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Abstrat

We solve an open problem onerning the mixing time of symmetri random walk on the n-

dimensional ube trunated by a hyperplane, showing that it is polynomial in n. As a onse-

quene, we obtain a fully-polynomial randomized approximation sheme for ounting the feasible

solutions of a 0-1 knapsak problem. The results extend to the ase of any �xed number of hy-

perplanes. The key ingredient in our analysis is a ombinatorial onstrution we all a \balaned

almost uniform permutation," whih seems to be of independent interest.

1 Introdution

For a positive real vetor a = (a

i

)

n

i=1

and real number b, let 
 denote the set of 0-1 vetors

x = (x

i

)

n

i=1

for whih

a � x �

n

X

i=1

a

i

x

i

� b:

Geometrially, we an view 
 as the set of verties of the n-dimensional ube f0; 1g

n

whih lie on

one side of the hyperplane a � x = b. Combinatorially, 
 is the set of feasible solutions to the 0-1

knapsak problem de�ned by a and b: if we think of the a

i

as the weights of a set of n items, and

b as the apaity (weight limit) of a knapsak, then there is a 1-1 orrespondene between vetors

x 2 
 and subsets of items X whose aggregated weight does not exeed the knapsak apaity,

given by X = fi : x

i

= 1g. We shall write a(X) for the weight of X, i.e., a(X) =

P

i2X

a

i

.

This paper is onerned with the problem of omputing j
j, i.e., ounting the number of feasible

solutions to the knapsak problem. The problem is #P-omplete in exat form, so we aim for a good

approximation algorithm, spei�ally a fully-polynomial randomized approximation sheme (fpras).

By a well-known relationship based on self-reduibility [12, 11℄, this is equivalent to onstruting a

polynomial time algorithm for sampling elements of 
 (almost) uniformly at random.

In reent years there has been a steady stream of results of this kind for #P-omplete ounting

problems (see, for example, [13, 11, 8℄ for surveys); however, the 0-1 knapsak problem still stands
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as one of a small handful of anonial problems that have so far resisted attak. Indeed, it has been

quoted as an open problem in several plaes [4, 11, 13, 15℄. This interest stems in part from its

ombinatorial signi�ane and its appealing geometri struture, and in part from the hallenge it

poses to existing methods. In this paper, we resolve this issue by onstruting an fpras for the 0-1

knapsak problem. Along the way we introdue some new mahinery that we believe will be useful

for takling other problems of a similar avor, and possibly beyond.

Almost all known approximate ounting algorithms proeed by simulating a suitable random

walk on the set of interest
. The walk is onstruted so that it onverges to the uniform distribution

over 
; simulation of the walk for suÆiently many steps therefore allows one to sample (almost)

uniformly from 
, and thus to approximate j
j. In any appliation of this method, the key step

is to establish that the random walk is rapidly mixing, i.e., gets lose to the uniform distribution

after a polynomial number of steps.

In the ase of 0-1 knapsak solutions, a partiularly simple and natural random walk on 
 has

been proposed. If the urrent state is X � f1; : : : ; ng, then

1. pik an item i 2 f1; : : : ; ng uniformly at random (u.a.r.);

2. if i 2 X, move to X � fig; if i =2 X and a(X [ fig) � b, move to X [ fig; otherwise, do

nothing.

This proess may equivalently be viewed as a nearest neighbor random walk on the portion of the

ube f0; 1g

n

trunated by the hyperplane a � x = b, in whih the probability of moving to any

neighbor is

1

n

; we will all this graph G




. To avoid tehnial issues involving periodiity, we add

to every state a holding probability of

1

2

: i.e., with probability

1

2

do nothing, else make a move as

desribed above.

It is easy to hek that this random walk onverges to the uniform distribution over 
. However,

despite muh reent ativity in the analysis of mixing times of random walks, this deeptively simple

example is still not known to be rapidly mixing. There is strong geometri intuition that it should

be: random walk on the entire ube f0; 1g

n

is rapidly mixing, and trunation by a hyperplane

presumably annot reate \bottleneks" that would severely slow down onvergene. Nonetheless,

the best known bound on the mixing time remains exp(O(

p

n(log n)

5=2

)) [4℄, whih beats the trivial

bound of exp(O(n)) but is still exponential.

In this paper we prove that the above random walk is indeed rapidly mixing, with a mixing time

of O(n

9=2+�

) steps for any � > 0. This immediately implies the existene of an fpras for ounting

0-1 knapsak solutions.

We also present a non-trivial extension of these results to the ase of multiple hyperplanes (more

preisely, multiple onstraints of the form a

j

�x � b

j

for non-negative vetors a

j

).

1

Here we are also

able to prove a mixing time of O(n



) (where  is a onstant) for any �xed number of hyperplanes.

(The exponent  depends on the number d of hyperplanes, but this is inevitable as it is not hard

to prove a lower bound of n


(d)

on the mixing time. Moreover, it is possible to enode NP-hard

problems if the number of hyperplanes is permitted to depend on n, so we would not expet any

polynomial time sampling algorithm for this ase.)

To prove rapid mixing we use a tehnique based on multiommodity ow (see [16℄): if we an

route unit ow between eah pair of verties X;Y in G




simultaneously in suh a way that no edge

arries too muh ow, then the random walk is rapidly mixing. This tehnique is well known, but

most previous appliations (e.g., [9, 10℄) have made use of \degenerate" ows in whih all X ! Y

1

We mention in passing that all our results extend from the 0-1 ase to more general ubes of the form [0; : : : ; L℄

n

.

This extension is purely tehnial and does not require any substantial new ideas, so we omit the details.
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ow is routed along a single anonial path (though see [1, 16℄ for exeptions). Our analysis seems

to rely essentially on spreading out the ow along multiple paths.

The key ingredient in our analysis is the spei�ation of these paths, whih we ahieve via an

auxiliary ombinatorial onstrution that we believe is of independent interest and will �nd further

appliations elsewhere. Note that a shortest path between a pair of verties X;Y of G




an be

viewed as a permutation of the symmetri di�erene X � Y , the set of items that must be added

to or removed from the knapsak in passing from X to Y . A natural approah to de�ning a good

ow is to use a random permutation, so that the ow is spread evenly among all shortest paths

and no edge is overloaded. However, a fundamental problem with this approah is that a random

permutation will tend to violate the knapsak onstraint, as too many items will have been added

at some intermediate point. Slightly less obviously, a symmetri problem arises beause a random

permutation will tend to remove too many items at some intermediate point, ausing ongestion

among edges of the hyperube near the origin. To avoid these problems, we want our permutations

to remain \balaned," in the sense that items are added and removed at approximately the orret

rates throughout the path; but we also want them to be \suÆiently random" to ensure a well

spread ow. More spei�ally, it turns out that we require the distribution of the initial segment

f�(1); : : : ; �(k)g, viewed as an unordered set, to be \almost uniform." We all permutations with

these properties balaned almost uniform permutations. A main ontribution of this paper is to

show the existene of suh permutations.

The remainder of this paper is strutured as follows. We begin with some neessary bakground

on ows and rapid mixing in setion 2. We then establish rapid mixing of the knapsak random

walk in the tehnially simpler ase when the item weights a

i

lie in the range [1; B℄, for some

onstant B. This analysis is in two parts: in setion 3 we show how to onstrut balaned almost

uniform permutations, and in setion 4 how to use these to de�ne a good ow. We then extend

everything to the general ase in setion 6. The extension to multiple onstraints is handled in

setion 6; this involves extending our onstrution of balaned almost uniform permutations from

salar weights to vetors in arbitrary dimension. This again may be of independent interest.

2 The mixing time and multiommodity ow

As indiated earlier, we will view elements of 
 either as 0-1 vetors x = (x

i

)

n

i=1

or, more ommonly,

as subsets X � f1; : : : ; ng, under the equivalene X = fi : x

i

= 1g. Reall that a(X) =

P

i2X

a

i

is the weight of X, so that 
 = fX : a(X) � bg. Without loss of generality, we will assume that

a

i

� b for all i.

We onsider the symmetri random walk on the portion G




of the hyperube f0; 1g

n

de�ned in

the Introdution. This walk is onneted (all states ommuniate via the zero vetor) and aperiodi

(beause of the holding probabilities), and sine the transition probabilities are symmetri, the

distribution at time t onverges to the uniform distribution over 
 as t ! 1, regardless of the

initial state. Our goal is to bound the rate of onvergene as measured by the mixing time, de�ned

as

�

mix

= max

X

0

min

n

t : kP

t

0

� Uk �

1

4

8t

0

� t

o

;

whereX

0

is the initial state, P

t

is the distribution of the walk at time t, U is the uniform distribution

over 
, and k � k denotes variation distane.

2

Thus �

mix

is the number of steps required, starting

from any initial state, to get the variation distane from the uniform distribution down to

1

4

. By

2

For probability distributions �; � on 
, the variation distane is de�ned as k� � �k =

1

2

P

x2


j�(x) � �(x)j =

max

S�


j�(S)� �(S)j.
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standard fats about geometri onvergene, O(�

mix

log �

�1

) steps suÆe to redue the variation

distane to any desired �.

Fairly standard tehniques (see [16℄) allow us to estimate �

mix

by setting up a suitable multi-

ommodity ow on the underlying graph G




. Our task is to route one unit of ow from X to Y ,

for eah ordered pair of verties X;Y 2 
 simultaneously. For any suh ow f , and any oriented

edge e in G




, let f(e) denote the total ow along e; i.e., f(e) is the sum over all ordered pairs

X;Y of the X ! Y ow arried by e. De�ne C(f) =

1

j
j

max

e

f(e), the maximum ow along any

edge normalized by j
j, and L(f) to be the length of a longest ow-arrying path. The following

theorem

3

is a speial ase of results in [16℄ (see also [3, 2℄):

Theorem 2.1 [16℄ For any ow f , the mixing time is bounded by �

mix

� 4n(n+ 1)C(f)L(f).

We will bound �

mix

by onstruting a ow with small values of C and L. To bring out the main

oneptual ideas, we will fous initially on what we term the bounded ratio ase, where all weights a

i

lie in the range [1; B℄ for some onstant B. We will derive a bound of the form �

mix

= n

O(B

2

)

in

this ase. By introduing some additional tehnial ompliations, we will go on to get a uniform

bound of �

mix

= O(n

9=2+�

) for the general ase, for any � > 0.

Remark:We note that our bound on the mixing time is only slightly larger than the upper bound of

O(n

3

) whih one obtains by applying Theorem 2.1 to the hyperube itself (without the hyperplane

onstraint): see, e.g., [17℄. This is in turn somewhat o� from the true mixing time of O(n log n).

On the other hand, it is fairly easy to obtain a lower bound of 
(n

2

= log n) for the mixing time

of the trunated ube: onsider, for example, an instane in whih logn items have weight 1, the

other n� log n items have weight n, and the knapsak apaity is b = n.

As explained in the Introdution, our ow will be based on the idea of a balaned almost uniform

permutation. We devote the next setion to this topi and then return to the knapsak random

walk in setion 4.

3 Balaned almost uniform permutations

We begin by de�ning the notions of \balaned" and \almost uniform" permutations. We will write

S

m

to denote the set of all permutations of f1; : : : ;mg.

De�nition 3.1 Let fw

i

g

m

i=1

be a set of real (not neessarily positive) weights, with M = max

i

jw

i

j

and W =

P

i

w

i

. A permutation � 2 S

m

is balaned if, for every k with 1 � k � m,

minfW; 0g �M �

k

X

i=1

w

�(i)

� maxfW; 0g +M: (1)

Thus a balaned permutation is one whose partial sums do not utuate widely. In partiular, if

P

i

w

i

= 0 then ondition (1) beomes j

P

k

i=1

w

�(i)

j �M .

De�nition 3.2 Let � be a random permutation in S

m

, and let � 2 R. We all � a �-uniform

permutation if

Pr[�f1; : : : ; kg = U ℄ � ��

�

m

k

�

�1

(2)

for every k with 1 � k � m and every U � f1; : : : ;mg of ardinality k. (Here �f1; : : : ; kg denotes

the initial segment f�(1); : : : ; �(k)g.)

3

We note that this theorem applies to symmetri random walk on any onneted subgraph of the hyperube f0; 1g

n

,

in whih transitions are made to eah neighbor with probability

1

2n

.
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Note that, if � were a uniform random permutation, the probability in (2) would be exatly

�

m

k

�

�1

for every U . In a �-uniform permutation the probabilities are permitted to vary with U , but only by

an amount spei�ed by the parameter �. In our appliations, � will be a �xed polynomial funtion

of m; in this ase we all � an almost uniform permutation.

The perhaps surprising result of this setion is that, if the ratios of the weights are bounded,

it is possible to onstrut an almost uniform permutation that is guaranteed to be balaned. In

setion 5.1 we will show how to dispense with any restritions on the weights.

Theorem 3.3 Let fw

i

g

m

i=1

be any set of weights with jw

i

j 2 [1; B℄ for a onstant B > 1. Then

there exists a balaned almost uniform permutation � on fw

i

g.

Proof: Let M = max

i

jw

i

j and W =

P

m

i=1

w

i

. Assume �rst that W = 0; we will show how to

disharge this assumption later. Let I

1

= fi : w

i

> 0g, I

2

= fi : w

i

< 0g, m

1

= jI

1

j and m

2

= jI

2

j.

De�ne the means �

1

=

1

m

1

P

i2I

1

w

i

and �

2

= �

1

m

2

P

i2I

2

w

i

. Note that m

1

�

1

= m

2

�

2

sine W = 0.

Consider an arbitrary permutation � 2 S

m

. This indues permutations �

1

; �

2

on I

1

; I

2

respetively.

4

We all �

1

�-good if, for every k

1

with 1 � k

1

� m

1

,

�

�

�

k

1

X

i=1

w

�

1

(i)

� k

1

�

1

�

�

�

� �(M � 1)

q

k

�

1

; (3)

where k

�

1

= minfk

1

;m

1

� k

1

g, with an analogous de�nition for �

2

. We all � �-good if both �

1

and �

2

are �-good. Thus in a good permutation, the partial sums of both positive and negative

weights are lose to their expeted values.

Now suppose � is hosen u.a.r. from S

m

. A routine appliation of Hoe�ding's bound to the

partial sums (see Lemma A.1.1 in the Appendix) yields

Pr[� is not �-good℄ � 2m exp(�2�

2

): (4)

If we set � =

p

lnm, this probability is at most

2

m

�

1

2

for m � 4.

Consider now a modi�ed sample spae in whih � is seleted u.a.r. among all

p

lnm-good

permutations. We shall write Pr

unif

for probabilities in the original uniform spae to distinguish

them from those in this modi�ed spae. By the above alulation, for any event E � S

m

we have

Pr[E ℄ � 2Pr

unif

[E ℄: (5)

We are now in a position to onstrut our balaned almost uniform permutation. Let � be

hosen u.a.r. from all

p

lnm-good permutations, and let �

1

; �

2

be the indued permutations on

I

1

; I

2

. To get a balaned permutation �, we interleave �

1

and �

2

as follows. We take the �rst

element from �

1

, i.e., set �(1) = �

1

(1). Thereafter, for eah k > 1 in turn we set �(k) to be the

next element in �

2

if

P

k�1

i=1

w

�(i)

� 0, and the next element in �

1

otherwise. Sine

P

i

w

i

= 0 this

proess is well-de�ned and yields a permutation � 2 S

m

. Moreover, sine jw

i

j � M for all i it is

lear that � satis�es the balane ondition (1).

We now need to verify the uniformity ondition (2), for � = poly(m). Let U � f1; : : : ;mg be

arbitrary with jU j = k, and let U

1

= U \ I

1

, U

2

= U \ I

2

, k

1

= jU

1

j, k

2

= jU

2

j. Then we have

Pr[�f1; : : : ; kg = U ℄ � Pr[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

� 2Pr

unif

[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

=

2

�

m

1

k

1

��

m

2

k

2

�

; (6)

4

Formally, we view �

1

as a bijetion from f1; : : : ;m

1

g to I

1

, and similarly for �

2

. Throughout we shall adopt this

onvention where appropriate, without omment.
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where the seond inequality follows from (5). Now some routine alulations involving Stirling's for-

mula (see Lemma A.1.2 in the Appendix) allow us to relate

�

m

1

k

1

��

m

2

k

2

�

to

�

m

1

+m

2

k

1

+k

2

�

=

�

m

k

�

. Spei�ally,

(6) beomes

Pr[�f1; : : : ; kg = U ℄ �

Cm

1=2

�

m

k

�

exp

(

l

2

+

1

2

jlj

�(1� �)

�

1

m

1

+

1

m

2

�

)

; (7)

where � =

k

m

, l =

m

1

k

2

�m

2

k

1

m

, and C > 0 is a universal onstant. The quantity l measures the

deviation of the numbers k

1

; k

2

of positive and negative elements in U from the \expeted" values

�m

1

; �m

2

respetively. But sine � is balaned, � is good, and the element sizes do not vary too

muh, jlj annot in fat be very large. To formalize this intuition, note �rst that

l = (k

2

�

2

� k

1

�

1

)

m

2

�

1

m

; (8)

sine

m

2

m

1

=

�

1

�

2

. Now by the goodness ondition (3) on �

1

; �

2

we have

�

�

�

k

X

i=1

w

�(i)

� (k

1

�

1

� k

2

�

2

)

�

�

�

=

�

�

�

�

k

1

X

i=1

w

�

1

(i)

+

k

2

X

i=1

w

�

2

(i)

�

� (k

1

�

1

� k

2

�

2

)

�

�

�

� 2(M � 1)

p

k

�

lnm;

where k

�

= minfk;m� kg. Sine � is balaned we also know that j

P

k

i=1

w

�(i)

j �M , and therefore

jk

1

�

1

� k

2

�

2

j � 2(M � 1)

p

k

�

lnm+M:

Together with (8) and our assumption that M � B, this implies the following bound on jlj:

jlj �

�

2(B � 1)

p

k

�

lnm+B

�

m

2

�

1

m

:

Plugging in this value for jlj, the exponent in (7) is bounded above, for suÆiently large m, by

5(B � 1)

2

k

�

lnm

m

2

2

�

2

1

m

2

m

2

k(m� k)

m

m

1

m

2

= 5(B � 1)

2

lnm

k

�

m

k(m� k)

1

�

1

�

2

� 10(B � 1)

2

lnm; (9)

sine k(m� k) �

k

�

m

2

and �

1

; �

2

� 1. Thus (7) beomes

Pr[�f1; : : : ; kg = U ℄ � C

0

�

m

k

�

�1

m

10(B�1)

2

+1=2

; (10)

whih veri�es the uniformity ondition (2) with � = C

0

m

10(B�1)

2

+1=2

.

This onludes the proof of the theorem for the speial ase W =

P

i

w

i

= 0. We an extend

the argument to general values of W using a simple trik. We will assume W > 0; the ase W < 0

is entirely symmetrial. We begin by padding the sequene of weights with d = dW=Me values

w

m+1

; : : : ; w

m+d

eah of whih (exept possibly the last) is �M , so that

P

m+d

i=1

w

i

= 0. Note that

d � m. By the above argument for the W = 0 ase, we an onstrut a balaned almost uniform

permutation �

0

on this padded sequene (though see the remark immediately following this proof).

Let � be the indued permutation on the weights fw

i

g

n

i=1

. We laim that � is also balaned and

almost uniform.

6



To see that � is balaned, note that

k

X

i=1

w

�(i)

�

k

0

X

i=1

w

�

0

(i)

� �M ; and

k

X

i=1

w

�(i)

�

k

0

X

i=1

w

�

0

(i)

+W �M +W;

for some k

0

� k, using the balane property of �

0

.

To see that � is almost uniform, let us all the indies f1; : : : ;mg true and the remainder fake.

Let U be an arbitrary subset of true indies of ardinality k. We need to show that

Pr[�f1; : : : ; kg = U ℄ �

�

m

k

�

�1

poly(m): (11)

Sine � is indued by �

0

, this probability is bounded above by

P

S

Pr[E

S

℄, where for S � f1; : : : ;m+

dg, E

S

is the event that �

0

f1; : : : ; jSjg = S and the sum is over all S of the form U [ U

0

, where all

elements of U

0

are fake. Now by the almost uniformity of �

0

, this sum is at most

poly(m+ d)

X

S

Pr

unif

[E

S

℄; (12)

where Pr

unif

denotes probability under the uniform distribution on permutations in S

m+d

. But the

sum in (12) is just the expetation, under the uniform distribution, of the random variable X =

P

S

X

S

, where X

S

is the indiator r.v. of E

S

. Thus X ounts the number of events E

S

that our.

We laim that

E(X) =

�

m

k

�

�1

�

1 +

d

m+1

�

: (13)

This will omplete the veri�ation of ondition (11); for replaing the sum in (12) by E(X) gives

Pr[�f1; : : : ; kg = U ℄ �

�

m

k

�

�1

�

1 +

d

m+1

�

poly(m+ d);

whih is of the required form sine d � m.

To see the laim in (13), let E be the event that �f1; : : : ; kg = U . Clearly Pr

unif

[E ℄ =

�

m

k

�

�1

,

and X = 0 unless E ours, so we have

E(X) =

�

m

k

�

�1

E(XjE): (14)

Conditioning now on E , let r be the position in �

0

of the last element of U , so that U � �

0

f1; : : : ; rg

and �

0

(r) 2 U . Also, let s be the position of the next true element, i.e., �

0

(s) is true and �

0

(t) is

fake for r < t < s. (If no suh element exists, let s = m+ d+1.) Then E

S

holds for preisely those

sets S = �

0

f1; : : : ; tg, where r � t < s. The number of suh sets is just the number of fake elements

that fall between the true element at position r and the next true element (at position s), plus

one. The expetation of this quantity under the uniform distribution is plainly 1 +

d

m+1

. Plugging

this into (14) we get the value laimed in (13), whih onludes the proof that � is almost uniform.

Remark: We should point out that the padded sequene we introdued in the seond part of the

above proof might ontain one weight whose absolute value is less than one. Thus it is not, in a

strit sense, a speial ase of the earlier W = 0 ase, where we assumed that all the weights had

7



absolute values in the range [1; B℄. However, a more areful treatment of the analysis leading up

to equation (10) shows that this equation still holds even when there is a single small weight (or

even a onstant number of small weights). Furthermore, we an make the onstant C

0

that appears

in (10) independent of B.

Now, following through the algebra in the seond part of the proof, starting from equation (10),

and noting that d � m, it is not hard to hek that the resulting permutation � is �{uniform for

� = 2C

0

(2m)

10(B�1)

2

+1=2

= C

B

m

10(B�1)

2

+1=2

, where the onstant C

B

inreases with B. Moreover,

it is also easy to verify that the permutation � atually satis�es a slightly stronger uniformity

property, namely

Pr[�f1; : : : ; kg = U and �(k + 1) = l℄ � C

0

B

m

10(B�1)

2

+1=2

�

 

m

k m� k � 1 1

!

�1

; (15)

for any U with jU j = k and any l =2 U , where C

0

B

= C

B

(B + 1). (To get this value for C

0

B

, note

that � must �rst hoose U and then l; this seond hoie introdues the fator B + 1.) We will

make use of these fats in setion 5 when we disuss permutations of general weights.

4 A good ow in the bounded ratios ase

We now return to the random walk for the knapsak problem, and esh out the sketh of a ow

presented in the Introdution, making heavy use of the balaned almost uniform permutations from

setion 3. We ontinue to onsider only the bounded ratio ase, i.e., we assume that all weights a

i

lie in the range [1; B℄. To avoid trivialities, we also assume B � b.

Let X;Y be two arbitrary verties of G




, viewed as subsets of f1; : : : ; ng. We need to speify

how to route one unit of ow from X to Y . First, write X = X

0

[X

1

, where X

0

;X

1

are disjoint,

a(X

1

) � b�B, and jX

0

j � B; this an always be done sine a

i

2 [1; B℄. Write Y = Y

0

[Y

1

similarly.

All the ow leaving X will pass through X

1

, and all the ow arriving at Y will pass through Y

1

.

Between X

1

and Y

1

, we will route the ow using an almost uniform permutation. (Note that there

is an obvious orrespondene between unit ows from X

1

to Y

1

and probability distributions on

paths between them.) Let S = X

1

� Y

1

(where � denotes symmetri di�erene) and m = jSj.

Let fw

i

g

m

i=1

be an arbitrary enumeration of the weights of the items in S, where weights in S \ Y

1

appear with a positive sign and weights in S \X

1

with a negative sign. Thus W = a(Y

1

)� a(X

1

).

We an now desribe the ow from X to Y in three stages:

Stage 1: Send the entire unit ow along a single path from X to X

1

by removing the elements

of X

0

in index order.

Stage 2: Distribute the unit ow along geodesi paths from X

1

to Y

1

aording to a balaned

almost uniform permutation � of the weights fw

i

g of the items in S.

Stage 3: Send the entire unit ow along a single path from Y

1

to Y by adding the elements of Y

0

in index order.

The role of stages 1 and 3 is simply to ensure that the endpoints of the random paths in stage 2 are

at least a small distane below the bounding hyperplane, to aommodate the (small) utuations

still present in balaned permutations.

Let us �rst observe that the above ow is valid. For this, we just need to hek that all the

ow-arrying paths remain within the set 
. This is obvious for stages 1 and 3. For stage 2 it
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follows from the balane property of �: for if Z is the kth point along a ow-arrying path from X

1

to Y

1

, then

a(Z) = a(X

1

) +

k

X

i=1

w

�(i)

� a(X

1

) + maxfa(Y

1

)� a(X

1

); 0g +B (16)

= maxfa(Y

1

); a(X

1

)g+B

� b;

where in the last line we have used the fat that a(X

1

); a(Y

1

) are both � b�B. Hene Z 2 
.

Next we must bound the quantities C(f) and L(f) for this ow f , as de�ned in setion 2.

L(f), the length of a longest ow-arrying path, is plainly at most n+ 2B. To estimate C(f), we

must bound the ow along any edge of G




. For onveniene we will in fat bound the ow f(Z)

through any vertex Z; learly this is also an upper bound on the ow along any edge.

So let Z be an arbitrary vertex of G




. De�ne

P

(Z) to be the set of pairs (X;Y ) suh that

some X ! Y ow passes through Z. Note that

P

(Z) =

S

3

i=1

P

i

(Z), where

P

i

(Z) are the pairs

whose paths pass through Z in stage i. We shall bound the ontribution to f(Z) from eah

P

i

(Z)

separately. For i = 1; 3 this is simple: sine stage-1 paths have length at most B, the number of

verties X suh that (X;Y ) 2

P

1

(Z) is (rudely) at most Bn

B

, so the ontribution to f(Z) from

suh paths is no more than Bn

B

j
j. The same bound holds symmetrially for

P

3

(Z). The main

portion of the paths,

P

2

(Z), presents more of a hallenge.

We shall atually work with

e

P

2

(Z), the set of pairs (X

1

; Y

1

) suh that Z lies on the stage-2

path with endpoints X

1

; Y

1

. By the observation in the previous paragraph, the ow ontribution

from

P

2

(Z) will be at most B

2

n

2B

times that from

e

P

2

(Z). Reall that we are really interested

in the ratio

f(Z)

j
j

, rather than in f(Z) itself. Aordingly, following earlier analyses of this general

type (see, e.g., [9, 10℄), we measure the set

e

P

2

(Z) by assoiating with eah of its elements (X

1

; Y

1

)

an \enoding" Z

0

, whih belongs to 
. This is de�ned as the omplement of Z in the multiset

X

1

[ Y

1

; more preisely,

Z

0

= X

1

� Y

1

� Z:

To see that Z

0

2 
, we need to hek that a(Z

0

) � b. But this follows beause

a(Z

0

) = a(X

1

) + a(Y

1

)� a(Z)

� a(X

1

) + a(Y

1

)� (minfa(X

1

); a(Y

1

)g �B)

= maxfa(X

1

); a(Y

1

)g+B

� b;

where in the seond line we have used the balane property of � as in (16) to bound a(Z), this

time from below.

How many pairs (X

1

; Y

1

) ould be mapped to a given Z

0

? First note that Z

0

uniquely determines

both S = X

1

� Y

1

and I = X

1

\ Y

1

via the relations

S = Z

0

� Z; I = Z

0

\ Z:

Thus in partiular suh pairs share the same symmetri di�erene, S, of ardinality m, say. To

determine X

1

and Y

1

uniquely, it suÆes to speify the subset U � S of elements that have already

been proessed (i.e., added or deleted) by the stage-2 path by the time it reahes Z. For then we
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know, from the fat that all stage-2 paths are geodesi, that X

1

agrees with Z on S � U and with

Z

0

on U , and vie versa for Y

1

. More formally,

X

1

= Z � U ; Y

1

= Z

0

� U:

The upshot of the foregoing disussion is that we an de�ne a mapping from

e

P

2

(Z) to pairs of

the form (Z

0

; U), where Z

0

2 
 and U is a subset of Z�Z

0

. Moreover, and ruially, this mapping

is injetive. It therefore e�etively enumerates the set

e

P

2

(Z).

Finally, we need to take aount of the atual quantity of ow traveling along the paths. Con-

sider a pair (X

1

; Y

1

) 2

e

P

2

(Z), orresponding to the pair (Z

0

; U). Reall that the ow distribution

between X

1

and Y

1

is determined by a balaned almost uniform permutation � of the weights

in S = X

1

� Y

1

. The proportion of this ow that passes through Z is preisely

Pr[�f1; : : : ; jU jg = U ℄ �

�

m

jU j

�

�1

poly(m);

by the almost uniform property of �.

Putting all this together, we an bound the total ontribution to f(Z) from

e

P

2

(Z) as follows:

X

Z

0

2


X

U�Z�Z

0

Pr[�f1; : : : ; jU jg = U ℄

�

X

Z

0

2


X

k

X

U�Z�Z

0

jU j=k

�

m

k

�

�1

poly(m)

� poly(n)

X

Z

0

2


X

k

�

m

k

��

m

k

�

�1

� npoly(n)j
j;

where in the summations m = jZ � Z

0

j. The total ontribution from all stage-2 paths is thus at

most B

2

n

2B+1

poly(n)j
j.

Combining this with our earlier bounds for stages 1 and 3, we obtain that f(Z) � poly(n)j
j

(for a di�erent polynomial), and hene C(f) � poly(n). Sine both L(f) and C(f) are bounded

polynomially in n, we now obtain immediately from Theorem 2.1 that the mixing time, �

mix

, is

polynomial in n. By keeping trak of the polynomial fators, we see that the exponent is dominated

by the poly(n) term arising from the almost uniformity ondition (2), whih is of the form n

O(B

2

)

(see the Remark at the end of setion 3).

We summarize our analysis in the following theorem.

Theorem 4.1 Let 
 be the set of solutions to a knapsak problem whose weights a

i

lie in the range

[1; B℄ for some onstant B. The mixing time of the random walk on G




is �

mix

= n

O(B

2

)

.

As mentioned in the Introdution, this immediately yields an fpras for omputing j
j in this ase,

via a standard redution to random sampling (whose details are spelled out in [11℄).

5 The general ase

We now generalize the results of the previous two setions to the ase of arbitrary weights. The

essential ideas are the same, but there are several non-trivial tehnial ompliations that need to

be addressed.
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5.1 Balaned almost uniform permutations

To handle arbitrary weights, we �rst need to extend our onstrution of balaned almost uniform

permutations. The hief obstale here is that it is no longer true (as in the bounded ratio ase) that

eah item of positive weight an be balaned by a bounded number of items of negative weight.

To overome this diÆulty, we will need to group items into \intervals" so that eah interval has

approximately the same (positive or negative) weight. We an then redue to the bounded ratio

ase.

First we need a slightly more liberal balane ondition:

De�nition 5.1 Let fw

i

g

m

i=1

be a set of real weights, with M = max

i�m

jw

i

j and W =

P

i

w

i

,

and let � � 1 be a nonnegative number. A permutation � 2 S

m

is �-balaned if, for all k with

1 � k � m,

minfW; 0g ��M �

k

X

i=1

w

�(i)

� maxfW; 0g +�M: (17)

Our earlier de�nition (De�nition 3.1) thus orresponds to � = 1.

Relaxing our earlier terminology slightly, we shall all � 2 S

m

a \balaned almost uniform

permutation" if � is �-balaned for a �xed onstant �, and �-balaned for � a �xed polynomial

funtion of m. The following theorem is a generalization of Theorem 3.3; it says that we an

onstrut a balaned almost uniform permutation for an arbitrary set of weights. Moreover, we an

bound the uniformity parameter � by a polynomial whose degree is arbitrarily lose to 1=2 at the

ost of a modest inrease in the balane parameter �. This is almost the best that one an hope

for: it is easy to hek that, if we have m=2 weights of +1 and m=2 of �1, then for any onstants

�, C and p < 1=2, there an be no �-balaned Cm

p

-uniform permutation if m is suÆiently large.

For tehnial reasons, we shall atually prove a slightly stronger uniformity property. Call �

strongly �-uniform if

Pr[�f1; : : : ; kg = U and �(k + 1) = l℄ � ��

�

m

k m�k�1 1

�

�1

(18)

for every k with 1 � k � m, every U � f1; : : : ;mg of ardinality k, and every l =2 U . Note that the

expression on the right-hand side of (18) is just � times the probability of the given event if � were

hosen uniformly at random. Plainly (18) is a strengthening of equation (2) in De�nition 3.2; reall

from equation (15) that our permutations in the previous setion also had this stronger property.

Theorem 5.2 Fix 0 < � < 1 and let � = 1+

p

90=�. For any m and set of weights fw

i

g

m

i=1

, there

exists a �{balaned strongly Cm

1=2+�

{uniform permutation, where C is a universal onstant.

Proof: Let M = max

i

jw

i

j and set

b

� =

��1

3

. Let � be a uniform random permutation in S

m

. Let

T

1

be the smallest t suh that the partial sum

P

t

i=1

w

�(i)

has absolute value greater than

b

�M (or

T

1

= m if no suh t exists). Similarly, let T

2

be the smallest t > T

1

suh that j

P

t

i=T

1

+1

w

�(i)

j >

b

�M .

De�ne T

3

; T

4

; : : : in the same way. Then let I

1

be the sequene f�(i)g

T

1

i=1

, and I

2

the sequene

f�(T

1

+ i)g

T

2

�T

1

i=1

. Continue in this way, dividing � into intervals I

1

; : : : ; I

q

(so that T

q

= m).

Now let �

i

be the aggregated weight of interval I

i

for i = 1; 2; : : : ; q � 1. Note that j�

i

j 2

[

b

�M; (

b

� + 1)M ℄ for all i < q, so the ratio of the weights of any two of these intervals is at

most (

b

�+1)=

b

�. Thus, by the results of setion 3, there exists a 1-balaned �-uniform permutation

on f�

i

g

q�1

i=1

for � = Cq

10

�

(

b

�+1)=

b

��1

�

2

+1=2

= Cq

1=2+�

. By the Remark at the end of that setion, we

an in fat assume that this permutation is strongly �-uniform and (sine (

b

� + 1)=

b

� is bounded
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above by a onstant, namely 1 +

p

1=10) that the onstant C does not depend on �. Call this

permutation �

I

. We laim that the permutation

� = I

�

I

(1)

I

�

I

(2)

� � � I

�

I

(q�1)

I

q

obtained by rearranging the �rst q� 1 intervals aording to �

I

is a �-balaned Cm

1=2+�

{uniform

permutation on the original m weights.

We prove the balane property �rst. Let W

0

=

P

q�1

i=1

�

i

= W � �

q

. Sine �

I

is 1-balaned, �

satis�es

minf0;W

0

g � (

b

�+ 1)M �

T

j

X

i=1

w

�(i)

� maxf0;W

0

g+ (

b

�+ 1)M

for all 1 � j � q. Hene we have, for all j,

minf0;W

0

g � (2

b

�+ 1)M �

j

X

i=1

w

�(i)

� maxf0;W

0

g+ (2

b

�+ 1)M;

sine the partial sums within any interval lie in the range [�

b

�M;

b

�M ℄. Finally, note that jW �

W

0

j = j�

q

j �

b

�M . It follows that for all j,

minf0;Wg � (3

b

�+ 1)M �

j

X

i=1

w

�(i)

� maxf0;Wg+ (3

b

�+ 1)M;

and hene � is �-balaned.

To verify the strong uniformity property, onsider �rst an alternative experiment in whih the

permutation �

I

is hosen u.a.r. from S

q�1

without regard to the balane property. Note that,

onditional on the value of q, the distribution of (I

1

; : : : ; I

q�1

) is exhangeable. Thus, re-arranging

the intervals aording to a uniform �

I

is a measure-preserving transformation, so � itself has the

uniform distribution. Thus we need to show that for any U and any index l =2 U , the likelihood

ratio

Pr[�f1; : : : ; kg = U and �(k + 1) = l℄

Pr

unif

[�f1; : : : ; kg = U and �(k + 1) = l℄

� Cm

1=2+�

;

where we write Pr

unif

for the probability when �

I

is uniform and Pr for the probability when

�

I

is Cm

1=2+�

{uniform. In fat, it suÆes to show that the above bound on the likelihood ratio

holds onditional on any �. So �x a permutation �. In order for the numerator to be non-zero,

only the interval ontaining l an ontain elements from both U and U



(the omplement of U).

Additionally, in the interval ontaining l, all the elements before l must be in U and all those

after l must be in U



. Let A

1

be the olletion of intervals in fI

i

g

q�1

i=1

ontaining only elements

of U , and A

2

the olletion of intervals ontaining only elements of U



. Then jA

1

j+ jA

2

j must have

value either q � 1 or q � 2. Writing E

1

for the event �

I

f1; : : : ; jA

1

jg = A

1

and E

2

for the event

�

I

fq � 1; : : : ; q � jA

2

jg = A

2

, the above likelihood ratio is

Pr[E

1

and E

2

℄

Pr

unif

[E

1

and E

2

℄

� Cq

1=2+�

� Cm

1=2+�

:

In the ase where jA

1

j+jA

2

j = q�1 this is just the Cq

1=2+�

{uniformity property; when jA

1

j+jA

2

j =

q � 2 it is the strong Cq

1=2+�

{uniformity property. Thus � is strongly Cm

1=2+�

{uniform, and the

proof is omplete.
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5.2 The ow

Now that we have balaned almost uniform permutations for general weights, we an follow a

similar strategy to that in setion 4 for onstruting a good ow in the general ase. Our goal will

be to obtain a ow f of ost C(f) = O(n

3=2+�

) for any � > 0. So we assume from now on that � is

arbitrary but �xed.

Let X;Y be arbitrary verties of G




. Reall the sheme for onstruting a ow from X to Y in

the bounded ratio ase in setion 4: we essentially followed a balaned almost uniform permutation

of X � Y , exept that we removed a onstant number of items from X and Y from onsideration

(proessing them at the beginning and end of the path) to ensure that the path remained withinG




.

The idea in the general ase is basially the same, exept that we will now remove a �xed number

of items from X [ Y and add/delete these repeatedly along the path to maintain �ne balane.

Moreover, before applying the random permutation, we �rst need to \pre-proess" the pair (X;Y )

so that neither X nor Y is too lose to the hyperplane: in ontrast to the bounded ratio ase, this

is not guaranteed by the removal of a �xed number of items beause of the possibly large variations

in weights. However, we an overome this obstale by randomly swithing items between X and Y

to roughly balane their weights. The resulting ow-arrying paths will not in general be geodesis,

as before, though they will have length only O(n).

In preparation for desribing the ow, we �rst desribe the pre-proessing operation. We assume

that a(X) + a(Y ) � 2b� 6�M , where M = max

i2X�Y

a

i

and � = �(�) is the onstant appearing

in Theorem 5.2. (In our appliation, we will redue to this ase by deleting a �xed number of items

from X [ Y .) Call a pair of verties (X

0

; Y

0

) full if either a(X

0

) > b ��M or a(Y

0

) > b ��M .

Our goal is to shift items randomly between X and Y and thereby reah a pair (X

0

; Y

0

) that is not

full.

Consider the following random walk on f(X

0

; Y

0

) : X

0

[ Y

0

= X [ Y; X

0

\ Y

0

= X \

Y; a(X

0

); a(Y

0

) � bg. If the urrent state is (X

0

; Y

0

), hoose an index i 2 X

0

� Y

0

u.a.r. With

probability

1

2

, do nothing; else move i from X

0

to Y

0

or Y

0

to X

0

if possible. We all this the

\pre-proessing random walk" (PRW). We laim in the following lemma that, if we run the PRW

for a number of steps hosen randomly between 1 and O(n), we will with reasonable probability

arrive at a pair (X

0

; Y

0

) that is not full. The proof uses a martingale argument and is deferred to

the Appendix.

Lemma 5.3 Let (X;Y ) be a full pair of verties in G




with a(X) + a(Y ) � 2b � 6�M , where

M = max

i2X�Y

a

i

. Pik T u.a.r. from f1; 2; : : : ; C

1

mg, where m = jX � Y j and C

1

is a suitable

onstant (whih depends only on �), and let (X

0

; Y

0

) be the result of running the PRW for T

steps starting from (X;Y ). Then Pr[(X

0

; Y

0

) is not full℄ � 1=C

2

for a positive onstant C

2

(again

depending only on �).

We are now ready to onstrut and analyze the ow in the general ase.

Lemma 5.4 For arbitrary weights and any � > 0, it is possible to onstrut a multiommodity

ow f in G




with C(f) = O(n

3=2+�

) and L(f) = O(n).

Proof: Let X;Y be arbitrary verties of G




. Viewing X and Y as subsets of f1; : : : ; ng, let H be

the h = d6�e elements of X�Y having largest weight (or let H = X�Y if jX�Y j � h), with ties

broken aording to index order. De�ne X

0

= X �H, Y

0

= Y �H and S = X

0

� Y

0

. Let m = jSj,

and let fw

i

g

m

i=1

be an arbitrary enumeration of the weights of the items in S, with the weights of

items in X

0

; Y

0

appearing with negative and positive signs respetively. Let M = max

i

jw

i

j.
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We will say that a set of indies Z is good if Z �H 2 
 and (Z �X � Y )�H 2 
. For a set

of indies Z and an index i, de�ne

Zi =

(

Z � fig if Z � fig is good;

Z otherwise.

De�ne Zi

1

i

2

= ((Zi

1

)i

2

) and so on. Note that if Y = Xi

1

� � � i

l

then the sequene i

1

; : : : ; i

l

de�nes

a path from X to Y in the unit hyperube of length at most l. This path need not in general lie

within G




; however, it is \lose to" G




in the sense that for every point Z of the path, Z�H 2 
.

If (X

0

; Y

0

) is not full then set T = 0, otherwise hoose T u.a.r. from f1; : : : ; C

1

mg, where C

1

is

the onstant in Lemma 5.3. Next, let i

1

; : : : ; i

T

be i.i.d. uniform over S. De�ne X

00

= X

0

i

1

� � � i

T

and Y

00

= X

00

�X

0

� Y

0

= Y

0

i

1

� � � i

T

. Thus (X

00

; Y

00

) is the result of running the PRW for T steps

starting from (X

0

; Y

0

). Note that a(X

0

) + a(Y

0

) � 2b� a(H) � 2b� 6�M . So, by Lemma 5.3, we

an ondition on the event that the pair (X

00

; Y

00

) is not full and thus inrease the probability of

any path by a fator of at most C

2

.

Now let � be a �-balaned, strongly Cm

1=2+�

{uniform permutation on the weights fw

i

g, whose

existene is guaranteed by Theorem 5.2. We laim that the sequene

i

1

; : : : ; i

T

; �(1); : : : ; �(m); i

T

: : : ; i

1

(19)

de�nes a path from X to Y in the hyperube. This is true beause the ondition that (X

00

; Y

00

) be

not full, together with the fat that � is balaned, guarantees that all of the transitions indiated

by � will atually take plae.

Set

j

k

=

8

>

<

>

:

i

k

if 1 � k � T ;

�(k � T ) if T < k � T +m;

i

2T+m�k�1

if T +m < k � 2T +m,

and let l = 2T +m. Then j

1

; : : : ; j

l

is the sequene in (19). Our ow from X to Y will essentially

follow the sequene j

k

, exept that along the way elements of H will be used to keep the knapsak

as full as possible, but will be removed as neessary to make room for new items j

k

to be added.

Thus eah intermediate state Z will be of the form H �Xj

1

� � � j

k

, for some H � H and k � l.

Suppose that, after proessing the �rst k � l elements of the sequene in (19), we have Z =

H �Xj

1

� � � j

k

for some H � H. The transition rule will be as follows.

1. If k < l and j

k+1

=2 Z then move to Z j

k+1

if possible (i.e., if the result is an element of 
);

otherwise delete an element from H.

2. If k < l and j

k+1

2 Z then add an element from H if possible; otherwise move to Z j

k+1

.

3. If k = l then add an element from H \Y if possible; otherwise delete an element from H \X.

The fat that all of the sets X j

1

� � � j

k

are good ensures that suÆient elements of H an

always be removed so as to make room to add the next element j

k+1

when neessary; hene the

above rule de�nes a feasible random path from X to Y . Similarly, goodness also implies that

a(Z �X � Y �H) � b for every intermediate state Z; sine our rule keeps the weight as large as

possible this implies that, at any intermediate edge (Z;W ) along the path, there exists (at most)

one element u 2 H suh that

a(Z �X � Y � fu; zg) � b; (20)
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where z is the index suh that fzg = Z �W . Then (Z

0

� fu; zg) 2 
, where exatly as in the

analysis in setion 4, we de�ne the \enoding" Z

0

by

Z

0

= X � Y � Z:

Thus, for any given edge (Z;W ), the number of enodings Z

0

is at most nj
j.

Note that the path from X to Y an be naturally divided into three stages, orresponding to

the three parts of the sequene j

k

. We will write the ow through any given edge (Z;W ) 2 G




as

f(Z;W ) = f

1

(Z;W ) + f

2

(Z;W ) + f

3

(Z;W ), where f

i

(Z;W ) is the ontribution of stage i paths.

We will bound f by bounding eah of the three ontributions f

i

separately.

Consider stage 1 �rst, and fous on a partiular edge (Z;W ). For any pair (X;Y ) that sends

ow through (Z;W ) in stage 1, we an write Z = H �Xj

1

: : : j

k

, where j

1

; : : : ; j

k

are the �rst k

elements proessed along the path. Thus the pair (X;Y ) is ompletely spei�ed by k; j

1

; : : : ; j

k

; Z

0

and H, via the easily veri�ed relations

X = H � Zj

k

� � � j

1

; Y = H � Z

0

j

k

� � � j

1

:

The amount of ow orresponding to a given sequene j

1

; : : : ; j

k

is bounded above by the probability

that j

1

; : : : ; j

k

; z were the �rst k + 1 indies hosen in the pre-proessing random walk, whih is

at most C

2

m

�(k+1)

. (The fator C

2

here arises from our earlier onditioning on the event that

(X

00

; Y

00

) is not full.) Thus we an bound the stage-1 ow f

1

(Z;W ) as in setion 4. We have

f

1

(Z;W ) �

X

Z

0

X

k

X

j

1

;:::;j

k

X

H

C

2

m

�(k+1)

�

X

Z

0

X

k

2

h

C

2

m

�1

�

X

Z

0

C

1

m2

h

C

2

m

�1

� C

1

C

2

2

h

nj
j;

where the fators C

1

m and 2

h

arise from summing over k and H respetively.

The ow f

3

(Z;W ) from stage-3 paths an be handled symmetrially, so onsider now the stage-2

paths. For a given edge (Z;W ), every pair (X;Y ) that sends ow through (Z;W ) in stage 2 an

be ompletely spei�ed by Z

0

; T; k; j

1

; : : : ; j

T

; U and H, where k is the number of elements of the

sequene in (19) proessed along the path from X to Z and U = f�(1); : : : ; �(k � T )g, via

X = H � (Z � U)j

T

� � � j

1

; Y = H � (Z

0

� U)j

T

� � � j

1

:

Let k

0

= k�T . The amount of ow orresponding to a given j

1

; : : : ; j

T

and U is bounded above by

(C

2

m

�T

)(C

1

m)

�1

2

4

Cm

1=2+�

 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5

;

where the �rst fator omes from the pre-proessing random walk, the seond fator is the prob-

ability of hoosing a partiular T , and the third fator is an upper bound on the probability

Pr[�f1; : : : ; k

0

g = U and �(k

0

+ 1) = z℄, whih omes from the strong almost uniformity of �. Thus

we an again bound the ow f

2

(Z;W ) as in setion 4. We have

f

2

(Z;W ) �

X

Z

0

X

T

X

k

X

j

1

;:::;j

T

X

U

X

H

(C

2

m

�T

)(C

1

m)

�1

2

4

Cm

1=2+�

 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5
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�

X

Z

0

(C

1

m)mm

T

 

m� 1

k

0

!

2

h

(C

2

m

�T

)(C

1

m)

�1

2

4

Cm

1=2+�

 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5

=

X

Z

0

2

h

C

2

2

4

m

 

m� 1

k

0

! 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5

Cm

1=2+�

=

X

Z

0

2

h

C

2

Cm

1=2+�

� 2

h

CC

2

n

3=2+�

j
j;

where the fators in the seond line are written in the same order as the sums they arise from.

Adding the ontributions f

1

, f

2

and f

3

, we see that the above ow satis�es C(f) = O(n

3=2+�

),

while plainly L(f) = O(n). Sine � > 0 was arbitrary, this ompletes the proof.

Given suh a ow, we need only invoke Theorem 2.1 to derive our main result.

Theorem 5.5 Let 
 be the set of solutions to an arbitrary instane of the 0-1 knapsak problem.

The mixing time of the random walk on G




is �

mix

= O(n

9=2+�

) for any � > 0.

This immediately implies the existene of an fpras for omputing j
j in the general ase.

Remark: The mixing time bound of O(n

9=2+�

) in Theorem 5.5 is reasonably tight for this type

of analysis. If we apply Theorem 2.1 to analyze random walk on the entire ube f0; 1g

n

, we get a

bound of O(n

3

) even with an optimal ow. Thus the trunation introdues an extra fator of only

O(n

3=2+�

) into the bound. It is instrutive to see where this extra fator omes from: O(n

1=2+�

) is

due to the balaned almost uniform permutation onstrution (Theorem 5.2, whih is tight), while

O(n) omes from the fat that the \enoding" Z

0

may lie just outside 
.

6 Multiple hyperplanes

6.1 Introdution

In this setion, we will extend our earlier results to handle multiple hyperplanes. For a non-negative

real d� n matrix A and a positive real vetor b = (b

1

; : : : ; b

d

), let 
 denote the set of 0-1 vetors

x = (x

i

)

n

i=1

for whih Ax � b. The verties in 
 onstitute the set of feasible solutions to the

multidimensional knapsak problem with the d simultaneous onstraints

a

j

� x �

n

X

i=1

a

j

i

x

i

� b

j

for 1 � j � d, (21)

where a

j

i

� a

ji

. (In equation (21) the supersript j indexes the jth linear onstraint; we will follow

this onvention throughout.)

Geometrially, 
 is obtained by trunating the unit ube by d hyperplanes, eah of whih orre-

sponds to a knapsak onstraint. The essential geometri property of these \knapsak" hyperplanes

is that their normal vetors all lie in the same quadrant. The results of this setion will easily extend

to any olletion of hyperplanes with this property

5

.

5

However, we annot allow the hyperplanes to be arbitrary. If arbitrary trunations were allowed, then it would

be possible to use just two hyperplanes to ause exponential bottleneks or even disonnet the graph G




.
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Following our earlier notation, we identify a 0-1 vetor x = (x

i

)

n

i=1

with the set of indies

X = fi : x

i

= 1g, and write a(X) = (a

1

(X); : : : ; a

d

(X)) for the (now d-dimensional) weight of X.

As before we denote by G




the subgraph of the hyperube f0; 1g

n

indued by the verties in 
, and

we again study symmetri random walk on G




; i.e., transitions from a given state X � f1; : : : ; ng

are made as follows:

1. pik an item i 2 f1; : : : ; ng u.a.r.;

2. if i 2 X, move to X�fig; if i =2 X and a

j

(X [fig) � b

j

for all j, move to X [fig; otherwise,

do nothing.

Again, to avoid issues involving periodiity, we add to every state a holding probability of

1

2

.

In this setion we will prove that this random walk on G




has mixing time that is polynomially

bounded in n, for any �xed dimension d. Just as in the one-dimensional ase, this immediately

gives a polynomial time algorithm for sampling (almost) uniformly at random from 
, and a fpras

for omputing j
j.

We note that the degree of our polynomial upper bound for the mixing time will depend on

the dimension d, but this is unavoidable as the following simple example shows. Consider a d-

dimensional knapsak problem in whih there are

n

2d

items having eah of the d weight vetors

(n; 0; : : : ; 0); (0; n; : : : ; 0); : : :, (0; : : : ; 0; n), and the remaining

n

2

items have weight vetor (1; 1; : : : ; 1);

the knapsak apaity is b = (n; : : : ; n). Let S be the set of feasible solutions in 
 whih do not

ontain any of the (1; : : : ; 1) items. Then jSj =

�

n

2d

+ 1

�

d

, but S is onneted to 
�S only through

the origin. It follows easily that the mixing time is n


(d)

.

In fat, for arbitrary d there an be no uniform polynomial upper bound for the running time

of any sampling algorithm unless RP = NP. This follows immediately by redution from the

problem of sampling independent sets in a graph. By theorem 1.17 of [17℄, there is no algorithm

for (almost) uniformly sampling independent sets in a graph unless RP = NP. Now if G = (V;E)

is an arbitrary (undireted) graph, there is a 1-1 orrespondene between the independent sets in

G and the feasible solutions to the knapsak problem with jV j variables and the jEj onstraints

x

u

+ x

v

� 1 for all fu; vg 2 E.

To prove rapid mixing of the random walk on G




for any �xed d, we use the multiommodity

ow tehnique as before. Reall that Theorem 2.1, whih bounds the mixing time in terms of the

ost of a ow f , holds for symmetri random walk on any onneted subset of the hyperube, so it

again suÆes to ome up with a ow of small ost. As before, the idea is to spread eah X ! Y

ow evenly using a balaned almost uniform permutation. However, sine the weight funtion a( � )

is now vetor-valued, we �rst need to extend the de�nition of balane to higher dimensions.

De�nition 6.1 Fix an integer d > 0, and let fw

i

g

m

i=1

be a set of weights inR

d

satisfying

P

m

i=1

w

i

= 0.

For a positive real number �, a permutation � 2 S

m

is �-balaned if

max

k

�

�

�

k

X

i=1

w

j

�(i)

�

�

�

� �M

j

for 1 � j � d; (22)

where w

i

= (w

1

i

; : : : ; w

d

i

) and M

j

= max

1�i�m

jw

j

i

j

Thus � is balaned with respet to vetor weights fw

i

g if and only if it satis�es the d one-dimensional

balane onditions given by (22). Note that this generalizes our earlier De�nition 5.1 for the one-

dimensional ase (exept that, for simpliity, we have assumed that

P

i

w

i

= 0).

17



Construting balaned almost uniform permutations is signi�antly more diÆult in higher

dimensions sine one has to ontrol utuations in all dimensions simultaneously. In fat, for

d � 2, it is non-trivial to prove for an arbitrary set of vetor weights that even a single balaned

permutation exists. (For d = 1 of ourse this is trivial.) The existene of suh a permutation follows

at one from a lemma due to Grinberg and Sevast'yanov [6℄, whih was proved in an entirely di�erent

ontext:

Lemma 6.2 [6℄ Let x

1

; : : : ; x

n

be vetors in R

d

suh that

P

i

x

i

= 0. Then there exists a permuta-

tion � 2 S

n

suh that

k

X

i=1

x

�(i)

2 d� onvfx

1

; : : : ; x

n

g for 1 � k � n,

where onv denotes the onvex hull.

Of ourse, we need something muh stronger than this, namely almost uniform permutations

with a similar balane property. Perhaps surprisingly, we will show that balaned almost uniform

permutations exist in arbitrary dimension d. To illustrate the main ideas involved in extending

from one to higher dimensions, we now give a sketh of the proof in the speial ase where d = 2

and the weights satisfy 1 � jw

j

i

j � 2 for all i and j.

In this setting, let I

1

= fi : w

2

i

� 0g, I

2

= fi : w

2

i

< 0g, and de�ne v =

P

i2I

1

w

i

. For every

i � m, let y

i

be the projetion of w

i

onto v

?

. Let �

1

be an almost uniform permutation on I

1

whih is balaned (in the one-dimensional sense) with respet to fy

i

g

i2I

1

, with a similar de�nition

for �

2

. Finally, interleave �

1

and �

2

to give a permutation on f1; : : : ;mg whih is balaned with

respet to fw

2

i

g

m

i=1

(the projetions of the w

i

onto the seond oordinate axis). Sine �

1

and �

2

are

both almost uniform, so is �, by an argument similar to that in the proof of Theorem 3.3.

Furthermore, sine �

1

and �

2

are eah balaned with respet to projetions onto v

?

, so is �.

(Note that the projetions y

i

satisfy

P

i2I

1

y

i

=

P

i2I

2

y

i

= 0.) Thus, for every k, the projetions

of

P

k

i=1

w

�(i)

onto the seond oordinate axis and onto v

?

are both bounded, and sine the w

j

i

are

all in [1; 2℄, the angle between the oordinate axis and v

?

is bounded away from zero. Thus, the

partial sums

P

k

i=1

w

�(i)

stay inside a parallelogram of bounded diameter. Hene � is balaned with

respet to the weights fw

i

g

m

i=1

.

This onludes the sketh proof for the above speial ase with d = 2. Note that it is a

straightforward redution to the one-dimensional result. Unfortunately, in general the redution

from d to d�1 dimensions is not quite so straightforward; we deal with the extra tehnial diÆulties

in the next subsetion.

6.2 Balaned almost uniform permutations in arbitrary dimensions

The following theorem says that one an always onstrut balaned almost uniform permutations

when the dimension d is �xed.

Theorem 6.3 Let d be any positive integer. There is a onstant 

d

and a polynomial funtion

p

d

suh that, for any set of weights fw

i

g

m

i=1

in R

d

with

P

i

w

i

= 0, there exists a 

d

{balaned,

p

d

(m){uniform permutation.

Proof: The proof will be by indution on d. The base ase d = 1 follows from Theorem 5.2,

with 

1

= 15 and p

1

(m) = Cm. Now let d > 1 be arbitrary, and suppose that the result holds
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for dimensions up to d� 1. Let fw

i

g

m

i=1

be a set of weights in R

d

. Suppose �rst that the weights

satisfy

M

j

= 2 for all j; (23)

1 � max

1�j�d

jw

j

i

j � 2 for all i. (24)

Thus eah weight is at least half as large as the maximum (positive or negative) weight in some

oordinate. Then

max

1�j�d

m

X

i=1

jw

j

i

j �

m

d

:

W.l.o.g., suppose that the sum in the LHS is maximized by j = d. Then we have

m

X

i=1

(w

d

i

)

+

=

m

X

i=1

(w

d

i

)

�

�

m

2d

:

Let I

1

= fi : w

d

i

� 0g, I

2

= fi : w

d

i

< 0g, m

1

= jI

1

j, and m

2

= jI

2

j. De�ne the means

�

1

=

1

m

1

P

i2I

1

w

d

i

, and �

2

= �

1

m

2

P

i2I

2

w

d

i

. Note that �

1

; �

2

�

1

2d

. For 1 � j < d, let



j

=

P

i2I

1

w

j

i

P

i2I

1

w

d

i

=

P

i2I

2

w

j

i

P

i2I

2

w

d

i

:

For all i � m and j < d, let y

j

i

= w

j

i

� 

j

w

d

i

, and let y

i

= (y

1

i

; : : : ; y

d�1

i

). Note that j

j

j � 1,

jy

j

i

j � 4, and

P

i2I

1

y

i

=

P

i2I

2

y

i

= 0.

Now, for s = 1; 2 let �

s

be a p

d�1

(m){uniform permutation on I

s

whih is 

d�1

{balaned with

respet to fy

i

g

i2I

s

. Call �

1

�-good if for every k

1

with 1 � k

1

� m

1

we have

�

�

�

k

1

X

i=1

w

d

�

1

(i)

� k

1

�

1

�

�

�

� 2�

q

k

�

1

(25)

where k

�

1

= minfk

1

;m

1

�k

1

g. In similar fashion to the proof of Lemma A.1.1, Hoe�ding's bounds [7℄

imply that for a partiular value of k

1

we have

Pr

unif

(�

1

does not satisfy (25)) � 2 exp(�2�

2

);

and sine the event depends only on the initial segment �

1

f1; : : : ; k

1

g, we also have

Pr(�

1

does not satisfy (25)) � p

d�1

(m) � Pr

unif

(�

1

does not satisfy (25))

� p

d�1

(m) � 2 exp(�2�

2

):

Hene

Pr[�

1

is not �-good℄ � mp

d�1

(m) � 2 exp(�2�

2

): (26)

Suppose that for some onstants C and r, the polynomial p

d�1

satis�es p

d

(k) � Ck

r

for all k. If we

let � =

p

(r + 1) ln(m), then the RHS of (26) is at most 2Cm

r+1�2(r+1)

�

1

2

, for suÆiently large

m. Thus, we an assume that �

1

is �-good with probability 1 and only inrease C by a onstant

fator. Similar arguments apply to �

2

.

19



Finally, note that it is always possible to interleave �

1

and �

2

to give a permutation on

f1; : : : ;mg whih is 1-balaned with respet to fw

d

i

g

m

i=1

. Let � be suh a permutation. Then

we have j

P

k

i=1

w

d

�(i)

j � 2, and

�

�

�

k

X

i=1

w

j

�(i)

�

�

�

=

�

�

�

X

i2I

1

:

i�k

w

j

�(i)

+

X

i2I

2

:

i�k

w

j

�(i)

�

�

�

=

�

�

�

X

i2I

1

:

i�k

y

j

�(i)

+

X

i2I

2

:

i�k

y

j

�(i)

+ 

j

k

X

i=1

w

d

�(i)

�

�

�

�

�

�

�

X

i2I

1

:

i�k

y

j

�(i)

�

�

�

+

�

�

�

X

i2I

2

:

i�k

y

j

�(i)

�

�

�

+ j

j

j

�

�

�

k

X

i=1

w

d

�(i)

�

�

�

� 4

d�1

+ 4

d�1

+ 2j

j

j

� 8

d�1

+ 2;

for all j < d and k. Hene � is 

0

d

{balaned for 

0

d

= 4

d�1

+ 1 by assumption (23) .

To verify almost uniformity, we follow the proof of Theorem 3.3. Let U � f1; : : : ;mg be

arbitrary with jU j = k, and let U

1

= U \ I

1

, U

2

= U \ I

2

, k

1

= jU

1

j, and k

2

= jU

2

j. Then we have

Pr[�f1; : : : ; kg = U ℄ � Pr[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

� (Cm

r

)

2

Pr

unif

[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

=

C

0

m

2r

�

m

1

k

1

��

m

2

k

2

�

Now we an bound the quantity

�

m

1

k

1

��

m

2

k

2

�

by mimiking (with minor modi�ations) the alulations

from equation (7) to equation (10) in the proof of Theorem 3.3. In our urrent setting, we have

�

1

; �

2

�

1

2d

, and the jw

d

i

j are in [0; 2℄. Beause we have hanged the de�nition of �-good and

the value of �, we also have to make the substitutions (B � 1)

2

! 2

2

and lnm ! (r + 1) lnm,

respetively. Thus the bound on the exponent given in equation (9) beomes

10 � 2

2

(

1

2d

)

2

(r + 1) lnm = 160d

2

(r + 1) lnm: (27)

Hene � is p

d

(m)-uniform for p

d

(m) = C

00

m

160d

2

(r+1)+2r+1=2

.

We have shown how to make balaned almost uniform permutations if the weights satisfy

(23) and (24). To generalize to arbitrary weights fw

i

g

m

i=1

, we use the interval trik introdued in

setion 5.1. Let � be a uniform random permutation in S

m

, and let T

1

= minft : j

P

t

i=1

w

j

i

j >

M

j

for some jg. De�ne T

2

; T

3

; : : : similarly. Now use the T

i

to divide � into intervals I

1

; : : : ; I

q

.

Let f�

i

g

q�1

i=1

be the aggregated (d-dimensional) weights of the �rst q � 1 intervals. Note that if we

divide eah �

j

i

by

1

2

max

i

j�

j

i

j, then the resulting weights satisfy (23) and (24). Hene these weights

admit a 

0

d

{balaned, p

d

(q){uniform permution (though see the remark immediately following this

proof). Rearranging the intervals fI

i

g

q�1

i=1

aording to suh a permutation gives a permutation on

f1; : : : ;mg whih is p

d

(m){uniform and 

d

{balaned for 

d

= 2

0

d

+ 1.
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Remark: We should point out that the weights f�

i

g

q�1

i=1

of the �rst q � 1 intervals will not in

general sum to zero. However, we an easily get around this by introduing a dummy weight �

q

whih is equal to the weight of interval I

q

. The presene of this single small weight does not a�et

equation (27) for suÆiently large m. Hene there is a 

0

d

-balaned p

d

-uniform permutation on this

padded sequene f�

i

g

q

i=1

. This indues a permutation on f�

i

g

q�1

i=1

whih is (

0

d

+ 1){balaned and

p

d

(q){uniform for some onstant . Thus, if we inorporate an extra +1 into the onstant 

0

d

and

an extra fator of  into p

d

then the argument in the above proof is still valid.

Before we speify our ow, we need one more de�nition.

De�nition 6.4 Let fw

i

g

m

i=1

be a sequene in R

d

, with w

i

= (w

1

i

; : : : ; w

d

i

), let � = (�

1

; : : : ; �

d

) =

1

m

P

m

i=1

w

i

, and let l be a positive integer. A permutation � is strongly l{balaned if, for all k � m

and j � d, there exists a set S � f1; : : : ;mg with jS��f1; : : : ; kgj � l, suh that

�

P

k

i=1

w

j

�(i)

� k�

j

�

and

�

P

i2S

w

j

�(i)

� k�

j

�

have opposite signs (or either is 0).

Thus, in a strongly balaned permutation, whenever the initial segment f�(i)g

k

i=1

is \above average"

with respet to a partiular oordinate j, it an be made \below average" by ipping at most some

�xed number l of items, and vie versa. As the name suggests, the strong balane ondition is

striter than the usual balane ondition. Nonetheless, the following lemma says that strongly

balaned permutations always exist.

Lemma 6.5 For any sequene fw

i

g

m

i=1

in R

d

, there exists a strongly 16d

2

{balaned permutation.

Note that this lemma laims only that a single strongly balaned permutation exists; unlike Theo-

rem 6.3, it makes no laims regarding almost uniformity. The proof of the lemma relies heavily on

the result of Grinberg and Sevast'yanov quoted earlier (Lemma 6.2); the proof is straightforward

but rather tehnial, so we defer it to the Appendix.

6.3 A good ow

Now that we have multi-dimensional balaned almost uniform permutations and strongly balaned

permutations, we are ready to ontrut a good ow.

Lemma 6.6 Fix any number of knapsak onstraints d. For arbitrary item weights, it is possible to

onstrut a multiommodity ow f in G




with C(f) bounded by a polynomial in n and L(f) = O(n).

Proof: Reall that we identify eah vertex x 2 
 with the index set X = fi : x

i

= 1g. Let

b


 = fX 2 
 : a

j

(X) � b

j

� 3

d

max

i2X

a

j

i

g, where 

d

is the onstant in the onstrution of

balaned almost uniform permutations as in Theorem 6.3. Our main goal will be to onstrut a

ow

b

f whih, simultaneously for every X;Y 2

b


, sends one unit of ow from X to Y . This ow

will satisfy C(

b

f) � poly(n) and L(

b

f) = O(n).

Note that, from any vertex X 2 
, we an obtain a vertex

b

X 2

b


 by removing at most 3d

d

items. Thus, we an use an approah similar to that in setion 4 to extend

b

f to a multiommodity

ow f on the whole of 
, and f will satisfy C(f) � n

6d

d

poly(n) � poly

0

(n) and L(f) � L(

b

f) +

6d

d

= O(n).

It remains to de�ne the ow

b

f and show that it has the properties laimed. Fix X;Y 2

b


.

As usual, the path from X to Y will follow a permutation � on the symmetri di�erene X � Y .

However, as in the one-dimensional ase, a simple balaned almost uniform permutation � will

not do; suh a permutation would not neessarily de�ne a path that stayed in 
. The problem
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ours when for some j, max

i2X

a

j

i

is not omparable to max

i2Y

a

j

i

. (For example, if max

i2X

a

j

i

�

max

i2Y

a

j

i

, then the path ould have too muh variation in the j{diretion as it approahed Y .)

However, we an deal with this problem by onsidering the \large" and the \small" items in X�Y

separately.

Let M = (M

1

; : : : ;M

d

), where M

j

= minfmax

i2X

a

j

i

;max

i2Y

a

j

i

g. Let L = fi 2 X � Y : a

j

i

>

M

j

for some jg and S = (X � Y ) � L. (L and S are the \large" and \small" items respetively.)

Let fw

i

g

i2X�Y

be an enumeration of the weights of the items in X � Y , where weights from Y

appear with a positive sign and weights from X appear with a negative sign. Let �

1

=

1

jLj

P

i2L

w

i

,

and let �

2

=

1

jSj

P

i2S

w

i

. Let �

1

be a permutation on L whih is strongly 16d

2

{balaned with

respet to the weights fw

i

g

i2L

, and let �

2

be a p

d

(jSj){uniform permutation whih is 

d

{balaned

with respet to the weights fw

i

� �

2

g

i2S

. The existene of �

1

and �

2

is guaranteed by Lemma 6.5

and Theorem 6.3 respetively. To obtain �, we will interleave the strongly balaned permutation

�

1

and the balaned permutation �

2

. The rule for interleaving will be as follows. Suppose that

�(1); : : : ; �(k) have already been assigned, and that �f1; : : : ; kg = �

1

f1; : : : ; k

1

g [ �

2

f1; : : : ; k

2

g.

Now, either

k

1

k

�

jLj

jLj+jSj

or

k

2

k

<

jSj

jLj+jSj

, so we an de�ne �(k + 1) by

�(k + 1) =

8

<

:

�

1

(k

1

+ 1); if

k

1

k

�

jLj

jLj+jSj

;

�

2

(k

2

+ 1); if

k

2

k

<

jSj

jLj+jSj

.

Now let � =

1

jX�Y j

P

i2X�Y

w

i

=

jLj�

1

+jSj�

2

jLj+jSj

. We laim that � satis�es the following ondition.

Fix j and k. Then there exist sets of indies V

1

and V

2

, with jV

i

� f1; : : : ; kgj � 17d

2

, suh that

X

i2V

1

w

j

�(i)

� (k � 1)�

j

+ 3

d

M

j

; (28)

X

i2V

2

w

j

�(i)

� (k � 1)�

j

� 3

d

M

j

: (29)

We will prove this in the ase �

1

j

� �

2

j

; if �

1

j

< �

2

j

the proof is similar. Again, let k

1

=

jL \ �f1; : : : ; kgj and k

2

= jS \ �f1; : : : ; kgj, so that �f1; : : : ; kg = �

1

f1; : : : ; k

1

g [ �

2

f1; : : : ; k

2

g.

The method of interleaving ensures that

k

1

� 1

k � 1

�

jLj

jLj+ jSj

;

k

2

� 1

k � 1

�

jSj

jLj+ jSj

:

Therefore, sine �

1

j

� �

2

j

, we have

(k

1

� 1)�

j

1

+ k

2

�

j

2

� (k � 1)�

j

; (30)

k

1

�

j

1

+ (k

2

� 1)�

j

2

� (k � 1)�

j

: (31)

Clearly, the strong balane ondition on �

1

implies that there exist A;A

0

, with jA� f1; : : : ; k

1

gj �

16d

2

+ 1 and similarly for A

0

, suh that

X

i2A

w

j

�

1

(i)

� (k

1

� 1)�

j

1

; (32)

X

i2A

0

w

j

�

1

(i)

� k

1

�

j

1

: (33)
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Also, by the balane ondition on �

2

we have

k

2

X

i=1

w

j

�

2

(i)

� k

2

�

j

2

+ 

d

max

i2S

fjw

j

i

� �

j

2

jg � k

2

�

j

2

+ 3

d

M

j

; (34)

k

2

X

i=1

w

j

�

2

(i)

� k

2

�

j

2

� 

d

max

i2S

fjw

j

i

� �

j

2

jg � (k

2

� 1)�

j

2

� 3

d

M

j

: (35)

Now, let B = �

�1

(�

1

(A) [ �

2

f1; : : : ; k

2

g) and B

0

= �

�1

(�

1

(A

0

) [ �

2

f1; : : : ; k

2

g). Then we have

jB � f1; : : : ; kgj � 16d

2

+ 1 � 17d

2

, and

X

i2B

w

j

�(i)

=

X

i2A

w

j

�

1

(i)

+

k

2

X

i=1

w

j

�

2

(i)

:

Exatly analogous relations hold with B;A replaed by B

0

; A

0

. Combining this with equations

(30){(35) gives (28) and (29).

Now, � determines a path fZ

i

g

jX�Y j

i=0

from X to Y , where Z

0

= X and Z

i

= X�f�(1); : : : ; �(i)g

for 1 � i � jX � Y j. This path might not stay in 
, but we an alter it slightly so that it

does. Equations (28) and (29) imply that for every k and j, there exists a set of indies W

j

k

with

jW

j

k

j � 34d

2

suh that

a

j

(Z

k

�W

j

k

) � maxfa

j

(X); a

j

(Y )g+ 3

d

M

j

� b

j

; (36)

a

j

(Z

k

[W

j

k

) � minfa

j

(X); a

j

(Y )g � 3

d

M

j

: (37)

Let W

0

= ; and for k = 1; : : : ; jX � Y j, let W

k

= [

d

j=1

W

j

k

. Then, for all k, jW

k

j � 34d

3

, and

a(Z

k

�W

k

) � b. For 0 � k � jX � Y j, de�ne

Z

k

= Z

k

�W

k

:

Then eah Z

k

2 
. Our ow from X to Y will pass through eah of the Z

k

in turn. To get from Z

k

to Z

k+1

, we perform the following steps:

1. Remove eah item in Z

k

� (Z

k

\ Z

k+1

) in index order.

2. Add eah item in Z

k+1

� (Z

k

\ Z

k+1

) in index order.

De�ne W

x

= (W

k

[W

k+1

)\X, and W

y

= (W

k

[W

k+1

)\Y . By analogy with setions 4 and 5,

for eah intermediate point Z along the path de�ne the \enoding" Z

0

by

Z

0

= (X � Y � Z) [ (X \ Y )� (W

k

[W

k+1

);

and let U = �f1; : : : ; kg. In similar fashion to our earlier analysis one an see that, for a given Z,

X and Y are ompletely spei�ed by the 4-tuple (Z

0

; U;W

x

;W

y

). We also have

a

j

(Z

0

) = a

j

(X) + a

j

(Y )� a

j

(Z [W

k

[W

k+1

)

� a

j

(X) + a

j

(Y )�minfa

j

(Z

k

[W

k

); a

j

(Z

k+1

[W

k+1

)g

� a

j

(X) + a

j

(Y )� (minfa

j

(X); a

j

(Y )g � 3

d

M

j

)

= maxfa

j

(X); a

j

(Y )g+ 3

d

M

j

� b

j

;
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where the seond inequality follows from (37). Hene Z

0

2 
. We an therefore bound the ow

b

f(Z) through Z by

b

f(Z) �

X

Z

0

2


X

W

x

;W

y

;U

Pr[f�(1); : : : ; �(jU j)g = U ℄: (38)

Finally, for a given X and Y , let L

j

= fi 2 X [ Y : a

j

i

> M

j

g, so that L = [

d

j=1

L

j

. Note that

for every j, L

j

\ Y is equal to either L

j

or ;. Thus, if we de�ne k

2

= jU \ Sj, then for given values

of M and k

2

, there are at most 2

d

�

jSj

k

2

�

possible values for U in the inner sum of equation (38).

Therefore, we have

b

f(Z) �

X

Z

0

2


X

M;W

x

;W

y

;k

2

X

U :jU\Sj=k

2

Pr[f�

2

(1); : : : ; �

2

(k

2

)g = U \ S℄

�

X

Z

0

2


X

M;W

x

;W

y

;k

2

X

U :jU\Sj=k

2

p

d

(jSj)

 

jSj

k

2

!

�1

�

X

Z

0

2


X

M;W

x

;W

y

;k

2

2

d

p

d

(jSj)

�

X

Z

0

2


n

d

" 

n

68d

3

!

2

68d

3

#

n� 2

d

p

d

(n)

= poly(n)j
j;

where in the seond line we have appealed to the almost uniformity of permutation �

2

. This

ompletes the proof.

Given suh a ow, we an appeal to Theorem 2.1 to derive the main result of this setion.

Theorem 6.7 Fix any dimension d > 0, and let 
 be the set of solutions to an arbitrary instane

of the d-dimensional 0-1 knapsak problem. The mixing time of the random walk on G




is poly

d

(n).

As in one dimension, this immediately implies the existene of an fpras for omputing j
j in this

more general setting.
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Appendix

A.1 Appendix for setion 3

This setion ontains two tehnial lemmas that were used in the proof of Theorem 3.3.

Lemma A.1.1 Let � be a uniform random permutation in S

m

. Then

Pr[� is not �-good℄ � 2m exp(�2�

2

):

Proof: We adopt the notation of the proof of Theorem 3.3. Let 1 � k

1

� m

1

. It suÆes to show

that

Pr

h

�

�

�

k

1

X

i=1

w

�

1

(i)

� k

1

�

1

�

�

�

> �(M � 1)

p

k

1

i

� 2 exp(�2�

2

);

for then the lemma follows from the union bound and from symmetry (whih allows us to replae

k

1

by k

�

1

= minfk

1

;m

1

� k

1

g). But this inequality is a diret onsequene of Hoe�ding's bound on

deviations in sampling without replaement [7℄.

25



Lemma A.1.2 Let m

1

;m

2

; k

1

; k

2

be non-negative integers and m = m

1

+m

2

, k = k

1

+ k

2

. Then

�

m

1

k

1

��

m

2

k

2

�

�

m

k

�

� Cm

�1=2

exp

(

�

l

2

+

1

2

jlj

�(1 � �)

�

1

m

1

+

1

m

2

�

)

;

where � =

k

m

, l =

m

1

k

2

�m

2

k

1

m

, and C > 0 is a universal onstant.

Proof: Note that k = �m, k

1

= �m

1

� l, and k

2

= �m

2

+ l. By the symmetry of binomial

oeÆients, we may assume that l � 0. We shall prove the lemma by showing the two inequalities

�

m

1

�m

1

��

m

2

�m

2

�

�

m

�m

�

� C

1

m

�1=2

(39)

and

�

m

1

�m

1

�l

��

m

2

�m

2

+l

�

�

m

1

�m

1

��

m

2

�m

2

�

� C

2

exp

(

�

l

2

+

1

2

jlj

�(1��)

�

1

m

1

+

1

m

2

�

)

(40)

for positive onstants C

1

; C

2

.

The �rst inequality is an immediate onsequene of Stirling's approximation,

p

2�n(

n

e

)

n

� n! �

C

3

p

2�n(

n

e

)

n

, where C

3

= 1+e

1=12

is a onstant. To prove the seond inequality, we apply Stirling's

approximation to all four binomial oeÆients to get the following lower bound on the left-hand

side of (40):

�

P(�m

1

)P((1 � �)m

1

)P(�m

2

)P((1 � �)m

2

)

P(�m

1

� l)P((1 � �)m

1

+ l)P(�m

2

+ l)P((1 � �)m

2

� l)

�

�

�

�m

1

(1� �)m

1

�m

2

(1� �)m

2

(�m

1

� l)((1 � �)m

1

+ l)(�m

2

+ l)((1� �)m

2

� l)

�

1=2

; (41)

where P(x) denotes x

x

. Now we have

P(�m

1

)

P(�m

1

� l)

= (�m

1

)

l

�

1 +

l

�m

1

�l

�

�m

1

�l

� (�m

1

)

l

exp

n

l(�m

1

�l)

�m

1

o

;

where we have used the inequality (1 +

x

y

)

y

� exp(

xy

x+y

), valid for x; y > 0. Handling the three

other pairs of fators in the numerator and denominator in similar fashion (using in addition the

inequality (1 �

x

y

)

y

� exp(

�xy

y�x

), valid for y > x > 0) we see that the �rst parenthesis in (41) is

bounded below by

exp

(

�

l

2

�(1� �)

�

1

m

1

+

1

m

2

�

)

: (42)

A similar alulation bounds the seond parenthesis in (41) by

exp

�

�

jlj

�(1� �)

�

1

m

1

+

1

m

2

�

�

: (43)

Combining (42) and (43) ompletes the veri�ation of inequality (40) above, and hene the proof

of the lemma.
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A.2 Appendix for setion 5.2

Here we provide the proof of Lemma 5.3, the analysis of the pre-proessing random walk (PRW),

whih was omitted from the main text.

Proof of Lemma 5.3: By removing X \Y from both X and Y and replaing b by b� a(X \Y ),

we may assume that X \ Y = ;. Moreover, by saling all the a

i

and b we may assume that

M = max

i

a

i

= 1. Finally, we may assume that b � 3� sine otherwise there are no pairs (X;Y )

satisfying the hypothesis of the lemma.

De�ne

F = f(X

0

; Y

0

) : a(X

0

) � b�� or a(Y

0

) � b��g;

E = f(X

0

; Y

0

) : a(X

0

) � b� 2� and a(Y

0

) � b� 2�g:

Note that F ontains all full pairs (X

0

; Y

0

), and E ;F are disjoint. Also, de�ne the hitting times

T = max

(X

0

;Y

0

)2F

E(number of PRW steps to hit E starting at (X

0

; Y

0

));

U = min

(X

0

;Y

0

)2E

E(number of PRW steps to hit F starting at (X

0

; Y

0

)):

Now we laim that the lemma will follow if we an show:

(i) T � �m for some onstant � > 0;

(ii) U=T � � for some onstant � > 0.

To see this, set the length of the PRW to be C

1

m = 4�m, and let (X

t

; Y

t

) denote the sequene

of pairs visited by the PRW, with (X

0

; Y

0

) = (X;Y ) 2 F . Let T

0

be the �rst time t at whih

(X

t

; Y

t

) 2 E (or T

0

= C

1

m if the walk ends before this ours); then let U

1

be the �rst t for whih

(X

T

0

+t

; Y

T

0

+t

) 2 F , and T

1

the �rst t for whih (X

T

0

+U

1

+t

; Y

T

0

+U

1

+t

) 2 E . Continue de�ning a

sequene of hitting times U

2

; T

2

; U

3

; T

3

; : : : in this way until the end of the walk is reahed. Note

that the PRW is not full for at least

P

i

U

i

steps, and that

P

i�0

T

i

+

P

i�1

U

i

= 4�m is the total

walk length. Now from fats (i) and (ii) we have

E

�

X

i�0

T

i

�

1

�

X

i�1

U

i

�

= E

�

T

0

+

X

i�1

(T

i

�

1

�

U

i

)

�

� �m:

An appliation of Markov's inequality then ensures that

P

i�0

T

i

�

1

�

P

i�1

U

i

� 2�m with probability

at least

1

2

. Conditioning on this event we have (1 +

1

�

)

P

U

i

� 2�m, and thus the proportion of

steps during whih the PRW is not full is at least 1=2(1 +

1

�

), a onstant. The lemma now follows

easily.

It remains to verify fats (i) and (ii) above: these are immediate onsequenes of the following

two laims. Let �

2

=

1

m

P

i2X[Y

a

2

i

be the seond moment of the item weights, and note that

�

2

� 1=m sine max

i

a

i

= 1.

Claim 1: T � 

1

=�

2

for a onstant 

1

> 0.

Claim 2: U � 

2

=�

2

for a onstant 

2

> 0.

Proof of Claim 1: Choose an initial pair (X

0

; Y

0

) 2 F that maximizes the expeted time until

the PRW hits E , and let (X

t

; Y

t

) denote the PRW starting at (X

0

; Y

0

). We may assume w.l.o.g.

that a(X

0

) > a(Y

0

), so that a(X

0

) 2 [b ��; b℄ and T is the expeted time until a(X

t

) � b � 2�.

We estimate T by oupling the PRW with the unonstrained random walk, whih behaves exatly
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like the PRW exept that the onstraint

P

a

i

� b is ignored. (Thus it is just simple random walk

on an m-dimensional hyperube with holding probability

1

2

at every step.) Write (

b

X

t

;

b

Y

t

) for the

unonstrained random walk, with (

b

X

0

;

b

Y

0

) = (X

0

; Y

0

), and onsider the �rst time t =

b

T at whih

ja(

b

X

t

)�a(X

0

)j � 2�. Now a(

b

X

t

) is a supermartingale up to time

b

T , sine E(a(

b

X

t+1

)�a(

b

X

t

)j

b

X

t

) =

1

2m

(a(

b

Y

t

)�a(

b

X

t

)) < 0. Thus with onstant probability a(

b

X

b

T

) � a(

b

X

0

)� 2�, and so (X

b

T

; Y

b

T

) 2 E .

Hene T is bounded above by a onstant times E(

b

T ). But we also have E((a(

b

X

t+1

)�a(

b

X

t

))

2

j

b

X

t

) =

1

2m

P

i

a

2

i

=

�

2

2

. So E(

b

T ) is the expeted time for a supermartingale with inrements bounded

by �1 and with seond moment �

2

=2 to move a distane �2� from its initial value. A standard

appliation of the martingale Optional Stopping Theorem (see, e.g., [5, Setion 12.5℄), now yields

that E(

b

T ) �

(4�+1)

2

�

2

=2

= 

1

=�

2

for a positive onstant 

1

. This ompletes the proof of Claim 1.

Proof of Claim 2: As above let (X

t

; Y

t

) denote the PRW, but now with (X

0

; Y

0

) 2 E . We follow

the random variable Z

t

= a(X

t

)�a(Y

t

), whih always has a drift towards 0 (i.e., E(Z

t+1

�Z

t

jX

t

)�

Z

t

� 0 for all t). Note that initially jZ

0

j � 2(b � 2�) � V , where V = a(X

t

) + a(Y

t

) =

P

i

a

i

is

independent of t. And when (X

t

; Y

t

) 2 F we have jZ

t

j � 2(b��)� V . Thus U is bounded below

by the minimum expeted time for jZ

t

j to inrease by 2� from its initial value. But the seond

moment is E((Z

t+1

� Z

t

)

2

jX

t

) =

1

2m

P

i

(2a

i

)

2

= 2�

2

, so by a similar appliation of the Optional

Stopping Theorem we onlude that U � 

2

=�

2

, as laimed.

This ompletes the veri�ation of Claims 1 and 2, and hene the proof of the lemma.

A.3 Appendix for setion 6.2

Here we prove the existene of strongly balaned permutations, as laimed in Lemma 6.5.

Proof of Lemma 6.5: First suppose that

P

m

i=1

w

i

= 0. We will show that, in this ase, there

exists a strongly 8d

2

{balaned permutation �. Let L be the set ontaining the 4d indies i with

the largest values of w

j

i

, and the 4d indies i with the largest values of �w

j

i

, for eah j � d. Then

jLj � 8d

2

.

The permutation � we onstrut will satisfy f�(m); : : : ; �(m� jLj+1)g = L. It will be enough

to hek that the strong balane ondition holds for 1 � k � m� jLj. It suÆes to show that, for

all j � d and k � m� jLj, we have

�s

j+

�

k

X

i=1

w

j

�(i)

� s

j�

; (44)

where

s

j+

�

X

i2L

(w

j

i

)

+

; s

j�

�

X

i2L

(w

j

i

)

�

:

We will need the Grinberg-Sevast'yanov result (Lemma 6.2), whih states that for any set of

vetors x

1

; : : : ; x

n

in R

d

with

P

i

x

i

= 0, there exists a permutation � 2 S

n

suh that

k

X

i=1

x

�(i)

2 d� onvfx

1

; : : : ; x

n

g for 1 � k � n.

Note that the permutation �

0

de�ned by �

0

(i) = �(n+ 1� i) for all i satis�es

k

X

i=1

x

�

0

(i)

2 �d� onvfx

1

; : : : ; x

n

g for 1 � k � n.
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Let S

1

= f1; : : : ;mg � L, let m

0

= m� jLj, and let �

1

be a permutation on S

1

suh that

k

X

i=1

(w

�

1

(i)

� �

1

) 2 �d� onvfw

i

� �

1

: i 2 S

1

g;

for all k, where �

1

=

1

m

0

P

i2S

1

w

i

. Suppose that m

0

is even and m

0

= 2r; if m

0

is odd the proof is

similar. Now, let S

2

= f�

1

(r + 1); : : : ; �

1

(m

0

)g, and let �

2

be a permutation on S

2

suh that

k

X

i=1

(w

�

2

(i)

� �

2

) 2 d� onvfw

i

� �

2

: i 2 S

2

g; (45)

where �

2

=

1

r

P

i2S

2

w

i

. De�ne the permutation � by

�(i) =

(

�

1

(i); if i � r;

�

2

(i� r); if r < i � m

0

.

We must hek that � satis�es (44). Fix j. W.l.o.g. s

j+

� s

j�

, so that �

j

1

� 0. For k � r we

have

k

X

i=1

w

j

�(i)

=

k

X

i=1

w

j

�

1

(i)

�

k

X

i=1

(w

j

�

1

(i)

� �

j

1

)

� �d max

1�i�m

0

fw

j

i

� �

j

1

g

� �d max

1�i�m

0

fw

j

i

g

� �s

j+

=4

� �s

j+

;

and

k

X

i=1

w

j

�(i)

=

k

X

i=1

w

j

�

1

(i)

= k�

j

1

+

k

X

i=1

(w

�

1

(i)

� �

j

1

)

� r�

j

1

+ d max

1�i�m

0

f�(w

j

i

� �

j

1

)g

=

1

2

(s

j�

� s

j+

) + d max

1�i�m

0

f�w

j

i

g+ d�

j

1

�

1

2

(s

j�

� s

j+

) + (

1

4

s

j�

) + (

1

4

s

j+

)

=

3

4

s

j�

�

1

4

s

j+

� s

j�

�

1

4

s

j+

: (46)

(We will need the extra �

1

4

s

j+

in the seond part of the proof.) For r < k � 2r we have

k

X

i=1

w

j

�(i)

=

r

X

i=1

w

j

�

1

(i)

+

k�r

X

i=1

w

j

�

2

(i)

: (47)
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Now if �

j

2

< 0 then the onditional expetation of

P

k

i=1

w

j

�(i)

given �

1

is at least �s

j+

+s

j�

. Hene

we must have

k

X

i=1

w

j

�(i)

� �s

j+

+ s

j�

� dmax

i2S

2

f�(w

j

i

� �

j

2

)g

� �s

j+

+ s

j�

� dmax

i2S

2

f�w

j

i

g

� �s

j+

+ s

j�

� s

j�

=4

� �s

j+

:

On the other hand, if �

j

2

� 0 the right-hand side of (47) an be bounded below as follows:

r

X

i=1

w

j

�

1

(i)

+

k�r

X

i=1

w

j

�

2

(i)

=

"

r

X

i=1

w

j

�

1

(i)

+ (k � r)�

j

2

#

+

k�r

X

i=1

(w

j

�

2

(i)

� �

j

2

)

�

�

1

2

(s

j�

� s

j+

)� d max

1�i�m

0

fw

j

i

� �

j

1

g

�

� dmax

i2S

2

f�(w

j

i

� �

j

2

)g

�

�

1

2

(s

j�

� s

j+

)� d max

1�i�m

0

fw

j

i

g

�
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For a orresponding upper bound, we an write
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g: (48)

If �

j

2

� 0, the right-hand side of (48) is bounded above by
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If �
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< 0, the right-hand side of (48) is bounded above by
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;

where in the �rst inequality we have used equation (46).

Putting all the above together we see that � is strongly 8d

2

{balaned. Furthermore, in light

of (44) we know also that, for all k and j, there exists a set of indies S � f1; : : : ; kg, with

jSj � k + 8d

2

, suh that

P
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and

P

i2S

w

j
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have opposite signs.

Now let fw

i
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m
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be arbitrary. From the above, there exists a permutation � whih is strongly
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2

{balaned with respet to the sequene fw

i

� �g

m
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, where � =

1

m

P

m
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i

. We laim that � is

also strongly 16d

2
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i

g

m

i=1

. Fix k and j, and de�ne

�

j

=

1

m

P

m
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j

i

. W.l.o.g. �

j

� 0. Then there exists S � f1; : : : ; kg with jSj � k + 8d

2

suh that
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In addition, there exists S � f1; : : : ; kg, with jSj � k+8d

2

, suh that

P

i2S

w

j

�(i)

� jSj�

j

. It follows

that, for some S

0

� S with jS

0

j = k, we have

P

i2S

0

w

j

�(i)

� k�

j

. Sine jS

0

� f1; : : : ; kgj � 16d

2

this

ompletes the proof.
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