 3.3.

Furthermore, since 71 and my are each balanced with respect to projections onto v*, so is .
(Note that the projections y; satisfy Y ;c;, vi = > ;cr, ¥i = 0.) Thus, for every k, the projections
of Zle wr(;) onto the second coordinate axis and onto v+ are both bounded, and since the wlj are
all in [1,2], the angle between the coordinate axis and v+ is bounded away from zero. Thus, the
partial sums Zle wr(;) stay inside a parallelogram of bounded diameter. Hence 7 is balanced with
respect to the weights {w;}i",.

This concludes the sketch proof for the above special case with d = 2. Note that it is a
straightforward reduction to the one-dimensional result. Unfortunately, in general the reduction
from d to d—1 dimensions is not quite so straightforward; we deal with the extra technical difficulties
in the next subsection.

6.2 Balanced almost uniform permutations in arbitrary dimensions

The following theorem says that one can always construct balanced almost uniform permutations
when the dimension d is fixed.

Theorem 6.3 Let d be any positive integer. There is a constant c¢q and a polynomial function
pa such that, for any set of weights {w;}7, in R? with Y;wi = 0, there exists a cq—balanced,
pa(m)-uniform permutation.

Proof: The proof will be by induction on d. The base case d = 1 follows from Theorem 5.2,
with ¢; = 15 and p;(m) = Cm. Now let d > 1 be arbitrary, and suppose that the result holds

18

for dimensions up to d — 1. Let {w;}™, be a set of weights in R?. Suppose first that the weights
satisfy

M) = 2 for all j; (23)
1 < max |wf < 2 foralli. (24)
1<j<d

Thus each weight is at least half as large as the maximum (positive or negative) weight in some
coordinate. Then

m
om
I > =
@%; | > =
W.lLo.g., suppose that the sum in the LHS is maximized by j = d. Then we have

m

Syt =Y () > 2

=1 =1

Let I} = {i : w > 0}, I = {i : w! < 0}, my = |I1], and my = |I5|. Define the means

i

B = mil dien wid, and ps = —mLQ Yl wld. Note that g1, ps > 2—1d. For 1 <j <d, let

J J

i = Ylier, Wi _ Yicl, W
= d = d:
dicn W Yiel, Wi

4 and let y; = (yil,...,yg_l). Note that |y/| < 1,

)

For all i < m and j < d, let y{:wg_,ij

ly/| <4, and dien Yi = 2ier, ¥i = 0.
Now, for s = 1,2 let 75 be a pg_1(m)-uniform permutation on I; which is ¢;_;-balanced with
respect to {y; }ier,. Call m a-good if for every ky with 1 < k; < m; we have

‘iwil(i) - klm‘ < 20[\/% (25)

=1

where k] = min{k;, m;—Fk;}. In similar fashion to the proof of Lemma A.1.1, Hoeffding’s bounds [7]
imply that for a particular value of k; we have

Prunir (m1 does not satisfy (25)) < 2exp(—2a?),

and since the event depends only on the initial segment m1{1,..., %k}, we also have
Pr(m; does not satisfy (25)) < pg_1(m) - Prynie(m does not satisfy (25))
< pa-1(m) - 2exp(—20?).
Hence
Pr[r; is not a-good] < mpq_1(m) - 2exp(—2a?). (26)

Suppose that for some constants C' and r, the polynomial py_; satisfies py(k) < Ck" for all k. If we
let o = \/(r + 1) In(m), then the RHS of (26) is at most 2Cm"*1720+1) < 1 for sufficiently large
m. Thus, we can assume that 7y is a-good with probability 1 and only increase C' by a constant
factor. Similar arguments apply to 5.

19

Finally, note that it is always possible to interleave m and m to give a permutation on
{1,...,m} Wthh is 1-balanced with respect to {w¢}™,. Let 7 be such a permutation. Then
we have Ik w Wr | <2, and

k
J — J J
‘ Zwﬂ(z) - Z w7r(z) + Z Wr
i=1 i€l i€l
i<k i<k
= | X vt X v+ Z’w
1€l : 1El:
i<k i<k
< | X
i€ly: 1€la:
i<k i<k
< deq1+4eg1 + 21y
< 8cg1+ 2a

for all j < d and k. Hence 7 is ¢/,~balanced for ¢}, = 4c4_1 + 1 by assumption (23) .
To verify almost uniformity, we follow the proof of Theorem 3.3. Let U C {1,...,m} be
arbitrary with |U| =k, and let Uy = U NI, Uy = U N Iy, k1 = |Uy|, and kg = |Us|. Then we have
PI‘[T({I, e ,k} = U] PI‘[T(l{l, cee ,kl} = U1 and 7'('2{1, ce ,kQ} = UQ]
(Cm")? Prugie[mi{1,...,ki1} = Ur and ma{1,... ka2} = U]
C/m2r
() (%)

Now we can bound the quantity (;'") (;?) by mimicking (with minor modifications) the calculations
from equation (7) to equation (10) in the proof of Theorem 3.3. In our current setting, we have
[i1,p2 > 59, and the |wf| are in [0,2]. Because we have changed the definition of a-good and
the value of a, we also have to make the substitutions (B — 1)2 — 22 and Inm — (r + 1)Inm,
respectively. Thus the bound on the exponent given in equation (9) becomes

<
<

10 - 22
(37)?

Hence 7 is pg(m)-uniform for pg(m) = C"m

We have shown how to make balanced almost uniform permutations if the weights satisfy
(23) and (24). To generalize to arbitrary weights {w;},, we use the interval trick introduced in
section 5.1. Let # be a uniform random permutation in S, and let 77 = min{t : |2}, wj | >
M7 for some j}. Define Ty, T3, ... similarly. Now use the T; to divide § into intervals Iy,...,I,.

(r + 1) Inm = 160d*(r 4+ 1) Inm. (27)

160d2(r+1)+2r+1/2

Let {a;}; ! be the aggregated (d-dimensional) weights of the first ¢ — 1 intervals. Note that if we
divide each ozJ by 1 max; |o|, then the resulting weights satisfy (23) and (24). Hence these weights
admit a ¢/— balanced pa(q)—uniform permution (though see the remark immediately following this
proof). Rearranging the intervals {Ii};-];ll according to such a permutation gives a permutation on
{1,...,m} which is ps(m)—uniform and cs—balanced for ¢q = 2¢}, + 1. m

20

Remark: We should point out that the weights {ai};-];ll of the first ¢ — 1 intervals will not in
general sum to zero. However, we can easily get around this by introducing a dummy weight «
which is equal to the weight of interval I,. The presence of this single small weight does not affect
equation (27) for sufficiently large m. Hence there is a ¢/-balanced pg4-uniform permutation on this
padded sequence {a;}_ ;. This induces a permutation on {ai}g:_ll which is (¢ + 1)-balanced and
cp4(q)—uniform for some constant c¢. Thus, if we incorporate an extra +1 into the constant ¢/, and
an extra factor of ¢ into pg then the argument in the above proof is still valid. 0

Before we specify our flow, we need one more definition.

Definition 6.4 Let {w;}™, be a sequence in RE, with w; = (w},...,wd), let p = (u',...,u% =

% Yoty wi, and let | be a positive integer. A permutation 7 is strongly [-balanced if, for. allk <m
and j < d, there exists a set S C {1,...,m} with |[S®&n{l,...,k}| <I, such that (Zle wfr(z.) - kuj)

and (ZiGS wi(i) - kuj) have opposite signs (or either is 0).

Thus, in a strongly balanced permutation, whenever the initial segment {7(7)};_; is “above average”
with respect to a particular coordinate j, it can be made “below average” by flipping at most some
fixed number [of items, and vice versa. As the name suggests, the strong balance condition is
stricter than the usual balance condition. Nonetheless, the following lemma says that strongly
balanced permutations always exist.

Lemma 6.5 For any sequence {w;}I" in R, there exists a strongly 16d>—balanced permutation.

Note that this lemma claims only that a single strongly balanced permutation exists; unlike Theo-
rem 6.3, it makes no claims regarding almost uniformity. The proof of the lemma relies heavily on
the result of Grinberg and Sevast’yanov quoted earlier (Lemma 6.2); the proof is straightforward
but rather technical, so we defer it to the Appendix.

6.3 A good flow

Now that we have multi-dimensional balanced almost uniform permutations and strongly balanced
permutations, we are ready to contruct a good flow.

Lemma 6.6 Fiz any number of knapsack constraints d. For arbitrary item weights, it is possible to
construct a multicommodity flow f in G o with C(f) bounded by a polynomial in n and L(f) = O(n).

Proof: Recall that we identify each vertex x € (2 with the index set X = {4 : z; = 1}. Let
Q={X e Q:dX) <V - 3cmaxjcx al}, where cq is the constant in the construction of
balanced almost uniform permutations as in Theorem 6.3. Our main goal will be to construct a
flow f which, simultaneously for every X,Y € (AZ, sends one unit of flow from X to Y. This flow
will satisfy C(f) < poly(n) and L(f) = O(n).

Note that, from any vertex X € 2, we can obtain a vertex X e by removing at most 3dcy
items. Thus, we can use an approach similar to that in section 4 to extend f to a multicommodity
flow f on the whole of Q, and f will satisfy C(f) < n%%apoly(n) < poly’(n) and L(f) < L(f) +
6dcqg = O(n).

It remains to define the flow f and show that it has the properties claimed. Fix X,Y € Q.
As usual, the path from X to Y will follow a permutation 7 on the symmetric difference X @ Y.
However, as in the one-dimensional case, a simple balanced almost uniform permutation 7 will
not do; such a permutation would not necessarily define a path that stayed in 2. The problem

21

occurs when for some j, max;ex ag is not comparable to max;cy a{ . (For example, if max;ex a{ >
max;cy a], then the path could have too much variation in the j-direction as it approached Y.)
However, we can deal with this problem by considering the “large” and the “small” items in X &Y
separately. ‘ . ‘
Let M = (M*,..., M?), where M7 = min{max;cy a!, max;cy al}. Let L={i € X®Y :a] >
M for some j} and S = (X @Y) — L. (L and S are the “large” and “small” items respectively.)
Let {w;}icxey be an enumeration of the weights of the items in X @ Y, where weights from Y
appear with a positive sign and weights from X appear with a negative sign. Let u; = ‘—}J‘ Y il Wis
and let ps = ﬁ Y ics wi. Let m be a permutation on L which is strongly 16d%-balanced with
respect to the weights {w; }icr, and let mo be a py(]S|)—uniform permutation which is c4—balanced
with respect to the weights {w; — p2}ics. The existence of m; and 79 is guaranteed by Lemma 6.5
and Theorem 6.3 respectively. To obtain m, we will interleave the strongly balanced permutation

m and the balanced permutation ms. The rule for interleaving will be as follows. Suppose that
m(1),...,m(k) have already been assigned, and that 7{1,...,k} = m{l,... ki } Um{l,... ko}.

Now, either ’% < % or %2 < %, so we can define 7(k + 1) by
L3 \L| .
m(k+1) = mikr +1), lfkk = EERE

Now let p = IXTGIBY\ Yiexoy Wi = % We claim that 7 satisfies the following condition.

Fix j and k. Then there exist sets of indices V7 and Vs, with |V; @ {1,...,k}| < 17d?, such that

> w7jr(z') < (k= 1)u? + 3caM; (28)
1EVY
Swly > (k=1Dpl = 3eqM. (29)
1€VL

We will prove this in the case pui? > pol; if 19 < po? the proof is similar. Again, let ki =
ILN7{l,...,k}| and ko = |[SN7{l,...,k}|, so that #{1,... k} = m{1,..., ki } Um{l,... ko}.
The method of interleaving ensures that

-1 _ L

k—1 = |L|+|S]
=1 _ 18|
k—1 = L[+]S|

Therefore, since 17 > ps’, we have

(k1 — e + ko)

(k — 1)u; (30)
kypd + (ko — 1) '

(k— 1) (31)

Clearly, the strong balance condition on m; implies that there exist A, A’, with |[A® {1,...,k}| <
16d? + 1 and similarly for A’, such that

AVARVAN

Z“ﬂ}l(z) < (k= Dpi; (32)

i€EA

Swl > k. (33)
™) = 1K1

€Al

22

Also, by the balance condition on w9 we have

ky ‘ . . | |
Sowley < ko +cqmaxtul -} < ko + e 5
i=1

ko .) . . . |

D Wi 2 haph — camax{fw] — publ} > (ks — 1)py — Beg M. (35)
=1

Now, let B = 7! (m1(A) Um{l,...,ko}) and B’ = 7= (m(A") Uma{l,...,ke}). Then we have
|IBa®{1,...,k}| <16d? +1 < 17d?, and

k2

Dowlay =D whp T Wl
i€B €A i=1

Exactly analogous relations hold with B, A replaced by B’, A’. Combining this with equations

(30)-(35) gives (28) and (29).

Now, m determines a path {Z; }‘X@Y| from X to Y, where Zy = X and Z; = X @ {n(1),...,7(i)}
for 1 < i < |X @ Y|. This path might not stay in €2, but we can alter it slightly so that it
does. Equations (28) and (29) imply that for every k and j, there exists a set of indices W} with
|W}| < 34d? such that

aj(Z;€ — W,g)
o (Z, UWY)

max{a’(X),a’ (Y)} + 3cgM? < V; (36)

<
> min{a’(X),d’ (Y)} — 3¢y M. (37)

Let Wo = 0 and for k = 1,...,|X ® Y], let Wy, = U, Wj. Then, for all k, |W| < 34d°, and
a(Zp —Wi) <b. For 0 < k < |X @Y/, define
Zk = Zk — Wk.

Then each Z; € Q. Our flow from X to Y will pass through each of the Zj, in turn. To get from Z
to Zy,1, we perform the following steps:

1. Remove each item in Zj — (Zy N Zg;1) in index order.
2. Add each item in Zp 1 — (Zy N Zk11) in index order.

Define W, = (W, UWj41) N X, and Wy, = (W, UWj 1) NY. By analogy with sections 4 and 5,
for each intermediate point Z along the path define the “encoding” Z' by

Z,:(X@Y—Z)U(XQY)—(WkUWk+1),

and let U = n{1,...,k}. In similar fashion to our earlier analysis one can see that, for a given Z,
X and Y are completely specified by the 4-tuple (Z',U, W,, W,). We also have

VAR aJ() +al(Y) —al(ZU Wi UWii)
< (X)) +d(Y) — min{a? (Zp UWy), a? (Zy U Wigr)}
< @(X) +d(Y) = (min{a’ (X), 0’ (V)} = 3caM?)
= max{a’(X),ad’ (Y)} + 3¢a M’
< v,

23

where the second inequality follows from (37). Hence Z' € Q. We can therefore bound the flow

~

f(Z) through Z by

f(zy < % 3 Pr{x()),...,x(U)} = Ul (38)

2'e€Q Wa, W, U

Finally, for a given X and Y, let L’ = {i € X UY : a{ > M7}, so that L = U?Zle. Note that
for every j, L’ NY is equal to either L7 or (). Thus, if we define ko = |U N S|, then for given values
of M and ko, there are at most 2d(‘k52|) possible values for U in the inner sum of equation (38).
Therefore, we have

flzy < ¥ > > Pri{m(l),...,m(k)} =UNS)
Z'eQ) MWy, Wy k2 U:|UNS|=k>
s\

< > > > pallS)) I
7€Q MW, Wyks U:UNS|=ks 2

< > > 2%4(|8))
7EQ M,Wp, Wy ks

<

Z nd [(68nd3> 268‘[3] n x 2%pq(n)

=)
= poly(n)[],

where in the second line we have appealed to the almost uniformity of permutation ms. This
completes the proof. O

Given such a flow, we can appeal to Theorem 2.1 to derive the main result of this section.

Theorem 6.7 Fiz any dimension d > 0, and let 2 be the set of solutions to an arbitrary instance
of the d-dimensional 0-1 knapsack problem. The mizing time of the random walk on G g is poly(n).

As in one dimension, this immediately implies the existence of an fpras for computing |{2| in this
more general setting.

Acknowledgments

We thank Persi Diaconis for bringing reference [6] to our attention.

References

[1] P. DacuMm, M. LuBy, M. MIHAIL and U. VAZIRANI. Polytopes, permanents and graphs with large
factors. Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (1988), pp. 412—
421.

[2] P. Diaconis and L. SALOFF-COSTE. Comparison techniques for reversible Markov chains. Annals of
Applied Probability 3 (1993), pp. 696-730.

[3] P. Draconts and D. STROOCK. Geometric bounds for eigenvalues of Markov chains. Annals of Applied
Probability 1 (1991), pp. 36-61.

24

[4] M. DYER, A. FrIEZE, R. KANNAN, A. KAPOOR, L. PERKOVIC and U. VAZIRANI. A mildly ex-
ponential time algorithm for approximating the number of solutions to a multidimensional knapsack
problem. Combinatorics, Probability and Computing 2 (1993), pp. 271-284.

[5] G. R. GRIMMETT and D. R. STIRZAKER. Probability and Random Processes (3rd Ed.). Oxford
University Press, 1992.

[6] V. GRINBERG AND S. SEVAST'YANOV. Value of the Steinitz constant. Funktsional. Anal. i Prilozhen 14
(1980), pp. 56-57.

[7] W. HOEFFDING. Probability inequalities for sums of bounded random variables. Journal of the Amer-
ican Statistical Association 58 (1963), pp. 13-30.

[8] M. R. JERRUM. Mathematical foundations of the Markov chain Monte Carlo method. In Probabilis-
tic Methods for Algorithmic Discrete Mathematics (M. Habib, C. McDiarmid, J. Ramirez-Alfonsin &
B. Reed, eds), Algorithms and Combinatorics 16, Springer-Verlag, 1998, pp. 116-165.

[9] M. R. JERRUM and A. J. SINCLAIR. Approximating the permanent. SIAM Journal on Computing 18
(1989), pp. 1149-1178.

[10] M. R. JERRUM and A. J. SINCLAIR. Polynomial-time approximation algorithms for the Ising model.
SIAM Journal on Computing 22 (1993), pp. 1087-1116.

[11] M. R. JERRUM and A.J. SINCLAIR. The Markov chain Monte Carlo method: an approach to approx-
imate counting and integration. In Approximation algorithms for NP-hard problems, D.S. Hochbaum
ed., PWS Publishing, Boston, 1997, pp. 482-520.

[12] M. R. JERRUM, L. G. VALIANT and V. V. VAZIRANI. Random generation of combinatorial structures
from a uniform distribution. Theoretical Computer Science 43 (1986), pp. 169-188.

[13] R. KaNNAN. Markov chains and polynomial time algorithms. Proceedings of the 35th IEEE Conference
on Foundations of Computer Science, 1994, pp. 656—671.

[14] B. MoORRIS. Random walks in convez sets. PhD thesis, University of California at Berkeley, July 2000.

[15] L. SALOFF-COSTE. Lectures on finite Markov chains. Lecture notes, Ecole d’été de probabilités de
St. Flour, 1996.

[16] A.J. SINCLAIR. Improved bounds for mixing rates of Markov chains and multicommodity flow. Com-
binatorics, Probability and Computing 1 (1992), pp. 351-370.

[17] A.J. SINCLAIR. Randomised algorithms for counting and generating combinatorial structures. Mono-
graph in the series “Advances in Theoretical Computer Science,” Birkhduser, Boston, 1993.

Appendix

A.1 Appendix for section 3

This section contains two technical lemmas that were used in the proof of Theorem 3.3.
Lemma A.1.1 Let v be a uniform random permutation in Sp,. Then

Pr[v is not a-good] < 2m exp(—2a?).

Proof: We adopt the notation of the proof of Theorem 3.3. Let 1 < k1 < my. It suffices to show
that

k1
PrHZ Wy, (5) — kl,ul‘ > a(M — 1)\/k1] < 2exp(—2a?),
i=1
for then the lemma follows from the union bound and from symmetry (which allows us to replace

k1 by ki = min{ky, m; — k1}). But this inequality is a direct consequence of Hoeffding’s bound on
deviations in sampling without replacement [7]. O

25

Lemma A.1.2 Let mq, mo, k1, ks be non-negative integers and m = mq + ms, k = k1 + k. Then
() () R P R |
Sk k) o =12 - remi- 4 -
(5 I e a(l —a) (m1 * mg) ’

where o = £ [= 7"‘1'“2;1"‘2'“1

o , and C > 0 is a universal constant.

Proof: Note that K = am, k1 = amy — [, and ks = amo + [. By the symmetry of binomial
coefficients, we may assume that [> 0. We shall prove the lemma by showing the two inequalities

(am,) (ams)

(m) > C’lmfl/Q (39)
and
(am—1) (amagd) 25l
LR > oSl 2) w
ami ams

for positive constants Cp, Cs.

The first inequality is an immediate consequence of Stirling’s approximation, \/ﬁ(%)” <n!<
Cg\/ﬁ(%)”, where C5 = 1+e/12 is a constant. To prove the second inequality, we apply Stirling’s
approximation to all four binomial coefficients to get the following lower bound on the left-hand
side of (40):

[P(am1)P((1 — a)mq)P(ams9)P((1 — a)ms)] y
P(am; —)P((1 — a)mq +)P(ama + 1)P((1 — a)mo — 1)
ami(1 — a)miamso(l — a)msy 1/2
[(aml —D((1 = a)my +1)(ams + 1)((1 — a)mgy — l)} ’ (41)

where P(z) denotes z*. Now we have

P(am,)

Saem) - — (o) (14 k)™

ami—I

> (o)l exp {M},

ami

where we have used the inequality (14)¥ > exp(f—fy), valid for z,y > 0. Handling the three
other pairs of factors in the numerator and denominator in similar fashion (using in addition the
inequality (1 — %)y > exp(;—fg), valid for y > z > 0) we see that the first parenthesis in (41) is

bounded below by
12 1 1
—(—+—) 7. 42
exp{ a(l—a)(m1+m2)} 42)

A similar calculation bounds the second parenthesis in (41) by

l 1 1
exp{—ﬁ(m—l—i-m—)}. (43)

Combining (42) and (43) completes the verification of inequality (40) above, and hence the proof
of the lemma. O

26

A.2 Appendix for section 5.2

Here we provide the proof of Lemma 5.3, the analysis of the pre-processing random walk (PRW),
which was omitted from the main text.

Proof of Lemma 5.3: By removing X NY from both X and Y and replacing b by b —a(X NY),
we may assume that X N'Y = (). Moreover, by scaling all the a; and b we may assume that
M = max; a; = 1. Finally, we may assume that b > 3A since otherwise there are no pairs (X,Y)
satisfying the hypothesis of the lemma.

Define
F={X"Y"):a(X')>b—Aora(Y') >b—A};

E={(X"Y"):a(X') <b—2A and a(Y') < b—2A}.
Note that F contains all full pairs (X', Y"), and £, F are disjoint. Also, define the hitting times
7 = max E(number of PRW steps to hit £ starting at (X',Y”));
(X" Y")eF
U= min E(number of PRW steps to hit F starting at (X', Y")).
(X" y")ee
Now we claim that the lemma will follow if we can show:
(i) T < am for some constant « > 0;

(ii) U/T > p for some constant 5 > 0.

To see this, set the length of the PRW to be Cym = 4am, and let (X;,Y;) denote the sequence
of pairs visited by the PRW, with (X, Yy) = (X,Y) € F. Let Ty be the first time ¢ at which
(X1, Y;) € € (or Ty = Cym if the walk ends before this occurs); then let Uy be the first ¢ for which
(X1y+t, Yro+¢) € F, and T} the first ¢ for which (X7,+v,++, Yry+0,+¢) € €. Continue defining a
sequence of hitting times Us, T, Us, T5, ... in this way until the end of the walk is reached. Note
that the PRW is not full for at least), U; steps, and that > ,~cT; + >;~; Ui = 4am is the total
walk length. Now from facts (i) and (ii) we have - -

B(Y T - 5> U) =B(To + Y (T - 5U3)) < am.
i>0 i>1 i>1

An application of Markov’s inequality then ensures that Y, T; —% Y i>1 Ui < 2am with probability
at least % Conditioning on this event we have (1 + %) > U; > 2am, and thus the proportion of

steps during which the PRW is not full is at least 1/2(1 + %), a constant. The lemma now follows
easily.

It remains to verify facts (i) and (ii) above: these are immediate consequences of the following
two claims. Let o2 = % Sicxuy @2 be the second moment of the item weights, and note that
0? > 1/m since max; a; = 1.

Claim 1: 7 < v;/0? for a constant y; > 0.
Claim 2: U > 73 /0? for a constant y5 > 0.

Proof of Claim 1: Choose an initial pair (Xj,Yy) € F that maximizes the expected time until
the PRW hits &, and let (Xy,Y;) denote the PRW starting at (Xo,Y). We may assume w.l.o.g.
that a(Xo) > a(Yp), so that a(Xp) € [b — A,b] and T is the expected time until a(X;) < b — 2A.
We estimate 7 by coupling the PRW with the unconstrained random walk, which behaves exactly

27

like the PRW except that the constraint) a; < b is ignored. (Thus it is just simple random walk
on an m-dimensional hypercube with holding probability % at every step.) Write (X;,Y;) for the
unconstrained random walk, with (Xp, Yy) = (X, Yp), and consider the first time ¢ = T at which
|a(Xt) a(Xo)| > 2A. Now a(X;) is a supermartingale up to time T', since E(a(X;41) —a(X;)| X;) =

= (a (V) — a(X;)) < 0. Thus with constant probability a(X) < a(Xg) 2A, and so (X5,Yz) € €.
Hence 7T is bounded above by a constant times E(T'). But we also have E((a(X'tH) —a(X}))?|X,) =
Lm a2 = %2 So E(T) is the expected time for a supermartingale with increments bounded
by £1 and with second moment ¢2/2 to move a distance £2A from its initial value. A standard
application of the martingale Optional Stopping Theorem (see, e.g., [5, Section 12.5]), now yields

that E(f) < (4?27?2 = v;/0? for a positive constant ;. This completes the proof of Claim 1.

Proof of Claim 2: As above let (X;,Y};) denote the PRW, but now with (X, Yy) € £. We follow
the random variable Z; = a(X;) —a(Y%), which always has a drift towards 0 (i.e., E(Z;41 — Z4| X¢)
Zy < 0 for all t). Note that initially |Zy| < 2(b — 2A) =V, where V = a(Xy) + a(V;) = Y ;a4 is
independent of t. And when (X;,Y;) € F we have |Z;| > 2(b— A) — V. Thus U is bounded below
by the minimum expected time for |Z;| to increase by 2A from its initial value. But the second

moment is E((Zi41 — Z:)?|X:) = 5 >4(2a;)> = 207, so by a similar application of the Optional
Stopping Theorem we conclude that U > v2/0?, as claimed.
This completes the verification of Claims 1 and 2, and hence the proof of the lemma. O

A.3 Appendix for section 6.2
Here we prove the existence of strongly balanced permutations, as claimed in Lemma 6.5.

Proof of Lemma 6.5: First suppose that > /", w; = 0. We will show that, in this case, there
exists a strongly 8d° —balanced permutation m. Let L be the set containing the 4d indices ¢+ with
the largest values of w?, and the 4d indices : with the largest values of —w], for each j < d. Then
|L| < 8d2.

The permutation = we construct will satisfy {7 (m),...,7(m — |L|+ 1)} = L. It will be enough
to check that the strong balance condition holds for 1 < k < m — |L|. It suffices to show that, for
all j < d and k < m — |L|, we have

—sIt < Zw < s, (44)
where . . ‘ .
st =3 "(wh)t; s =) (w!)”.
icL icL
We will need the Grinberg-Sevast’yanov result (Lemma 6.2), which states that for any set of
vectors z1,..., T, in R% with >; x; = 0, there exists a permutation v € S, such that
k
le/(i) € dxconv{zy,...,zp} forl <k <mn.
i=1

Note that the permutation v/ defined by /(i) = v(n + 1 — i) for all 7 satisfies

qu € —d x conv{zy,...,x,} forl <k <mn.

28

Let Sy ={1,...,m} — L, let m' = m — |L|, and let 7, be a permutation on S; such that

Z(wm(i) — 1) € —d x conv{w; — p1 1 € S},

for all k&, where pu; = % > ics, wi.- Suppose that m' is even and m' = 2r; if m' is odd the proof is

similar. Now, let Sy = {m(r +1),...,m1(m')}, and let 7 be a permutation on Sy such that
k
Z(wm(i) — po) € d x conv{w; — ps : i € Sy}, (45)
i=1

where iy = 1 2ics, Wi- Define the permutation 7 by

(i) = (1), ifi <wr;
] me(i—r), ifr<i<m.

We must check that 7 satisfies (44). Fix j. W.lo.g. s/T < s77, so that u{ > 0. For k < r we
have

Z “’fr(i) = Z wgrl(z)
i=1 i=1
k

\
1
.~
vl
L

=1

v

—d _
15‘%"'{“’ ui}

Vv

—d J
 max {w;}

—s]+/4
—sit,

VvV IV

and

k
= kﬂjl + Z(wm(i) - /1'{)

< +d max {—(w] -)}

1<i<m/
= L/ - +d max{ wj}—i—d,ul
1<i<m/
< 3T = 5+ () + (37)
= §s7 g8t
< s = LT (46)

(We will need the extra —+s/* in the second part of the proof.) For r < k < 2r we have
k) r) k—r
Z W)y = ; w) iy Zl Wl (- (47)

29

Now if ,u2 < 0 then the conditional expectation of Y%, w’ () given my is af least —s/T +577. Hence
we must have

k
J j+ j j J

me) > =/t 4517 = dmax{—(w] -)}
1=

> —s/t 47 — dmax{— w}

1€ Ss
> st 48T — 5174
> —sit,

On the other hand, if ,u% > 0 the right-hand side of (47) can be bounded below as follows:

r k—r [r k—r
warl(z’) + Z wfrz(i) = warl(z’) + (b —r)uy| + Z(wiz(z) -
i=1 i=1 Li=1 i=1
> 4677 = 57) —d max ful -)] — dmax{—(w! -)
L 1<e<m/!
Legi— _ i+ VAU J
> _2(5 7Ty — dlgllg};b,{w }} dmax{ w; } — dug
> [%(sj_—sj+)—sj+/4] — 77/ — 577 /4
3 .
= ——8]+
4
> —sit.

For a corresponding upper bound, we can write

k

r
Zwi(i) < Z wfrl(i) + (k — r)pd + min{d, k — r} Ilré%);{wf — 3} (48)
i=1 j=

If N% > 0, the right-hand side of (48) is bounded above by

(877 = s7T) + dr_re%x{w{} < (89T =TT 0T A< ST
€02
If ug < 0, the right-hand side of (48) is bounded above by
Zw ;) + min{d, k—r}max{w3}< (877 — /T)4) + 57T 4 < 517,

where in the first inequality we have used equation (46).

Putting all the above together we see that 7 is strongly 8d?-balanced. Furthermore, in light
of (44) we know also that, for all £ and j, there exists a set of indices S O {1,...,k}, with
|S| < k + 8d?, such that Zf 1 fwj (i) and Zlesw (i) have opposite signs.

Now let {w;}™, be arbltrary From the above, there exists a permutation m which is strongly
8d%-balanced with respect to the sequence {w; — u}™,, where y = L+ — > ieq wi. We claim that 7 is
also strongly 16d2 balanced with respect to the original sequence {wl}Z 1- Fix £ and j, and define
pl =L w!. Wlo.g. p/ > 0. Then there exists S D {1,...,k} with |S| < k + 8d? such that

dowly — k! >y wl) — S| > 0.

1€S 1eS

30

In addition, there exists S D {1,...,k}, with |S| < k+8d?, such that 3, g wfr(z.) < |S|p?. Tt follows

that, for some S’ C S with |S'| = k, we have). wfr(i) < kul. Since |S' @ {1,...,k}| < 16d? this
completes the proof. O

31

