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Abstra
t

We solve an open problem 
on
erning the mixing time of symmetri
 random walk on the n-

dimensional 
ube trun
ated by a hyperplane, showing that it is polynomial in n. As a 
onse-

quen
e, we obtain a fully-polynomial randomized approximation s
heme for 
ounting the feasible

solutions of a 0-1 knapsa
k problem. The results extend to the 
ase of any �xed number of hy-

perplanes. The key ingredient in our analysis is a 
ombinatorial 
onstru
tion we 
all a \balan
ed

almost uniform permutation," whi
h seems to be of independent interest.

1 Introdu
tion

For a positive real ve
tor a = (a

i

)

n

i=1

and real number b, let 
 denote the set of 0-1 ve
tors

x = (x

i

)

n

i=1

for whi
h

a � x �

n

X

i=1

a

i

x

i

� b:

Geometri
ally, we 
an view 
 as the set of verti
es of the n-dimensional 
ube f0; 1g

n

whi
h lie on

one side of the hyperplane a � x = b. Combinatorially, 
 is the set of feasible solutions to the 0-1

knapsa
k problem de�ned by a and b: if we think of the a

i

as the weights of a set of n items, and

b as the 
apa
ity (weight limit) of a knapsa
k, then there is a 1-1 
orresponden
e between ve
tors

x 2 
 and subsets of items X whose aggregated weight does not ex
eed the knapsa
k 
apa
ity,

given by X = fi : x

i

= 1g. We shall write a(X) for the weight of X, i.e., a(X) =

P

i2X

a

i

.

This paper is 
on
erned with the problem of 
omputing j
j, i.e., 
ounting the number of feasible

solutions to the knapsa
k problem. The problem is #P-
omplete in exa
t form, so we aim for a good

approximation algorithm, spe
i�
ally a fully-polynomial randomized approximation s
heme (fpras).

By a well-known relationship based on self-redu
ibility [12, 11℄, this is equivalent to 
onstru
ting a

polynomial time algorithm for sampling elements of 
 (almost) uniformly at random.

In re
ent years there has been a steady stream of results of this kind for #P-
omplete 
ounting

problems (see, for example, [13, 11, 8℄ for surveys); however, the 0-1 knapsa
k problem still stands

�
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as one of a small handful of 
anoni
al problems that have so far resisted atta
k. Indeed, it has been

quoted as an open problem in several pla
es [4, 11, 13, 15℄. This interest stems in part from its


ombinatorial signi�
an
e and its appealing geometri
 stru
ture, and in part from the 
hallenge it

poses to existing methods. In this paper, we resolve this issue by 
onstru
ting an fpras for the 0-1

knapsa
k problem. Along the way we introdu
e some new ma
hinery that we believe will be useful

for ta
kling other problems of a similar 
avor, and possibly beyond.

Almost all known approximate 
ounting algorithms pro
eed by simulating a suitable random

walk on the set of interest
. The walk is 
onstru
ted so that it 
onverges to the uniform distribution

over 
; simulation of the walk for suÆ
iently many steps therefore allows one to sample (almost)

uniformly from 
, and thus to approximate j
j. In any appli
ation of this method, the key step

is to establish that the random walk is rapidly mixing, i.e., gets 
lose to the uniform distribution

after a polynomial number of steps.

In the 
ase of 0-1 knapsa
k solutions, a parti
ularly simple and natural random walk on 
 has

been proposed. If the 
urrent state is X � f1; : : : ; ng, then

1. pi
k an item i 2 f1; : : : ; ng uniformly at random (u.a.r.);

2. if i 2 X, move to X � fig; if i =2 X and a(X [ fig) � b, move to X [ fig; otherwise, do

nothing.

This pro
ess may equivalently be viewed as a nearest neighbor random walk on the portion of the


ube f0; 1g

n

trun
ated by the hyperplane a � x = b, in whi
h the probability of moving to any

neighbor is

1

n

; we will 
all this graph G




. To avoid te
hni
al issues involving periodi
ity, we add

to every state a holding probability of

1

2

: i.e., with probability

1

2

do nothing, else make a move as

des
ribed above.

It is easy to 
he
k that this random walk 
onverges to the uniform distribution over 
. However,

despite mu
h re
ent a
tivity in the analysis of mixing times of random walks, this de
eptively simple

example is still not known to be rapidly mixing. There is strong geometri
 intuition that it should

be: random walk on the entire 
ube f0; 1g

n

is rapidly mixing, and trun
ation by a hyperplane

presumably 
annot 
reate \bottlene
ks" that would severely slow down 
onvergen
e. Nonetheless,

the best known bound on the mixing time remains exp(O(

p

n(log n)

5=2

)) [4℄, whi
h beats the trivial

bound of exp(O(n)) but is still exponential.

In this paper we prove that the above random walk is indeed rapidly mixing, with a mixing time

of O(n

9=2+�

) steps for any � > 0. This immediately implies the existen
e of an fpras for 
ounting

0-1 knapsa
k solutions.

We also present a non-trivial extension of these results to the 
ase of multiple hyperplanes (more

pre
isely, multiple 
onstraints of the form a

j

�x � b

j

for non-negative ve
tors a

j

).

1

Here we are also

able to prove a mixing time of O(n




) (where 
 is a 
onstant) for any �xed number of hyperplanes.

(The exponent 
 depends on the number d of hyperplanes, but this is inevitable as it is not hard

to prove a lower bound of n


(d)

on the mixing time. Moreover, it is possible to en
ode NP-hard

problems if the number of hyperplanes is permitted to depend on n, so we would not expe
t any

polynomial time sampling algorithm for this 
ase.)

To prove rapid mixing we use a te
hnique based on multi
ommodity 
ow (see [16℄): if we 
an

route unit 
ow between ea
h pair of verti
es X;Y in G




simultaneously in su
h a way that no edge


arries too mu
h 
ow, then the random walk is rapidly mixing. This te
hnique is well known, but

most previous appli
ations (e.g., [9, 10℄) have made use of \degenerate" 
ows in whi
h all X ! Y

1

We mention in passing that all our results extend from the 0-1 
ase to more general 
ubes of the form [0; : : : ; L℄

n

.

This extension is purely te
hni
al and does not require any substantial new ideas, so we omit the details.
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ow is routed along a single 
anoni
al path (though see [1, 16℄ for ex
eptions). Our analysis seems

to rely essentially on spreading out the 
ow along multiple paths.

The key ingredient in our analysis is the spe
i�
ation of these paths, whi
h we a
hieve via an

auxiliary 
ombinatorial 
onstru
tion that we believe is of independent interest and will �nd further

appli
ations elsewhere. Note that a shortest path between a pair of verti
es X;Y of G





an be

viewed as a permutation of the symmetri
 di�eren
e X � Y , the set of items that must be added

to or removed from the knapsa
k in passing from X to Y . A natural approa
h to de�ning a good


ow is to use a random permutation, so that the 
ow is spread evenly among all shortest paths

and no edge is overloaded. However, a fundamental problem with this approa
h is that a random

permutation will tend to violate the knapsa
k 
onstraint, as too many items will have been added

at some intermediate point. Slightly less obviously, a symmetri
 problem arises be
ause a random

permutation will tend to remove too many items at some intermediate point, 
ausing 
ongestion

among edges of the hyper
ube near the origin. To avoid these problems, we want our permutations

to remain \balan
ed," in the sense that items are added and removed at approximately the 
orre
t

rates throughout the path; but we also want them to be \suÆ
iently random" to ensure a well

spread 
ow. More spe
i�
ally, it turns out that we require the distribution of the initial segment

f�(1); : : : ; �(k)g, viewed as an unordered set, to be \almost uniform." We 
all permutations with

these properties balan
ed almost uniform permutations. A main 
ontribution of this paper is to

show the existen
e of su
h permutations.

The remainder of this paper is stru
tured as follows. We begin with some ne
essary ba
kground

on 
ows and rapid mixing in se
tion 2. We then establish rapid mixing of the knapsa
k random

walk in the te
hni
ally simpler 
ase when the item weights a

i

lie in the range [1; B℄, for some


onstant B. This analysis is in two parts: in se
tion 3 we show how to 
onstru
t balan
ed almost

uniform permutations, and in se
tion 4 how to use these to de�ne a good 
ow. We then extend

everything to the general 
ase in se
tion 6. The extension to multiple 
onstraints is handled in

se
tion 6; this involves extending our 
onstru
tion of balan
ed almost uniform permutations from

s
alar weights to ve
tors in arbitrary dimension. This again may be of independent interest.

2 The mixing time and multi
ommodity 
ow

As indi
ated earlier, we will view elements of 
 either as 0-1 ve
tors x = (x

i

)

n

i=1

or, more 
ommonly,

as subsets X � f1; : : : ; ng, under the equivalen
e X = fi : x

i

= 1g. Re
all that a(X) =

P

i2X

a

i

is the weight of X, so that 
 = fX : a(X) � bg. Without loss of generality, we will assume that

a

i

� b for all i.

We 
onsider the symmetri
 random walk on the portion G




of the hyper
ube f0; 1g

n

de�ned in

the Introdu
tion. This walk is 
onne
ted (all states 
ommuni
ate via the zero ve
tor) and aperiodi


(be
ause of the holding probabilities), and sin
e the transition probabilities are symmetri
, the

distribution at time t 
onverges to the uniform distribution over 
 as t ! 1, regardless of the

initial state. Our goal is to bound the rate of 
onvergen
e as measured by the mixing time, de�ned

as

�

mix

= max

X

0

min

n

t : kP

t

0

� Uk �

1

4

8t

0

� t

o

;

whereX

0

is the initial state, P

t

is the distribution of the walk at time t, U is the uniform distribution

over 
, and k � k denotes variation distan
e.

2

Thus �

mix

is the number of steps required, starting

from any initial state, to get the variation distan
e from the uniform distribution down to

1

4

. By

2

For probability distributions �; � on 
, the variation distan
e is de�ned as k� � �k =

1

2

P

x2


j�(x) � �(x)j =

max

S�


j�(S)� �(S)j.
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standard fa
ts about geometri
 
onvergen
e, O(�

mix

log �

�1

) steps suÆ
e to redu
e the variation

distan
e to any desired �.

Fairly standard te
hniques (see [16℄) allow us to estimate �

mix

by setting up a suitable multi-


ommodity 
ow on the underlying graph G




. Our task is to route one unit of 
ow from X to Y ,

for ea
h ordered pair of verti
es X;Y 2 
 simultaneously. For any su
h 
ow f , and any oriented

edge e in G




, let f(e) denote the total 
ow along e; i.e., f(e) is the sum over all ordered pairs

X;Y of the X ! Y 
ow 
arried by e. De�ne C(f) =

1

j
j

max

e

f(e), the maximum 
ow along any

edge normalized by j
j, and L(f) to be the length of a longest 
ow-
arrying path. The following

theorem

3

is a spe
ial 
ase of results in [16℄ (see also [3, 2℄):

Theorem 2.1 [16℄ For any 
ow f , the mixing time is bounded by �

mix

� 4n(n+ 1)C(f)L(f).

We will bound �

mix

by 
onstru
ting a 
ow with small values of C and L. To bring out the main


on
eptual ideas, we will fo
us initially on what we term the bounded ratio 
ase, where all weights a

i

lie in the range [1; B℄ for some 
onstant B. We will derive a bound of the form �

mix

= n

O(B

2

)

in

this 
ase. By introdu
ing some additional te
hni
al 
ompli
ations, we will go on to get a uniform

bound of �

mix

= O(n

9=2+�

) for the general 
ase, for any � > 0.

Remark:We note that our bound on the mixing time is only slightly larger than the upper bound of

O(n

3

) whi
h one obtains by applying Theorem 2.1 to the hyper
ube itself (without the hyperplane


onstraint): see, e.g., [17℄. This is in turn somewhat o� from the true mixing time of O(n log n).

On the other hand, it is fairly easy to obtain a lower bound of 
(n

2

= log n) for the mixing time

of the trun
ated 
ube: 
onsider, for example, an instan
e in whi
h logn items have weight 1, the

other n� log n items have weight n, and the knapsa
k 
apa
ity is b = n.

As explained in the Introdu
tion, our 
ow will be based on the idea of a balan
ed almost uniform

permutation. We devote the next se
tion to this topi
 and then return to the knapsa
k random

walk in se
tion 4.

3 Balan
ed almost uniform permutations

We begin by de�ning the notions of \balan
ed" and \almost uniform" permutations. We will write

S

m

to denote the set of all permutations of f1; : : : ;mg.

De�nition 3.1 Let fw

i

g

m

i=1

be a set of real (not ne
essarily positive) weights, with M = max

i

jw

i

j

and W =

P

i

w

i

. A permutation � 2 S

m

is balan
ed if, for every k with 1 � k � m,

minfW; 0g �M �

k

X

i=1

w

�(i)

� maxfW; 0g +M: (1)

Thus a balan
ed permutation is one whose partial sums do not 
u
tuate widely. In parti
ular, if

P

i

w

i

= 0 then 
ondition (1) be
omes j

P

k

i=1

w

�(i)

j �M .

De�nition 3.2 Let � be a random permutation in S

m

, and let � 2 R. We 
all � a �-uniform

permutation if

Pr[�f1; : : : ; kg = U ℄ � ��

�

m

k

�

�1

(2)

for every k with 1 � k � m and every U � f1; : : : ;mg of 
ardinality k. (Here �f1; : : : ; kg denotes

the initial segment f�(1); : : : ; �(k)g.)

3

We note that this theorem applies to symmetri
 random walk on any 
onne
ted subgraph of the hyper
ube f0; 1g

n

,

in whi
h transitions are made to ea
h neighbor with probability

1

2n

.

4



Note that, if � were a uniform random permutation, the probability in (2) would be exa
tly

�

m

k

�

�1

for every U . In a �-uniform permutation the probabilities are permitted to vary with U , but only by

an amount spe
i�ed by the parameter �. In our appli
ations, � will be a �xed polynomial fun
tion

of m; in this 
ase we 
all � an almost uniform permutation.

The perhaps surprising result of this se
tion is that, if the ratios of the weights are bounded,

it is possible to 
onstru
t an almost uniform permutation that is guaranteed to be balan
ed. In

se
tion 5.1 we will show how to dispense with any restri
tions on the weights.

Theorem 3.3 Let fw

i

g

m

i=1

be any set of weights with jw

i

j 2 [1; B℄ for a 
onstant B > 1. Then

there exists a balan
ed almost uniform permutation � on fw

i

g.

Proof: Let M = max

i

jw

i

j and W =

P

m

i=1

w

i

. Assume �rst that W = 0; we will show how to

dis
harge this assumption later. Let I

1

= fi : w

i

> 0g, I

2

= fi : w

i

< 0g, m

1

= jI

1

j and m

2

= jI

2

j.

De�ne the means �

1

=

1

m

1

P

i2I

1

w

i

and �

2

= �

1

m

2

P

i2I

2

w

i

. Note that m

1

�

1

= m

2

�

2

sin
e W = 0.

Consider an arbitrary permutation � 2 S

m

. This indu
es permutations �

1

; �

2

on I

1

; I

2

respe
tively.

4

We 
all �

1

�-good if, for every k

1

with 1 � k

1

� m

1

,

�

�

�

k

1

X

i=1

w

�

1

(i)

� k

1

�

1

�

�

�

� �(M � 1)

q

k

�

1

; (3)

where k

�

1

= minfk

1

;m

1

� k

1

g, with an analogous de�nition for �

2

. We 
all � �-good if both �

1

and �

2

are �-good. Thus in a good permutation, the partial sums of both positive and negative

weights are 
lose to their expe
ted values.

Now suppose � is 
hosen u.a.r. from S

m

. A routine appli
ation of Hoe�ding's bound to the

partial sums (see Lemma A.1.1 in the Appendix) yields

Pr[� is not �-good℄ � 2m exp(�2�

2

): (4)

If we set � =

p

lnm, this probability is at most

2

m

�

1

2

for m � 4.

Consider now a modi�ed sample spa
e in whi
h � is sele
ted u.a.r. among all

p

lnm-good

permutations. We shall write Pr

unif

for probabilities in the original uniform spa
e to distinguish

them from those in this modi�ed spa
e. By the above 
al
ulation, for any event E � S

m

we have

Pr[E ℄ � 2Pr

unif

[E ℄: (5)

We are now in a position to 
onstru
t our balan
ed almost uniform permutation. Let � be


hosen u.a.r. from all

p

lnm-good permutations, and let �

1

; �

2

be the indu
ed permutations on

I

1

; I

2

. To get a balan
ed permutation �, we interleave �

1

and �

2

as follows. We take the �rst

element from �

1

, i.e., set �(1) = �

1

(1). Thereafter, for ea
h k > 1 in turn we set �(k) to be the

next element in �

2

if

P

k�1

i=1

w

�(i)

� 0, and the next element in �

1

otherwise. Sin
e

P

i

w

i

= 0 this

pro
ess is well-de�ned and yields a permutation � 2 S

m

. Moreover, sin
e jw

i

j � M for all i it is


lear that � satis�es the balan
e 
ondition (1).

We now need to verify the uniformity 
ondition (2), for � = poly(m). Let U � f1; : : : ;mg be

arbitrary with jU j = k, and let U

1

= U \ I

1

, U

2

= U \ I

2

, k

1

= jU

1

j, k

2

= jU

2

j. Then we have

Pr[�f1; : : : ; kg = U ℄ � Pr[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

� 2Pr

unif

[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

=

2

�

m

1

k

1

��

m

2

k

2

�

; (6)

4

Formally, we view �

1

as a bije
tion from f1; : : : ;m

1

g to I

1

, and similarly for �

2

. Throughout we shall adopt this


onvention where appropriate, without 
omment.

5



where the se
ond inequality follows from (5). Now some routine 
al
ulations involving Stirling's for-

mula (see Lemma A.1.2 in the Appendix) allow us to relate

�

m

1

k

1

��

m

2

k

2

�

to

�

m

1

+m

2

k

1

+k

2

�

=

�

m

k

�

. Spe
i�
ally,

(6) be
omes

Pr[�f1; : : : ; kg = U ℄ �

Cm

1=2

�

m

k

�

exp

(

l

2

+

1

2

jlj

�(1� �)

�

1

m

1

+

1

m

2

�

)

; (7)

where � =

k

m

, l =

m

1

k

2

�m

2

k

1

m

, and C > 0 is a universal 
onstant. The quantity l measures the

deviation of the numbers k

1

; k

2

of positive and negative elements in U from the \expe
ted" values

�m

1

; �m

2

respe
tively. But sin
e � is balan
ed, � is good, and the element sizes do not vary too

mu
h, jlj 
annot in fa
t be very large. To formalize this intuition, note �rst that

l = (k

2

�

2

� k

1

�

1

)

m

2

�

1

m

; (8)

sin
e

m

2

m

1

=

�

1

�

2

. Now by the goodness 
ondition (3) on �

1

; �

2

we have

�

�

�

k

X

i=1

w

�(i)

� (k

1

�

1

� k

2

�

2

)

�

�

�

=

�

�

�

�

k

1

X

i=1

w

�

1

(i)

+

k

2

X

i=1

w

�

2

(i)

�

� (k

1

�

1

� k

2

�

2

)

�

�

�

� 2(M � 1)

p

k

�

lnm;

where k

�

= minfk;m� kg. Sin
e � is balan
ed we also know that j

P

k

i=1

w

�(i)

j �M , and therefore

jk

1

�

1

� k

2

�

2

j � 2(M � 1)

p

k

�

lnm+M:

Together with (8) and our assumption that M � B, this implies the following bound on jlj:

jlj �

�

2(B � 1)

p

k

�

lnm+B

�

m

2

�

1

m

:

Plugging in this value for jlj, the exponent in (7) is bounded above, for suÆ
iently large m, by

5(B � 1)

2

k

�

lnm

m

2

2

�

2

1

m

2

m

2

k(m� k)

m

m

1

m

2

= 5(B � 1)

2

lnm

k

�

m

k(m� k)

1

�

1

�

2

� 10(B � 1)

2

lnm; (9)

sin
e k(m� k) �

k

�

m

2

and �

1

; �

2

� 1. Thus (7) be
omes

Pr[�f1; : : : ; kg = U ℄ � C

0

�

m

k

�

�1

m

10(B�1)

2

+1=2

; (10)

whi
h veri�es the uniformity 
ondition (2) with � = C

0

m

10(B�1)

2

+1=2

.

This 
on
ludes the proof of the theorem for the spe
ial 
ase W =

P

i

w

i

= 0. We 
an extend

the argument to general values of W using a simple tri
k. We will assume W > 0; the 
ase W < 0

is entirely symmetri
al. We begin by padding the sequen
e of weights with d = dW=Me values

w

m+1

; : : : ; w

m+d

ea
h of whi
h (ex
ept possibly the last) is �M , so that

P

m+d

i=1

w

i

= 0. Note that

d � m. By the above argument for the W = 0 
ase, we 
an 
onstru
t a balan
ed almost uniform

permutation �

0

on this padded sequen
e (though see the remark immediately following this proof).

Let � be the indu
ed permutation on the weights fw

i

g

n

i=1

. We 
laim that � is also balan
ed and

almost uniform.
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To see that � is balan
ed, note that

k

X

i=1

w

�(i)

�

k

0

X

i=1

w

�

0

(i)

� �M ; and

k

X

i=1

w

�(i)

�

k

0

X

i=1

w

�

0

(i)

+W �M +W;

for some k

0

� k, using the balan
e property of �

0

.

To see that � is almost uniform, let us 
all the indi
es f1; : : : ;mg true and the remainder fake.

Let U be an arbitrary subset of true indi
es of 
ardinality k. We need to show that

Pr[�f1; : : : ; kg = U ℄ �

�

m

k

�

�1

poly(m): (11)

Sin
e � is indu
ed by �

0

, this probability is bounded above by

P

S

Pr[E

S

℄, where for S � f1; : : : ;m+

dg, E

S

is the event that �

0

f1; : : : ; jSjg = S and the sum is over all S of the form U [ U

0

, where all

elements of U

0

are fake. Now by the almost uniformity of �

0

, this sum is at most

poly(m+ d)

X

S

Pr

unif

[E

S

℄; (12)

where Pr

unif

denotes probability under the uniform distribution on permutations in S

m+d

. But the

sum in (12) is just the expe
tation, under the uniform distribution, of the random variable X =

P

S

X

S

, where X

S

is the indi
ator r.v. of E

S

. Thus X 
ounts the number of events E

S

that o

ur.

We 
laim that

E(X) =

�

m

k

�

�1

�

1 +

d

m+1

�

: (13)

This will 
omplete the veri�
ation of 
ondition (11); for repla
ing the sum in (12) by E(X) gives

Pr[�f1; : : : ; kg = U ℄ �

�

m

k

�

�1

�

1 +

d

m+1

�

poly(m+ d);

whi
h is of the required form sin
e d � m.

To see the 
laim in (13), let E be the event that �f1; : : : ; kg = U . Clearly Pr

unif

[E ℄ =

�

m

k

�

�1

,

and X = 0 unless E o

urs, so we have

E(X) =

�

m

k

�

�1

E(XjE): (14)

Conditioning now on E , let r be the position in �

0

of the last element of U , so that U � �

0

f1; : : : ; rg

and �

0

(r) 2 U . Also, let s be the position of the next true element, i.e., �

0

(s) is true and �

0

(t) is

fake for r < t < s. (If no su
h element exists, let s = m+ d+1.) Then E

S

holds for pre
isely those

sets S = �

0

f1; : : : ; tg, where r � t < s. The number of su
h sets is just the number of fake elements

that fall between the true element at position r and the next true element (at position s), plus

one. The expe
tation of this quantity under the uniform distribution is plainly 1 +

d

m+1

. Plugging

this into (14) we get the value 
laimed in (13), whi
h 
on
ludes the proof that � is almost uniform.

Remark: We should point out that the padded sequen
e we introdu
ed in the se
ond part of the

above proof might 
ontain one weight whose absolute value is less than one. Thus it is not, in a

stri
t sense, a spe
ial 
ase of the earlier W = 0 
ase, where we assumed that all the weights had
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absolute values in the range [1; B℄. However, a more 
areful treatment of the analysis leading up

to equation (10) shows that this equation still holds even when there is a single small weight (or

even a 
onstant number of small weights). Furthermore, we 
an make the 
onstant C

0

that appears

in (10) independent of B.

Now, following through the algebra in the se
ond part of the proof, starting from equation (10),

and noting that d � m, it is not hard to 
he
k that the resulting permutation � is �{uniform for

� = 2C

0

(2m)

10(B�1)

2

+1=2

= C

B

m

10(B�1)

2

+1=2

, where the 
onstant C

B

in
reases with B. Moreover,

it is also easy to verify that the permutation � a
tually satis�es a slightly stronger uniformity

property, namely

Pr[�f1; : : : ; kg = U and �(k + 1) = l℄ � C

0

B

m

10(B�1)

2

+1=2

�

 

m

k m� k � 1 1

!

�1

; (15)

for any U with jU j = k and any l =2 U , where C

0

B

= C

B

(B + 1). (To get this value for C

0

B

, note

that � must �rst 
hoose U and then l; this se
ond 
hoi
e introdu
es the fa
tor B + 1.) We will

make use of these fa
ts in se
tion 5 when we dis
uss permutations of general weights.

4 A good 
ow in the bounded ratios 
ase

We now return to the random walk for the knapsa
k problem, and 
esh out the sket
h of a 
ow

presented in the Introdu
tion, making heavy use of the balan
ed almost uniform permutations from

se
tion 3. We 
ontinue to 
onsider only the bounded ratio 
ase, i.e., we assume that all weights a

i

lie in the range [1; B℄. To avoid trivialities, we also assume B � b.

Let X;Y be two arbitrary verti
es of G




, viewed as subsets of f1; : : : ; ng. We need to spe
ify

how to route one unit of 
ow from X to Y . First, write X = X

0

[X

1

, where X

0

;X

1

are disjoint,

a(X

1

) � b�B, and jX

0

j � B; this 
an always be done sin
e a

i

2 [1; B℄. Write Y = Y

0

[Y

1

similarly.

All the 
ow leaving X will pass through X

1

, and all the 
ow arriving at Y will pass through Y

1

.

Between X

1

and Y

1

, we will route the 
ow using an almost uniform permutation. (Note that there

is an obvious 
orresponden
e between unit 
ows from X

1

to Y

1

and probability distributions on

paths between them.) Let S = X

1

� Y

1

(where � denotes symmetri
 di�eren
e) and m = jSj.

Let fw

i

g

m

i=1

be an arbitrary enumeration of the weights of the items in S, where weights in S \ Y

1

appear with a positive sign and weights in S \X

1

with a negative sign. Thus W = a(Y

1

)� a(X

1

).

We 
an now des
ribe the 
ow from X to Y in three stages:

Stage 1: Send the entire unit 
ow along a single path from X to X

1

by removing the elements

of X

0

in index order.

Stage 2: Distribute the unit 
ow along geodesi
 paths from X

1

to Y

1

a

ording to a balan
ed

almost uniform permutation � of the weights fw

i

g of the items in S.

Stage 3: Send the entire unit 
ow along a single path from Y

1

to Y by adding the elements of Y

0

in index order.

The role of stages 1 and 3 is simply to ensure that the endpoints of the random paths in stage 2 are

at least a small distan
e below the bounding hyperplane, to a

ommodate the (small) 
u
tuations

still present in balan
ed permutations.

Let us �rst observe that the above 
ow is valid. For this, we just need to 
he
k that all the


ow-
arrying paths remain within the set 
. This is obvious for stages 1 and 3. For stage 2 it
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follows from the balan
e property of �: for if Z is the kth point along a 
ow-
arrying path from X

1

to Y

1

, then

a(Z) = a(X

1

) +

k

X

i=1

w

�(i)

� a(X

1

) + maxfa(Y

1

)� a(X

1

); 0g +B (16)

= maxfa(Y

1

); a(X

1

)g+B

� b;

where in the last line we have used the fa
t that a(X

1

); a(Y

1

) are both � b�B. Hen
e Z 2 
.

Next we must bound the quantities C(f) and L(f) for this 
ow f , as de�ned in se
tion 2.

L(f), the length of a longest 
ow-
arrying path, is plainly at most n+ 2B. To estimate C(f), we

must bound the 
ow along any edge of G




. For 
onvenien
e we will in fa
t bound the 
ow f(Z)

through any vertex Z; 
learly this is also an upper bound on the 
ow along any edge.

So let Z be an arbitrary vertex of G




. De�ne

P

(Z) to be the set of pairs (X;Y ) su
h that

some X ! Y 
ow passes through Z. Note that

P

(Z) =

S

3

i=1

P

i

(Z), where

P

i

(Z) are the pairs

whose paths pass through Z in stage i. We shall bound the 
ontribution to f(Z) from ea
h

P

i

(Z)

separately. For i = 1; 3 this is simple: sin
e stage-1 paths have length at most B, the number of

verti
es X su
h that (X;Y ) 2

P

1

(Z) is (
rudely) at most Bn

B

, so the 
ontribution to f(Z) from

su
h paths is no more than Bn

B

j
j. The same bound holds symmetri
ally for

P

3

(Z). The main

portion of the paths,

P

2

(Z), presents more of a 
hallenge.

We shall a
tually work with

e

P

2

(Z), the set of pairs (X

1

; Y

1

) su
h that Z lies on the stage-2

path with endpoints X

1

; Y

1

. By the observation in the previous paragraph, the 
ow 
ontribution

from

P

2

(Z) will be at most B

2

n

2B

times that from

e

P

2

(Z). Re
all that we are really interested

in the ratio

f(Z)

j
j

, rather than in f(Z) itself. A

ordingly, following earlier analyses of this general

type (see, e.g., [9, 10℄), we measure the set

e

P

2

(Z) by asso
iating with ea
h of its elements (X

1

; Y

1

)

an \en
oding" Z

0

, whi
h belongs to 
. This is de�ned as the 
omplement of Z in the multiset

X

1

[ Y

1

; more pre
isely,

Z

0

= X

1

� Y

1

� Z:

To see that Z

0

2 
, we need to 
he
k that a(Z

0

) � b. But this follows be
ause

a(Z

0

) = a(X

1

) + a(Y

1

)� a(Z)

� a(X

1

) + a(Y

1

)� (minfa(X

1

); a(Y

1

)g �B)

= maxfa(X

1

); a(Y

1

)g+B

� b;

where in the se
ond line we have used the balan
e property of � as in (16) to bound a(Z), this

time from below.

How many pairs (X

1

; Y

1

) 
ould be mapped to a given Z

0

? First note that Z

0

uniquely determines

both S = X

1

� Y

1

and I = X

1

\ Y

1

via the relations

S = Z

0

� Z; I = Z

0

\ Z:

Thus in parti
ular su
h pairs share the same symmetri
 di�eren
e, S, of 
ardinality m, say. To

determine X

1

and Y

1

uniquely, it suÆ
es to spe
ify the subset U � S of elements that have already

been pro
essed (i.e., added or deleted) by the stage-2 path by the time it rea
hes Z. For then we
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know, from the fa
t that all stage-2 paths are geodesi
, that X

1

agrees with Z on S � U and with

Z

0

on U , and vi
e versa for Y

1

. More formally,

X

1

= Z � U ; Y

1

= Z

0

� U:

The upshot of the foregoing dis
ussion is that we 
an de�ne a mapping from

e

P

2

(Z) to pairs of

the form (Z

0

; U), where Z

0

2 
 and U is a subset of Z�Z

0

. Moreover, and 
ru
ially, this mapping

is inje
tive. It therefore e�e
tively enumerates the set

e

P

2

(Z).

Finally, we need to take a

ount of the a
tual quantity of 
ow traveling along the paths. Con-

sider a pair (X

1

; Y

1

) 2

e

P

2

(Z), 
orresponding to the pair (Z

0

; U). Re
all that the 
ow distribution

between X

1

and Y

1

is determined by a balan
ed almost uniform permutation � of the weights

in S = X

1

� Y

1

. The proportion of this 
ow that passes through Z is pre
isely

Pr[�f1; : : : ; jU jg = U ℄ �

�

m

jU j

�

�1

poly(m);

by the almost uniform property of �.

Putting all this together, we 
an bound the total 
ontribution to f(Z) from

e

P

2

(Z) as follows:

X

Z

0

2


X

U�Z�Z

0

Pr[�f1; : : : ; jU jg = U ℄

�

X

Z

0

2


X

k

X

U�Z�Z

0

jU j=k

�

m

k

�

�1

poly(m)

� poly(n)

X

Z

0

2


X

k

�

m

k

��

m

k

�

�1

� npoly(n)j
j;

where in the summations m = jZ � Z

0

j. The total 
ontribution from all stage-2 paths is thus at

most B

2

n

2B+1

poly(n)j
j.

Combining this with our earlier bounds for stages 1 and 3, we obtain that f(Z) � poly(n)j
j

(for a di�erent polynomial), and hen
e C(f) � poly(n). Sin
e both L(f) and C(f) are bounded

polynomially in n, we now obtain immediately from Theorem 2.1 that the mixing time, �

mix

, is

polynomial in n. By keeping tra
k of the polynomial fa
tors, we see that the exponent is dominated

by the poly(n) term arising from the almost uniformity 
ondition (2), whi
h is of the form n

O(B

2

)

(see the Remark at the end of se
tion 3).

We summarize our analysis in the following theorem.

Theorem 4.1 Let 
 be the set of solutions to a knapsa
k problem whose weights a

i

lie in the range

[1; B℄ for some 
onstant B. The mixing time of the random walk on G




is �

mix

= n

O(B

2

)

.

As mentioned in the Introdu
tion, this immediately yields an fpras for 
omputing j
j in this 
ase,

via a standard redu
tion to random sampling (whose details are spelled out in [11℄).

5 The general 
ase

We now generalize the results of the previous two se
tions to the 
ase of arbitrary weights. The

essential ideas are the same, but there are several non-trivial te
hni
al 
ompli
ations that need to

be addressed.
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5.1 Balan
ed almost uniform permutations

To handle arbitrary weights, we �rst need to extend our 
onstru
tion of balan
ed almost uniform

permutations. The 
hief obsta
le here is that it is no longer true (as in the bounded ratio 
ase) that

ea
h item of positive weight 
an be balan
ed by a bounded number of items of negative weight.

To over
ome this diÆ
ulty, we will need to group items into \intervals" so that ea
h interval has

approximately the same (positive or negative) weight. We 
an then redu
e to the bounded ratio


ase.

First we need a slightly more liberal balan
e 
ondition:

De�nition 5.1 Let fw

i

g

m

i=1

be a set of real weights, with M = max

i�m

jw

i

j and W =

P

i

w

i

,

and let � � 1 be a nonnegative number. A permutation � 2 S

m

is �-balan
ed if, for all k with

1 � k � m,

minfW; 0g ��M �

k

X

i=1

w

�(i)

� maxfW; 0g +�M: (17)

Our earlier de�nition (De�nition 3.1) thus 
orresponds to � = 1.

Relaxing our earlier terminology slightly, we shall 
all � 2 S

m

a \balan
ed almost uniform

permutation" if � is �-balan
ed for a �xed 
onstant �, and �-balan
ed for � a �xed polynomial

fun
tion of m. The following theorem is a generalization of Theorem 3.3; it says that we 
an


onstru
t a balan
ed almost uniform permutation for an arbitrary set of weights. Moreover, we 
an

bound the uniformity parameter � by a polynomial whose degree is arbitrarily 
lose to 1=2 at the


ost of a modest in
rease in the balan
e parameter �. This is almost the best that one 
an hope

for: it is easy to 
he
k that, if we have m=2 weights of +1 and m=2 of �1, then for any 
onstants

�, C and p < 1=2, there 
an be no �-balan
ed Cm

p

-uniform permutation if m is suÆ
iently large.

For te
hni
al reasons, we shall a
tually prove a slightly stronger uniformity property. Call �

strongly �-uniform if

Pr[�f1; : : : ; kg = U and �(k + 1) = l℄ � ��

�

m

k m�k�1 1

�

�1

(18)

for every k with 1 � k � m, every U � f1; : : : ;mg of 
ardinality k, and every l =2 U . Note that the

expression on the right-hand side of (18) is just � times the probability of the given event if � were


hosen uniformly at random. Plainly (18) is a strengthening of equation (2) in De�nition 3.2; re
all

from equation (15) that our permutations in the previous se
tion also had this stronger property.

Theorem 5.2 Fix 0 < � < 1 and let � = 1+

p

90=�. For any m and set of weights fw

i

g

m

i=1

, there

exists a �{balan
ed strongly Cm

1=2+�

{uniform permutation, where C is a universal 
onstant.

Proof: Let M = max

i

jw

i

j and set

b

� =

��1

3

. Let � be a uniform random permutation in S

m

. Let

T

1

be the smallest t su
h that the partial sum

P

t

i=1

w

�(i)

has absolute value greater than

b

�M (or

T

1

= m if no su
h t exists). Similarly, let T

2

be the smallest t > T

1

su
h that j

P

t

i=T

1

+1

w

�(i)

j >

b

�M .

De�ne T

3

; T

4

; : : : in the same way. Then let I

1

be the sequen
e f�(i)g

T

1

i=1

, and I

2

the sequen
e

f�(T

1

+ i)g

T

2

�T

1

i=1

. Continue in this way, dividing � into intervals I

1

; : : : ; I

q

(so that T

q

= m).

Now let �

i

be the aggregated weight of interval I

i

for i = 1; 2; : : : ; q � 1. Note that j�

i

j 2

[

b

�M; (

b

� + 1)M ℄ for all i < q, so the ratio of the weights of any two of these intervals is at

most (

b

�+1)=

b

�. Thus, by the results of se
tion 3, there exists a 1-balan
ed �-uniform permutation

on f�

i

g

q�1

i=1

for � = Cq

10

�

(

b

�+1)=

b

��1

�

2

+1=2

= Cq

1=2+�

. By the Remark at the end of that se
tion, we


an in fa
t assume that this permutation is strongly �-uniform and (sin
e (

b

� + 1)=

b

� is bounded
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above by a 
onstant, namely 1 +

p

1=10) that the 
onstant C does not depend on �. Call this

permutation �

I

. We 
laim that the permutation

� = I

�

I

(1)

I

�

I

(2)

� � � I

�

I

(q�1)

I

q

obtained by rearranging the �rst q� 1 intervals a

ording to �

I

is a �-balan
ed Cm

1=2+�

{uniform

permutation on the original m weights.

We prove the balan
e property �rst. Let W

0

=

P

q�1

i=1

�

i

= W � �

q

. Sin
e �

I

is 1-balan
ed, �

satis�es

minf0;W

0

g � (

b

�+ 1)M �

T

j

X

i=1

w

�(i)

� maxf0;W

0

g+ (

b

�+ 1)M

for all 1 � j � q. Hen
e we have, for all j,

minf0;W

0

g � (2

b

�+ 1)M �

j

X

i=1

w

�(i)

� maxf0;W

0

g+ (2

b

�+ 1)M;

sin
e the partial sums within any interval lie in the range [�

b

�M;

b

�M ℄. Finally, note that jW �

W

0

j = j�

q

j �

b

�M . It follows that for all j,

minf0;Wg � (3

b

�+ 1)M �

j

X

i=1

w

�(i)

� maxf0;Wg+ (3

b

�+ 1)M;

and hen
e � is �-balan
ed.

To verify the strong uniformity property, 
onsider �rst an alternative experiment in whi
h the

permutation �

I

is 
hosen u.a.r. from S

q�1

without regard to the balan
e property. Note that,


onditional on the value of q, the distribution of (I

1

; : : : ; I

q�1

) is ex
hangeable. Thus, re-arranging

the intervals a

ording to a uniform �

I

is a measure-preserving transformation, so � itself has the

uniform distribution. Thus we need to show that for any U and any index l =2 U , the likelihood

ratio

Pr[�f1; : : : ; kg = U and �(k + 1) = l℄

Pr

unif

[�f1; : : : ; kg = U and �(k + 1) = l℄

� Cm

1=2+�

;

where we write Pr

unif

for the probability when �

I

is uniform and Pr for the probability when

�

I

is Cm

1=2+�

{uniform. In fa
t, it suÆ
es to show that the above bound on the likelihood ratio

holds 
onditional on any �. So �x a permutation �. In order for the numerator to be non-zero,

only the interval 
ontaining l 
an 
ontain elements from both U and U




(the 
omplement of U).

Additionally, in the interval 
ontaining l, all the elements before l must be in U and all those

after l must be in U




. Let A

1

be the 
olle
tion of intervals in fI

i

g

q�1

i=1


ontaining only elements

of U , and A

2

the 
olle
tion of intervals 
ontaining only elements of U




. Then jA

1

j+ jA

2

j must have

value either q � 1 or q � 2. Writing E

1

for the event �

I

f1; : : : ; jA

1

jg = A

1

and E

2

for the event

�

I

fq � 1; : : : ; q � jA

2

jg = A

2

, the above likelihood ratio is

Pr[E

1

and E

2

℄

Pr

unif

[E

1

and E

2

℄

� Cq

1=2+�

� Cm

1=2+�

:

In the 
ase where jA

1

j+jA

2

j = q�1 this is just the Cq

1=2+�

{uniformity property; when jA

1

j+jA

2

j =

q � 2 it is the strong Cq

1=2+�

{uniformity property. Thus � is strongly Cm

1=2+�

{uniform, and the

proof is 
omplete.
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5.2 The 
ow

Now that we have balan
ed almost uniform permutations for general weights, we 
an follow a

similar strategy to that in se
tion 4 for 
onstru
ting a good 
ow in the general 
ase. Our goal will

be to obtain a 
ow f of 
ost C(f) = O(n

3=2+�

) for any � > 0. So we assume from now on that � is

arbitrary but �xed.

Let X;Y be arbitrary verti
es of G




. Re
all the s
heme for 
onstru
ting a 
ow from X to Y in

the bounded ratio 
ase in se
tion 4: we essentially followed a balan
ed almost uniform permutation

of X � Y , ex
ept that we removed a 
onstant number of items from X and Y from 
onsideration

(pro
essing them at the beginning and end of the path) to ensure that the path remained withinG




.

The idea in the general 
ase is basi
ally the same, ex
ept that we will now remove a �xed number

of items from X [ Y and add/delete these repeatedly along the path to maintain �ne balan
e.

Moreover, before applying the random permutation, we �rst need to \pre-pro
ess" the pair (X;Y )

so that neither X nor Y is too 
lose to the hyperplane: in 
ontrast to the bounded ratio 
ase, this

is not guaranteed by the removal of a �xed number of items be
ause of the possibly large variations

in weights. However, we 
an over
ome this obsta
le by randomly swit
hing items between X and Y

to roughly balan
e their weights. The resulting 
ow-
arrying paths will not in general be geodesi
s,

as before, though they will have length only O(n).

In preparation for des
ribing the 
ow, we �rst des
ribe the pre-pro
essing operation. We assume

that a(X) + a(Y ) � 2b� 6�M , where M = max

i2X�Y

a

i

and � = �(�) is the 
onstant appearing

in Theorem 5.2. (In our appli
ation, we will redu
e to this 
ase by deleting a �xed number of items

from X [ Y .) Call a pair of verti
es (X

0

; Y

0

) full if either a(X

0

) > b ��M or a(Y

0

) > b ��M .

Our goal is to shift items randomly between X and Y and thereby rea
h a pair (X

0

; Y

0

) that is not

full.

Consider the following random walk on f(X

0

; Y

0

) : X

0

[ Y

0

= X [ Y; X

0

\ Y

0

= X \

Y; a(X

0

); a(Y

0

) � bg. If the 
urrent state is (X

0

; Y

0

), 
hoose an index i 2 X

0

� Y

0

u.a.r. With

probability

1

2

, do nothing; else move i from X

0

to Y

0

or Y

0

to X

0

if possible. We 
all this the

\pre-pro
essing random walk" (PRW). We 
laim in the following lemma that, if we run the PRW

for a number of steps 
hosen randomly between 1 and O(n), we will with reasonable probability

arrive at a pair (X

0

; Y

0

) that is not full. The proof uses a martingale argument and is deferred to

the Appendix.

Lemma 5.3 Let (X;Y ) be a full pair of verti
es in G




with a(X) + a(Y ) � 2b � 6�M , where

M = max

i2X�Y

a

i

. Pi
k T u.a.r. from f1; 2; : : : ; C

1

mg, where m = jX � Y j and C

1

is a suitable


onstant (whi
h depends only on �), and let (X

0

; Y

0

) be the result of running the PRW for T

steps starting from (X;Y ). Then Pr[(X

0

; Y

0

) is not full℄ � 1=C

2

for a positive 
onstant C

2

(again

depending only on �).

We are now ready to 
onstru
t and analyze the 
ow in the general 
ase.

Lemma 5.4 For arbitrary weights and any � > 0, it is possible to 
onstru
t a multi
ommodity


ow f in G




with C(f) = O(n

3=2+�

) and L(f) = O(n).

Proof: Let X;Y be arbitrary verti
es of G




. Viewing X and Y as subsets of f1; : : : ; ng, let H be

the h = d6�e elements of X�Y having largest weight (or let H = X�Y if jX�Y j � h), with ties

broken a

ording to index order. De�ne X

0

= X �H, Y

0

= Y �H and S = X

0

� Y

0

. Let m = jSj,

and let fw

i

g

m

i=1

be an arbitrary enumeration of the weights of the items in S, with the weights of

items in X

0

; Y

0

appearing with negative and positive signs respe
tively. Let M = max

i

jw

i

j.
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We will say that a set of indi
es Z is good if Z �H 2 
 and (Z �X � Y )�H 2 
. For a set

of indi
es Z and an index i, de�ne

Zi =

(

Z � fig if Z � fig is good;

Z otherwise.

De�ne Zi

1

i

2

= ((Zi

1

)i

2

) and so on. Note that if Y = Xi

1

� � � i

l

then the sequen
e i

1

; : : : ; i

l

de�nes

a path from X to Y in the unit hyper
ube of length at most l. This path need not in general lie

within G




; however, it is \
lose to" G




in the sense that for every point Z of the path, Z�H 2 
.

If (X

0

; Y

0

) is not full then set T = 0, otherwise 
hoose T u.a.r. from f1; : : : ; C

1

mg, where C

1

is

the 
onstant in Lemma 5.3. Next, let i

1

; : : : ; i

T

be i.i.d. uniform over S. De�ne X

00

= X

0

i

1

� � � i

T

and Y

00

= X

00

�X

0

� Y

0

= Y

0

i

1

� � � i

T

. Thus (X

00

; Y

00

) is the result of running the PRW for T steps

starting from (X

0

; Y

0

). Note that a(X

0

) + a(Y

0

) � 2b� a(H) � 2b� 6�M . So, by Lemma 5.3, we


an 
ondition on the event that the pair (X

00

; Y

00

) is not full and thus in
rease the probability of

any path by a fa
tor of at most C

2

.

Now let � be a �-balan
ed, strongly Cm

1=2+�

{uniform permutation on the weights fw

i

g, whose

existen
e is guaranteed by Theorem 5.2. We 
laim that the sequen
e

i

1

; : : : ; i

T

; �(1); : : : ; �(m); i

T

: : : ; i

1

(19)

de�nes a path from X to Y in the hyper
ube. This is true be
ause the 
ondition that (X

00

; Y

00

) be

not full, together with the fa
t that � is balan
ed, guarantees that all of the transitions indi
ated

by � will a
tually take pla
e.

Set

j

k

=

8

>

<

>

:

i

k

if 1 � k � T ;

�(k � T ) if T < k � T +m;

i

2T+m�k�1

if T +m < k � 2T +m,

and let l = 2T +m. Then j

1

; : : : ; j

l

is the sequen
e in (19). Our 
ow from X to Y will essentially

follow the sequen
e j

k

, ex
ept that along the way elements of H will be used to keep the knapsa
k

as full as possible, but will be removed as ne
essary to make room for new items j

k

to be added.

Thus ea
h intermediate state Z will be of the form H �Xj

1

� � � j

k

, for some H � H and k � l.

Suppose that, after pro
essing the �rst k � l elements of the sequen
e in (19), we have Z =

H �Xj

1

� � � j

k

for some H � H. The transition rule will be as follows.

1. If k < l and j

k+1

=2 Z then move to Z j

k+1

if possible (i.e., if the result is an element of 
);

otherwise delete an element from H.

2. If k < l and j

k+1

2 Z then add an element from H if possible; otherwise move to Z j

k+1

.

3. If k = l then add an element from H \Y if possible; otherwise delete an element from H \X.

The fa
t that all of the sets X j

1

� � � j

k

are good ensures that suÆ
ient elements of H 
an

always be removed so as to make room to add the next element j

k+1

when ne
essary; hen
e the

above rule de�nes a feasible random path from X to Y . Similarly, goodness also implies that

a(Z �X � Y �H) � b for every intermediate state Z; sin
e our rule keeps the weight as large as

possible this implies that, at any intermediate edge (Z;W ) along the path, there exists (at most)

one element u 2 H su
h that

a(Z �X � Y � fu; zg) � b; (20)
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where z is the index su
h that fzg = Z �W . Then (Z

0

� fu; zg) 2 
, where exa
tly as in the

analysis in se
tion 4, we de�ne the \en
oding" Z

0

by

Z

0

= X � Y � Z:

Thus, for any given edge (Z;W ), the number of en
odings Z

0

is at most nj
j.

Note that the path from X to Y 
an be naturally divided into three stages, 
orresponding to

the three parts of the sequen
e j

k

. We will write the 
ow through any given edge (Z;W ) 2 G




as

f(Z;W ) = f

1

(Z;W ) + f

2

(Z;W ) + f

3

(Z;W ), where f

i

(Z;W ) is the 
ontribution of stage i paths.

We will bound f by bounding ea
h of the three 
ontributions f

i

separately.

Consider stage 1 �rst, and fo
us on a parti
ular edge (Z;W ). For any pair (X;Y ) that sends


ow through (Z;W ) in stage 1, we 
an write Z = H �Xj

1

: : : j

k

, where j

1

; : : : ; j

k

are the �rst k

elements pro
essed along the path. Thus the pair (X;Y ) is 
ompletely spe
i�ed by k; j

1

; : : : ; j

k

; Z

0

and H, via the easily veri�ed relations

X = H � Zj

k

� � � j

1

; Y = H � Z

0

j

k

� � � j

1

:

The amount of 
ow 
orresponding to a given sequen
e j

1

; : : : ; j

k

is bounded above by the probability

that j

1

; : : : ; j

k

; z were the �rst k + 1 indi
es 
hosen in the pre-pro
essing random walk, whi
h is

at most C

2

m

�(k+1)

. (The fa
tor C

2

here arises from our earlier 
onditioning on the event that

(X

00

; Y

00

) is not full.) Thus we 
an bound the stage-1 
ow f

1

(Z;W ) as in se
tion 4. We have

f

1

(Z;W ) �

X

Z

0

X

k

X

j

1

;:::;j

k

X

H

C

2

m

�(k+1)

�

X

Z

0

X

k

2

h

C

2

m

�1

�

X

Z

0

C

1

m2

h

C

2

m

�1

� C

1

C

2

2

h

nj
j;

where the fa
tors C

1

m and 2

h

arise from summing over k and H respe
tively.

The 
ow f

3

(Z;W ) from stage-3 paths 
an be handled symmetri
ally, so 
onsider now the stage-2

paths. For a given edge (Z;W ), every pair (X;Y ) that sends 
ow through (Z;W ) in stage 2 
an

be 
ompletely spe
i�ed by Z

0

; T; k; j

1

; : : : ; j

T

; U and H, where k is the number of elements of the

sequen
e in (19) pro
essed along the path from X to Z and U = f�(1); : : : ; �(k � T )g, via

X = H � (Z � U)j

T

� � � j

1

; Y = H � (Z

0

� U)j

T

� � � j

1

:

Let k

0

= k�T . The amount of 
ow 
orresponding to a given j

1

; : : : ; j

T

and U is bounded above by

(C

2

m

�T

)(C

1

m)

�1

2

4

Cm

1=2+�

 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5

;

where the �rst fa
tor 
omes from the pre-pro
essing random walk, the se
ond fa
tor is the prob-

ability of 
hoosing a parti
ular T , and the third fa
tor is an upper bound on the probability

Pr[�f1; : : : ; k

0

g = U and �(k

0

+ 1) = z℄, whi
h 
omes from the strong almost uniformity of �. Thus

we 
an again bound the 
ow f

2

(Z;W ) as in se
tion 4. We have

f

2

(Z;W ) �

X

Z

0

X

T

X

k

X

j

1

;:::;j

T

X

U

X

H

(C

2

m

�T

)(C

1

m)

�1

2

4

Cm

1=2+�

 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5

15



�

X

Z

0

(C

1

m)mm

T

 

m� 1

k

0

!

2

h

(C

2

m

�T

)(C

1

m)

�1

2

4

Cm

1=2+�

 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5

=

X

Z

0

2

h

C

2

2

4

m

 

m� 1

k

0

! 

m

k

0

;m� k

0

� 1; 1

!

�1

3

5

Cm

1=2+�

=

X

Z

0

2

h

C

2

Cm

1=2+�

� 2

h

CC

2

n

3=2+�

j
j;

where the fa
tors in the se
ond line are written in the same order as the sums they arise from.

Adding the 
ontributions f

1

, f

2

and f

3

, we see that the above 
ow satis�es C(f) = O(n

3=2+�

),

while plainly L(f) = O(n). Sin
e � > 0 was arbitrary, this 
ompletes the proof.

Given su
h a 
ow, we need only invoke Theorem 2.1 to derive our main result.

Theorem 5.5 Let 
 be the set of solutions to an arbitrary instan
e of the 0-1 knapsa
k problem.

The mixing time of the random walk on G




is �

mix

= O(n

9=2+�

) for any � > 0.

This immediately implies the existen
e of an fpras for 
omputing j
j in the general 
ase.

Remark: The mixing time bound of O(n

9=2+�

) in Theorem 5.5 is reasonably tight for this type

of analysis. If we apply Theorem 2.1 to analyze random walk on the entire 
ube f0; 1g

n

, we get a

bound of O(n

3

) even with an optimal 
ow. Thus the trun
ation introdu
es an extra fa
tor of only

O(n

3=2+�

) into the bound. It is instru
tive to see where this extra fa
tor 
omes from: O(n

1=2+�

) is

due to the balan
ed almost uniform permutation 
onstru
tion (Theorem 5.2, whi
h is tight), while

O(n) 
omes from the fa
t that the \en
oding" Z

0

may lie just outside 
.

6 Multiple hyperplanes

6.1 Introdu
tion

In this se
tion, we will extend our earlier results to handle multiple hyperplanes. For a non-negative

real d� n matrix A and a positive real ve
tor b = (b

1

; : : : ; b

d

), let 
 denote the set of 0-1 ve
tors

x = (x

i

)

n

i=1

for whi
h Ax � b. The verti
es in 
 
onstitute the set of feasible solutions to the

multidimensional knapsa
k problem with the d simultaneous 
onstraints

a

j

� x �

n

X

i=1

a

j

i

x

i

� b

j

for 1 � j � d, (21)

where a

j

i

� a

ji

. (In equation (21) the supers
ript j indexes the jth linear 
onstraint; we will follow

this 
onvention throughout.)

Geometri
ally, 
 is obtained by trun
ating the unit 
ube by d hyperplanes, ea
h of whi
h 
orre-

sponds to a knapsa
k 
onstraint. The essential geometri
 property of these \knapsa
k" hyperplanes

is that their normal ve
tors all lie in the same quadrant. The results of this se
tion will easily extend

to any 
olle
tion of hyperplanes with this property

5

.

5

However, we 
annot allow the hyperplanes to be arbitrary. If arbitrary trun
ations were allowed, then it would

be possible to use just two hyperplanes to 
ause exponential bottlene
ks or even dis
onne
t the graph G




.
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Following our earlier notation, we identify a 0-1 ve
tor x = (x

i

)

n

i=1

with the set of indi
es

X = fi : x

i

= 1g, and write a(X) = (a

1

(X); : : : ; a

d

(X)) for the (now d-dimensional) weight of X.

As before we denote by G




the subgraph of the hyper
ube f0; 1g

n

indu
ed by the verti
es in 
, and

we again study symmetri
 random walk on G




; i.e., transitions from a given state X � f1; : : : ; ng

are made as follows:

1. pi
k an item i 2 f1; : : : ; ng u.a.r.;

2. if i 2 X, move to X�fig; if i =2 X and a

j

(X [fig) � b

j

for all j, move to X [fig; otherwise,

do nothing.

Again, to avoid issues involving periodi
ity, we add to every state a holding probability of

1

2

.

In this se
tion we will prove that this random walk on G




has mixing time that is polynomially

bounded in n, for any �xed dimension d. Just as in the one-dimensional 
ase, this immediately

gives a polynomial time algorithm for sampling (almost) uniformly at random from 
, and a fpras

for 
omputing j
j.

We note that the degree of our polynomial upper bound for the mixing time will depend on

the dimension d, but this is unavoidable as the following simple example shows. Consider a d-

dimensional knapsa
k problem in whi
h there are

n

2d

items having ea
h of the d weight ve
tors

(n; 0; : : : ; 0); (0; n; : : : ; 0); : : :, (0; : : : ; 0; n), and the remaining

n

2

items have weight ve
tor (1; 1; : : : ; 1);

the knapsa
k 
apa
ity is b = (n; : : : ; n). Let S be the set of feasible solutions in 
 whi
h do not


ontain any of the (1; : : : ; 1) items. Then jSj =

�

n

2d

+ 1

�

d

, but S is 
onne
ted to 
�S only through

the origin. It follows easily that the mixing time is n


(d)

.

In fa
t, for arbitrary d there 
an be no uniform polynomial upper bound for the running time

of any sampling algorithm unless RP = NP. This follows immediately by redu
tion from the

problem of sampling independent sets in a graph. By theorem 1.17 of [17℄, there is no algorithm

for (almost) uniformly sampling independent sets in a graph unless RP = NP. Now if G = (V;E)

is an arbitrary (undire
ted) graph, there is a 1-1 
orresponden
e between the independent sets in

G and the feasible solutions to the knapsa
k problem with jV j variables and the jEj 
onstraints

x

u

+ x

v

� 1 for all fu; vg 2 E.

To prove rapid mixing of the random walk on G




for any �xed d, we use the multi
ommodity


ow te
hnique as before. Re
all that Theorem 2.1, whi
h bounds the mixing time in terms of the


ost of a 
ow f , holds for symmetri
 random walk on any 
onne
ted subset of the hyper
ube, so it

again suÆ
es to 
ome up with a 
ow of small 
ost. As before, the idea is to spread ea
h X ! Y


ow evenly using a balan
ed almost uniform permutation. However, sin
e the weight fun
tion a( � )

is now ve
tor-valued, we �rst need to extend the de�nition of balan
e to higher dimensions.

De�nition 6.1 Fix an integer d > 0, and let fw

i

g

m

i=1

be a set of weights inR

d

satisfying

P

m

i=1

w

i

= 0.

For a positive real number �, a permutation � 2 S

m

is �-balan
ed if

max

k

�

�

�

k

X

i=1

w

j

�(i)

�

�

�

� �M

j

for 1 � j � d; (22)

where w

i

= (w

1

i

; : : : ; w

d

i

) and M

j

= max

1�i�m

jw

j

i

j

Thus � is balan
ed with respe
t to ve
tor weights fw

i

g if and only if it satis�es the d one-dimensional

balan
e 
onditions given by (22). Note that this generalizes our earlier De�nition 5.1 for the one-

dimensional 
ase (ex
ept that, for simpli
ity, we have assumed that

P

i

w

i

= 0).
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Constru
ting balan
ed almost uniform permutations is signi�
antly more diÆ
ult in higher

dimensions sin
e one has to 
ontrol 
u
tuations in all dimensions simultaneously. In fa
t, for

d � 2, it is non-trivial to prove for an arbitrary set of ve
tor weights that even a single balan
ed

permutation exists. (For d = 1 of 
ourse this is trivial.) The existen
e of su
h a permutation follows

at on
e from a lemma due to Grinberg and Sevast'yanov [6℄, whi
h was proved in an entirely di�erent


ontext:

Lemma 6.2 [6℄ Let x

1

; : : : ; x

n

be ve
tors in R

d

su
h that

P

i

x

i

= 0. Then there exists a permuta-

tion � 2 S

n

su
h that

k

X

i=1

x

�(i)

2 d� 
onvfx

1

; : : : ; x

n

g for 1 � k � n,

where 
onv denotes the 
onvex hull.

Of 
ourse, we need something mu
h stronger than this, namely almost uniform permutations

with a similar balan
e property. Perhaps surprisingly, we will show that balan
ed almost uniform

permutations exist in arbitrary dimension d. To illustrate the main ideas involved in extending

from one to higher dimensions, we now give a sket
h of the proof in the spe
ial 
ase where d = 2

and the weights satisfy 1 � jw

j

i

j � 2 for all i and j.

In this setting, let I

1

= fi : w

2

i

� 0g, I

2

= fi : w

2

i

< 0g, and de�ne v =

P

i2I

1

w

i

. For every

i � m, let y

i

be the proje
tion of w

i

onto v

?

. Let �

1

be an almost uniform permutation on I

1

whi
h is balan
ed (in the one-dimensional sense) with respe
t to fy

i

g

i2I

1

, with a similar de�nition

for �

2

. Finally, interleave �

1

and �

2

to give a permutation on f1; : : : ;mg whi
h is balan
ed with

respe
t to fw

2

i

g

m

i=1

(the proje
tions of the w

i

onto the se
ond 
oordinate axis). Sin
e �

1

and �

2

are

both almost uniform, so is �, by an argument similar to that in the proof of Theorem 3.3.

Furthermore, sin
e �

1

and �

2

are ea
h balan
ed with respe
t to proje
tions onto v

?

, so is �.

(Note that the proje
tions y

i

satisfy

P

i2I

1

y

i

=

P

i2I

2

y

i

= 0.) Thus, for every k, the proje
tions

of

P

k

i=1

w

�(i)

onto the se
ond 
oordinate axis and onto v

?

are both bounded, and sin
e the w

j

i

are

all in [1; 2℄, the angle between the 
oordinate axis and v

?

is bounded away from zero. Thus, the

partial sums

P

k

i=1

w

�(i)

stay inside a parallelogram of bounded diameter. Hen
e � is balan
ed with

respe
t to the weights fw

i

g

m

i=1

.

This 
on
ludes the sket
h proof for the above spe
ial 
ase with d = 2. Note that it is a

straightforward redu
tion to the one-dimensional result. Unfortunately, in general the redu
tion

from d to d�1 dimensions is not quite so straightforward; we deal with the extra te
hni
al diÆ
ulties

in the next subse
tion.

6.2 Balan
ed almost uniform permutations in arbitrary dimensions

The following theorem says that one 
an always 
onstru
t balan
ed almost uniform permutations

when the dimension d is �xed.

Theorem 6.3 Let d be any positive integer. There is a 
onstant 


d

and a polynomial fun
tion

p

d

su
h that, for any set of weights fw

i

g

m

i=1

in R

d

with

P

i

w

i

= 0, there exists a 


d

{balan
ed,

p

d

(m){uniform permutation.

Proof: The proof will be by indu
tion on d. The base 
ase d = 1 follows from Theorem 5.2,

with 


1

= 15 and p

1

(m) = Cm. Now let d > 1 be arbitrary, and suppose that the result holds
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for dimensions up to d� 1. Let fw

i

g

m

i=1

be a set of weights in R

d

. Suppose �rst that the weights

satisfy

M

j

= 2 for all j; (23)

1 � max

1�j�d

jw

j

i

j � 2 for all i. (24)

Thus ea
h weight is at least half as large as the maximum (positive or negative) weight in some


oordinate. Then

max

1�j�d

m

X

i=1

jw

j

i

j �

m

d

:

W.l.o.g., suppose that the sum in the LHS is maximized by j = d. Then we have

m

X

i=1

(w

d

i

)

+

=

m

X

i=1

(w

d

i

)

�

�

m

2d

:

Let I

1

= fi : w

d

i

� 0g, I

2

= fi : w

d

i

< 0g, m

1

= jI

1

j, and m

2

= jI

2

j. De�ne the means

�

1

=

1

m

1

P

i2I

1

w

d

i

, and �

2

= �

1

m

2

P

i2I

2

w

d

i

. Note that �

1

; �

2

�

1

2d

. For 1 � j < d, let




j

=

P

i2I

1

w

j

i

P

i2I

1

w

d

i

=

P

i2I

2

w

j

i

P

i2I

2

w

d

i

:

For all i � m and j < d, let y

j

i

= w

j

i

� 


j

w

d

i

, and let y

i

= (y

1

i

; : : : ; y

d�1

i

). Note that j


j

j � 1,

jy

j

i

j � 4, and

P

i2I

1

y

i

=

P

i2I

2

y

i

= 0.

Now, for s = 1; 2 let �

s

be a p

d�1

(m){uniform permutation on I

s

whi
h is 


d�1

{balan
ed with

respe
t to fy

i

g

i2I

s

. Call �

1

�-good if for every k

1

with 1 � k

1

� m

1

we have

�

�

�

k

1

X

i=1

w

d

�

1

(i)

� k

1

�

1

�

�

�

� 2�

q

k

�

1

(25)

where k

�

1

= minfk

1

;m

1

�k

1

g. In similar fashion to the proof of Lemma A.1.1, Hoe�ding's bounds [7℄

imply that for a parti
ular value of k

1

we have

Pr

unif

(�

1

does not satisfy (25)) � 2 exp(�2�

2

);

and sin
e the event depends only on the initial segment �

1

f1; : : : ; k

1

g, we also have

Pr(�

1

does not satisfy (25)) � p

d�1

(m) � Pr

unif

(�

1

does not satisfy (25))

� p

d�1

(m) � 2 exp(�2�

2

):

Hen
e

Pr[�

1

is not �-good℄ � mp

d�1

(m) � 2 exp(�2�

2

): (26)

Suppose that for some 
onstants C and r, the polynomial p

d�1

satis�es p

d

(k) � Ck

r

for all k. If we

let � =

p

(r + 1) ln(m), then the RHS of (26) is at most 2Cm

r+1�2(r+1)

�

1

2

, for suÆ
iently large

m. Thus, we 
an assume that �

1

is �-good with probability 1 and only in
rease C by a 
onstant

fa
tor. Similar arguments apply to �

2

.
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Finally, note that it is always possible to interleave �

1

and �

2

to give a permutation on

f1; : : : ;mg whi
h is 1-balan
ed with respe
t to fw

d

i

g

m

i=1

. Let � be su
h a permutation. Then

we have j

P

k

i=1

w

d

�(i)

j � 2, and

�

�

�

k

X

i=1

w

j

�(i)

�

�

�

=

�

�

�

X

i2I

1

:

i�k

w

j

�(i)

+

X

i2I

2

:

i�k

w

j

�(i)

�

�

�

=

�

�

�

X

i2I

1

:

i�k

y

j

�(i)

+

X

i2I

2

:

i�k

y

j

�(i)

+ 


j

k

X

i=1

w

d

�(i)

�

�

�

�

�

�

�

X

i2I

1

:

i�k

y

j

�(i)

�

�

�

+

�

�

�

X

i2I

2

:

i�k

y

j

�(i)

�

�

�

+ j


j

j

�

�

�

k

X

i=1

w

d

�(i)

�

�

�

� 4


d�1

+ 4


d�1

+ 2j


j

j

� 8


d�1

+ 2;

for all j < d and k. Hen
e � is 


0

d

{balan
ed for 


0

d

= 4


d�1

+ 1 by assumption (23) .

To verify almost uniformity, we follow the proof of Theorem 3.3. Let U � f1; : : : ;mg be

arbitrary with jU j = k, and let U

1

= U \ I

1

, U

2

= U \ I

2

, k

1

= jU

1

j, and k

2

= jU

2

j. Then we have

Pr[�f1; : : : ; kg = U ℄ � Pr[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

� (Cm

r

)

2

Pr

unif

[�

1

f1; : : : ; k

1

g = U

1

and �

2

f1; : : : ; k

2

g = U

2

℄

=

C

0

m

2r

�

m

1

k

1

��

m

2

k

2

�

Now we 
an bound the quantity

�

m

1

k

1

��

m

2

k

2

�

by mimi
king (with minor modi�
ations) the 
al
ulations

from equation (7) to equation (10) in the proof of Theorem 3.3. In our 
urrent setting, we have

�

1

; �

2

�

1

2d

, and the jw

d

i

j are in [0; 2℄. Be
ause we have 
hanged the de�nition of �-good and

the value of �, we also have to make the substitutions (B � 1)

2

! 2

2

and lnm ! (r + 1) lnm,

respe
tively. Thus the bound on the exponent given in equation (9) be
omes

10 � 2

2

(

1

2d

)

2

(r + 1) lnm = 160d

2

(r + 1) lnm: (27)

Hen
e � is p

d

(m)-uniform for p

d

(m) = C

00

m

160d

2

(r+1)+2r+1=2

.

We have shown how to make balan
ed almost uniform permutations if the weights satisfy

(23) and (24). To generalize to arbitrary weights fw

i

g

m

i=1

, we use the interval tri
k introdu
ed in

se
tion 5.1. Let � be a uniform random permutation in S

m

, and let T

1

= minft : j

P

t

i=1

w

j

i

j >

M

j

for some jg. De�ne T

2

; T

3

; : : : similarly. Now use the T

i

to divide � into intervals I

1

; : : : ; I

q

.

Let f�

i

g

q�1

i=1

be the aggregated (d-dimensional) weights of the �rst q � 1 intervals. Note that if we

divide ea
h �

j

i

by

1

2

max

i

j�

j

i

j, then the resulting weights satisfy (23) and (24). Hen
e these weights

admit a 


0

d

{balan
ed, p

d

(q){uniform permution (though see the remark immediately following this

proof). Rearranging the intervals fI

i

g

q�1

i=1

a

ording to su
h a permutation gives a permutation on

f1; : : : ;mg whi
h is p

d

(m){uniform and 


d

{balan
ed for 


d

= 2


0

d

+ 1.
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Remark: We should point out that the weights f�

i

g

q�1

i=1

of the �rst q � 1 intervals will not in

general sum to zero. However, we 
an easily get around this by introdu
ing a dummy weight �

q

whi
h is equal to the weight of interval I

q

. The presen
e of this single small weight does not a�e
t

equation (27) for suÆ
iently large m. Hen
e there is a 


0

d

-balan
ed p

d

-uniform permutation on this

padded sequen
e f�

i

g

q

i=1

. This indu
es a permutation on f�

i

g

q�1

i=1

whi
h is (


0

d

+ 1){balan
ed and


p

d

(q){uniform for some 
onstant 
. Thus, if we in
orporate an extra +1 into the 
onstant 


0

d

and

an extra fa
tor of 
 into p

d

then the argument in the above proof is still valid.

Before we spe
ify our 
ow, we need one more de�nition.

De�nition 6.4 Let fw

i

g

m

i=1

be a sequen
e in R

d

, with w

i

= (w

1

i

; : : : ; w

d

i

), let � = (�

1

; : : : ; �

d

) =

1

m

P

m

i=1

w

i

, and let l be a positive integer. A permutation � is strongly l{balan
ed if, for all k � m

and j � d, there exists a set S � f1; : : : ;mg with jS��f1; : : : ; kgj � l, su
h that

�

P

k

i=1

w

j

�(i)

� k�

j

�

and

�

P

i2S

w

j

�(i)

� k�

j

�

have opposite signs (or either is 0).

Thus, in a strongly balan
ed permutation, whenever the initial segment f�(i)g

k

i=1

is \above average"

with respe
t to a parti
ular 
oordinate j, it 
an be made \below average" by 
ipping at most some

�xed number l of items, and vi
e versa. As the name suggests, the strong balan
e 
ondition is

stri
ter than the usual balan
e 
ondition. Nonetheless, the following lemma says that strongly

balan
ed permutations always exist.

Lemma 6.5 For any sequen
e fw

i

g

m

i=1

in R

d

, there exists a strongly 16d

2

{balan
ed permutation.

Note that this lemma 
laims only that a single strongly balan
ed permutation exists; unlike Theo-

rem 6.3, it makes no 
laims regarding almost uniformity. The proof of the lemma relies heavily on

the result of Grinberg and Sevast'yanov quoted earlier (Lemma 6.2); the proof is straightforward

but rather te
hni
al, so we defer it to the Appendix.

6.3 A good 
ow

Now that we have multi-dimensional balan
ed almost uniform permutations and strongly balan
ed

permutations, we are ready to 
ontru
t a good 
ow.

Lemma 6.6 Fix any number of knapsa
k 
onstraints d. For arbitrary item weights, it is possible to


onstru
t a multi
ommodity 
ow f in G




with C(f) bounded by a polynomial in n and L(f) = O(n).

Proof: Re
all that we identify ea
h vertex x 2 
 with the index set X = fi : x

i

= 1g. Let

b


 = fX 2 
 : a

j

(X) � b

j

� 3


d

max

i2X

a

j

i

g, where 


d

is the 
onstant in the 
onstru
tion of

balan
ed almost uniform permutations as in Theorem 6.3. Our main goal will be to 
onstru
t a


ow

b

f whi
h, simultaneously for every X;Y 2

b


, sends one unit of 
ow from X to Y . This 
ow

will satisfy C(

b

f) � poly(n) and L(

b

f) = O(n).

Note that, from any vertex X 2 
, we 
an obtain a vertex

b

X 2

b


 by removing at most 3d


d

items. Thus, we 
an use an approa
h similar to that in se
tion 4 to extend

b

f to a multi
ommodity


ow f on the whole of 
, and f will satisfy C(f) � n

6d


d

poly(n) � poly

0

(n) and L(f) � L(

b

f) +

6d


d

= O(n).

It remains to de�ne the 
ow

b

f and show that it has the properties 
laimed. Fix X;Y 2

b


.

As usual, the path from X to Y will follow a permutation � on the symmetri
 di�eren
e X � Y .

However, as in the one-dimensional 
ase, a simple balan
ed almost uniform permutation � will

not do; su
h a permutation would not ne
essarily de�ne a path that stayed in 
. The problem
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o

urs when for some j, max

i2X

a

j

i

is not 
omparable to max

i2Y

a

j

i

. (For example, if max

i2X

a

j

i

�

max

i2Y

a

j

i

, then the path 
ould have too mu
h variation in the j{dire
tion as it approa
hed Y .)

However, we 
an deal with this problem by 
onsidering the \large" and the \small" items in X�Y

separately.

Let M = (M

1

; : : : ;M

d

), where M

j

= minfmax

i2X

a

j

i

;max

i2Y

a

j

i

g. Let L = fi 2 X � Y : a

j

i

>

M

j

for some jg and S = (X � Y ) � L. (L and S are the \large" and \small" items respe
tively.)

Let fw

i

g

i2X�Y

be an enumeration of the weights of the items in X � Y , where weights from Y

appear with a positive sign and weights from X appear with a negative sign. Let �

1

=

1

jLj

P

i2L

w

i

,

and let �

2

=

1

jSj

P

i2S

w

i

. Let �

1

be a permutation on L whi
h is strongly 16d

2

{balan
ed with

respe
t to the weights fw

i

g

i2L

, and let �

2

be a p

d

(jSj){uniform permutation whi
h is 


d

{balan
ed

with respe
t to the weights fw

i

� �

2

g

i2S

. The existen
e of �

1

and �

2

is guaranteed by Lemma 6.5

and Theorem 6.3 respe
tively. To obtain �, we will interleave the strongly balan
ed permutation

�

1

and the balan
ed permutation �

2

. The rule for interleaving will be as follows. Suppose that

�(1); : : : ; �(k) have already been assigned, and that �f1; : : : ; kg = �

1

f1; : : : ; k

1

g [ �

2

f1; : : : ; k

2

g.

Now, either

k

1

k

�

jLj

jLj+jSj

or

k

2

k

<

jSj

jLj+jSj

, so we 
an de�ne �(k + 1) by

�(k + 1) =

8

<

:

�

1

(k

1

+ 1); if

k

1

k

�

jLj

jLj+jSj

;

�

2

(k

2

+ 1); if

k

2

k

<

jSj

jLj+jSj

.

Now let � =

1

jX�Y j

P

i2X�Y

w

i

=

jLj�

1

+jSj�

2

jLj+jSj

. We 
laim that � satis�es the following 
ondition.

Fix j and k. Then there exist sets of indi
es V

1

and V

2

, with jV

i

� f1; : : : ; kgj � 17d

2

, su
h that

X

i2V

1

w

j

�(i)

� (k � 1)�

j

+ 3


d

M

j

; (28)

X

i2V

2

w

j

�(i)

� (k � 1)�

j

� 3


d

M

j

: (29)

We will prove this in the 
ase �

1

j

� �

2

j

; if �

1

j

< �

2

j

the proof is similar. Again, let k

1

=

jL \ �f1; : : : ; kgj and k

2

= jS \ �f1; : : : ; kgj, so that �f1; : : : ; kg = �

1

f1; : : : ; k

1

g [ �

2

f1; : : : ; k

2

g.

The method of interleaving ensures that

k

1

� 1

k � 1

�

jLj

jLj+ jSj

;

k

2

� 1

k � 1

�

jSj

jLj+ jSj

:

Therefore, sin
e �

1

j

� �

2

j

, we have

(k

1

� 1)�

j

1

+ k

2

�

j

2

� (k � 1)�

j

; (30)

k

1

�

j

1

+ (k

2

� 1)�

j

2

� (k � 1)�

j

: (31)

Clearly, the strong balan
e 
ondition on �

1

implies that there exist A;A

0

, with jA� f1; : : : ; k

1

gj �

16d

2

+ 1 and similarly for A

0

, su
h that

X

i2A

w

j

�

1

(i)

� (k

1

� 1)�

j

1

; (32)

X

i2A

0

w

j

�

1

(i)

� k

1

�

j

1

: (33)
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Also, by the balan
e 
ondition on �

2

we have

k

2

X

i=1

w

j

�

2

(i)

� k

2

�

j

2

+ 


d

max

i2S

fjw

j

i

� �

j

2

jg � k

2

�

j

2

+ 3


d

M

j

; (34)

k

2

X

i=1

w

j

�

2

(i)

� k

2

�

j

2

� 


d

max

i2S

fjw

j

i

� �

j

2

jg � (k

2

� 1)�

j

2

� 3


d

M

j

: (35)

Now, let B = �

�1

(�

1

(A) [ �

2

f1; : : : ; k

2

g) and B

0

= �

�1

(�

1

(A

0

) [ �

2

f1; : : : ; k

2

g). Then we have

jB � f1; : : : ; kgj � 16d

2

+ 1 � 17d

2

, and

X

i2B

w

j

�(i)

=

X

i2A

w

j

�

1

(i)

+

k

2

X

i=1

w

j

�

2

(i)

:

Exa
tly analogous relations hold with B;A repla
ed by B

0

; A

0

. Combining this with equations

(30){(35) gives (28) and (29).

Now, � determines a path fZ

i

g

jX�Y j

i=0

from X to Y , where Z

0

= X and Z

i

= X�f�(1); : : : ; �(i)g

for 1 � i � jX � Y j. This path might not stay in 
, but we 
an alter it slightly so that it

does. Equations (28) and (29) imply that for every k and j, there exists a set of indi
es W

j

k

with

jW

j

k

j � 34d

2

su
h that

a

j

(Z

k

�W

j

k

) � maxfa

j

(X); a

j

(Y )g+ 3


d

M

j

� b

j

; (36)

a

j

(Z

k

[W

j

k

) � minfa

j

(X); a

j

(Y )g � 3


d

M

j

: (37)

Let W

0

= ; and for k = 1; : : : ; jX � Y j, let W

k

= [

d

j=1

W

j

k

. Then, for all k, jW

k

j � 34d

3

, and

a(Z

k

�W

k

) � b. For 0 � k � jX � Y j, de�ne

Z

k

= Z

k

�W

k

:

Then ea
h Z

k

2 
. Our 
ow from X to Y will pass through ea
h of the Z

k

in turn. To get from Z

k

to Z

k+1

, we perform the following steps:

1. Remove ea
h item in Z

k

� (Z

k

\ Z

k+1

) in index order.

2. Add ea
h item in Z

k+1

� (Z

k

\ Z

k+1

) in index order.

De�ne W

x

= (W

k

[W

k+1

)\X, and W

y

= (W

k

[W

k+1

)\Y . By analogy with se
tions 4 and 5,

for ea
h intermediate point Z along the path de�ne the \en
oding" Z

0

by

Z

0

= (X � Y � Z) [ (X \ Y )� (W

k

[W

k+1

);

and let U = �f1; : : : ; kg. In similar fashion to our earlier analysis one 
an see that, for a given Z,

X and Y are 
ompletely spe
i�ed by the 4-tuple (Z

0

; U;W

x

;W

y

). We also have

a

j

(Z

0

) = a

j

(X) + a

j

(Y )� a

j

(Z [W

k

[W

k+1

)

� a

j

(X) + a

j

(Y )�minfa

j

(Z

k

[W

k

); a

j

(Z

k+1

[W

k+1

)g

� a

j

(X) + a

j

(Y )� (minfa

j

(X); a

j

(Y )g � 3


d

M

j

)

= maxfa

j

(X); a

j

(Y )g+ 3


d

M

j

� b

j

;
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where the se
ond inequality follows from (37). Hen
e Z

0

2 
. We 
an therefore bound the 
ow

b

f(Z) through Z by

b

f(Z) �

X

Z

0

2


X

W

x

;W

y

;U

Pr[f�(1); : : : ; �(jU j)g = U ℄: (38)

Finally, for a given X and Y , let L

j

= fi 2 X [ Y : a

j

i

> M

j

g, so that L = [

d

j=1

L

j

. Note that

for every j, L

j

\ Y is equal to either L

j

or ;. Thus, if we de�ne k

2

= jU \ Sj, then for given values

of M and k

2

, there are at most 2

d

�

jSj

k

2

�

possible values for U in the inner sum of equation (38).

Therefore, we have

b

f(Z) �

X

Z

0

2


X

M;W

x

;W

y

;k

2

X

U :jU\Sj=k

2

Pr[f�

2

(1); : : : ; �

2

(k

2

)g = U \ S℄

�

X

Z

0

2


X

M;W

x

;W

y

;k

2

X

U :jU\Sj=k

2

p

d

(jSj)

 

jSj

k

2

!

�1

�

X

Z

0

2


X

M;W

x

;W

y

;k

2

2

d

p

d

(jSj)

�

X

Z

0

2


n

d

" 

n

68d

3

!

2

68d

3

#

n� 2

d

p

d

(n)

= poly(n)j
j;

where in the se
ond line we have appealed to the almost uniformity of permutation �

2

. This


ompletes the proof.

Given su
h a 
ow, we 
an appeal to Theorem 2.1 to derive the main result of this se
tion.

Theorem 6.7 Fix any dimension d > 0, and let 
 be the set of solutions to an arbitrary instan
e

of the d-dimensional 0-1 knapsa
k problem. The mixing time of the random walk on G




is poly

d

(n).

As in one dimension, this immediately implies the existen
e of an fpras for 
omputing j
j in this

more general setting.
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Appendix

A.1 Appendix for se
tion 3

This se
tion 
ontains two te
hni
al lemmas that were used in the proof of Theorem 3.3.

Lemma A.1.1 Let � be a uniform random permutation in S

m

. Then

Pr[� is not �-good℄ � 2m exp(�2�

2

):

Proof: We adopt the notation of the proof of Theorem 3.3. Let 1 � k

1

� m

1

. It suÆ
es to show

that

Pr

h

�

�

�

k

1

X

i=1

w

�

1

(i)

� k

1

�

1

�

�

�

> �(M � 1)

p

k

1

i

� 2 exp(�2�

2

);

for then the lemma follows from the union bound and from symmetry (whi
h allows us to repla
e

k

1

by k

�

1

= minfk

1

;m

1

� k

1

g). But this inequality is a dire
t 
onsequen
e of Hoe�ding's bound on

deviations in sampling without repla
ement [7℄.
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Lemma A.1.2 Let m

1

;m

2

; k

1

; k

2

be non-negative integers and m = m

1

+m

2

, k = k

1

+ k

2

. Then

�

m

1

k

1

��

m

2

k

2

�

�

m

k

�

� Cm

�1=2

exp

(

�

l

2

+

1

2

jlj

�(1 � �)

�

1

m

1

+

1

m

2

�

)

;

where � =

k

m

, l =

m

1

k

2

�m

2

k

1

m

, and C > 0 is a universal 
onstant.

Proof: Note that k = �m, k

1

= �m

1

� l, and k

2

= �m

2

+ l. By the symmetry of binomial


oeÆ
ients, we may assume that l � 0. We shall prove the lemma by showing the two inequalities

�

m

1

�m

1

��

m

2

�m

2

�

�

m

�m

�

� C

1

m

�1=2

(39)

and

�

m

1

�m

1

�l

��

m

2

�m

2

+l

�

�

m

1

�m

1

��

m

2

�m

2

�

� C

2

exp

(

�

l

2

+

1

2

jlj

�(1��)

�

1

m

1

+

1

m

2

�

)

(40)

for positive 
onstants C

1

; C

2

.

The �rst inequality is an immediate 
onsequen
e of Stirling's approximation,

p

2�n(

n

e

)

n

� n! �

C

3

p

2�n(

n

e

)

n

, where C

3

= 1+e

1=12

is a 
onstant. To prove the se
ond inequality, we apply Stirling's

approximation to all four binomial 
oeÆ
ients to get the following lower bound on the left-hand

side of (40):

�

P(�m

1

)P((1 � �)m

1

)P(�m

2

)P((1 � �)m

2

)

P(�m

1

� l)P((1 � �)m

1

+ l)P(�m

2

+ l)P((1 � �)m

2

� l)

�

�

�

�m

1

(1� �)m

1

�m

2

(1� �)m

2

(�m

1

� l)((1 � �)m

1

+ l)(�m

2

+ l)((1� �)m

2

� l)

�

1=2

; (41)

where P(x) denotes x

x

. Now we have

P(�m

1

)

P(�m

1

� l)

= (�m

1

)

l

�

1 +

l

�m

1

�l

�

�m

1

�l

� (�m

1

)

l

exp

n

l(�m

1

�l)

�m

1

o

;

where we have used the inequality (1 +

x

y

)

y

� exp(

xy

x+y

), valid for x; y > 0. Handling the three

other pairs of fa
tors in the numerator and denominator in similar fashion (using in addition the

inequality (1 �

x

y

)

y

� exp(

�xy

y�x

), valid for y > x > 0) we see that the �rst parenthesis in (41) is

bounded below by

exp

(

�

l

2

�(1� �)

�

1

m

1

+

1

m

2

�

)

: (42)

A similar 
al
ulation bounds the se
ond parenthesis in (41) by

exp

�

�

jlj

�(1� �)

�

1

m

1

+

1

m

2

�

�

: (43)

Combining (42) and (43) 
ompletes the veri�
ation of inequality (40) above, and hen
e the proof

of the lemma.
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A.2 Appendix for se
tion 5.2

Here we provide the proof of Lemma 5.3, the analysis of the pre-pro
essing random walk (PRW),

whi
h was omitted from the main text.

Proof of Lemma 5.3: By removing X \Y from both X and Y and repla
ing b by b� a(X \Y ),

we may assume that X \ Y = ;. Moreover, by s
aling all the a

i

and b we may assume that

M = max

i

a

i

= 1. Finally, we may assume that b � 3� sin
e otherwise there are no pairs (X;Y )

satisfying the hypothesis of the lemma.

De�ne

F = f(X

0

; Y

0

) : a(X

0

) � b�� or a(Y

0

) � b��g;

E = f(X

0

; Y

0

) : a(X

0

) � b� 2� and a(Y

0

) � b� 2�g:

Note that F 
ontains all full pairs (X

0

; Y

0

), and E ;F are disjoint. Also, de�ne the hitting times

T = max

(X

0

;Y

0

)2F

E(number of PRW steps to hit E starting at (X

0

; Y

0

));

U = min

(X

0

;Y

0

)2E

E(number of PRW steps to hit F starting at (X

0

; Y

0

)):

Now we 
laim that the lemma will follow if we 
an show:

(i) T � �m for some 
onstant � > 0;

(ii) U=T � � for some 
onstant � > 0.

To see this, set the length of the PRW to be C

1

m = 4�m, and let (X

t

; Y

t

) denote the sequen
e

of pairs visited by the PRW, with (X

0

; Y

0

) = (X;Y ) 2 F . Let T

0

be the �rst time t at whi
h

(X

t

; Y

t

) 2 E (or T

0

= C

1

m if the walk ends before this o

urs); then let U

1

be the �rst t for whi
h

(X

T

0

+t

; Y

T

0

+t

) 2 F , and T

1

the �rst t for whi
h (X

T

0

+U

1

+t

; Y

T

0

+U

1

+t

) 2 E . Continue de�ning a

sequen
e of hitting times U

2

; T

2

; U

3

; T

3

; : : : in this way until the end of the walk is rea
hed. Note

that the PRW is not full for at least

P

i

U

i

steps, and that

P

i�0

T

i

+

P

i�1

U

i

= 4�m is the total

walk length. Now from fa
ts (i) and (ii) we have

E

�

X

i�0

T

i

�

1

�

X

i�1

U

i

�

= E

�

T

0

+

X

i�1

(T

i

�

1

�

U

i

)

�

� �m:

An appli
ation of Markov's inequality then ensures that

P

i�0

T

i

�

1

�

P

i�1

U

i

� 2�m with probability

at least

1

2

. Conditioning on this event we have (1 +

1

�

)

P

U

i

� 2�m, and thus the proportion of

steps during whi
h the PRW is not full is at least 1=2(1 +

1

�

), a 
onstant. The lemma now follows

easily.

It remains to verify fa
ts (i) and (ii) above: these are immediate 
onsequen
es of the following

two 
laims. Let �

2

=

1

m

P

i2X[Y

a

2

i

be the se
ond moment of the item weights, and note that

�

2

� 1=m sin
e max

i

a

i

= 1.

Claim 1: T � 


1

=�

2

for a 
onstant 


1

> 0.

Claim 2: U � 


2

=�

2

for a 
onstant 


2

> 0.

Proof of Claim 1: Choose an initial pair (X

0

; Y

0

) 2 F that maximizes the expe
ted time until

the PRW hits E , and let (X

t

; Y

t

) denote the PRW starting at (X

0

; Y

0

). We may assume w.l.o.g.

that a(X

0

) > a(Y

0

), so that a(X

0

) 2 [b ��; b℄ and T is the expe
ted time until a(X

t

) � b � 2�.

We estimate T by 
oupling the PRW with the un
onstrained random walk, whi
h behaves exa
tly
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like the PRW ex
ept that the 
onstraint

P

a

i

� b is ignored. (Thus it is just simple random walk

on an m-dimensional hyper
ube with holding probability

1

2

at every step.) Write (

b

X

t

;

b

Y

t

) for the

un
onstrained random walk, with (

b

X

0

;

b

Y

0

) = (X

0

; Y

0

), and 
onsider the �rst time t =

b

T at whi
h

ja(

b

X

t

)�a(X

0

)j � 2�. Now a(

b

X

t

) is a supermartingale up to time

b

T , sin
e E(a(

b

X

t+1

)�a(

b

X

t

)j

b

X

t

) =

1

2m

(a(

b

Y

t

)�a(

b

X

t

)) < 0. Thus with 
onstant probability a(

b

X

b

T

) � a(

b

X

0

)� 2�, and so (X

b

T

; Y

b

T

) 2 E .

Hen
e T is bounded above by a 
onstant times E(

b

T ). But we also have E((a(

b

X

t+1

)�a(

b

X

t

))

2

j

b

X

t

) =

1

2m

P

i

a

2

i

=

�

2

2

. So E(

b

T ) is the expe
ted time for a supermartingale with in
rements bounded

by �1 and with se
ond moment �

2

=2 to move a distan
e �2� from its initial value. A standard

appli
ation of the martingale Optional Stopping Theorem (see, e.g., [5, Se
tion 12.5℄), now yields

that E(

b

T ) �

(4�+1)

2

�

2

=2

= 


1

=�

2

for a positive 
onstant 


1

. This 
ompletes the proof of Claim 1.

Proof of Claim 2: As above let (X

t

; Y

t

) denote the PRW, but now with (X

0

; Y

0

) 2 E . We follow

the random variable Z

t

= a(X

t

)�a(Y

t

), whi
h always has a drift towards 0 (i.e., E(Z

t+1

�Z

t

jX

t

)�

Z

t

� 0 for all t). Note that initially jZ

0

j � 2(b � 2�) � V , where V = a(X

t

) + a(Y

t

) =

P

i

a

i

is

independent of t. And when (X

t

; Y

t

) 2 F we have jZ

t

j � 2(b��)� V . Thus U is bounded below

by the minimum expe
ted time for jZ

t

j to in
rease by 2� from its initial value. But the se
ond

moment is E((Z

t+1

� Z

t

)

2

jX

t

) =

1

2m

P

i

(2a

i

)

2

= 2�

2

, so by a similar appli
ation of the Optional

Stopping Theorem we 
on
lude that U � 


2

=�

2

, as 
laimed.

This 
ompletes the veri�
ation of Claims 1 and 2, and hen
e the proof of the lemma.

A.3 Appendix for se
tion 6.2

Here we prove the existen
e of strongly balan
ed permutations, as 
laimed in Lemma 6.5.

Proof of Lemma 6.5: First suppose that

P

m

i=1

w

i

= 0. We will show that, in this 
ase, there

exists a strongly 8d

2

{balan
ed permutation �. Let L be the set 
ontaining the 4d indi
es i with

the largest values of w

j

i

, and the 4d indi
es i with the largest values of �w

j

i

, for ea
h j � d. Then

jLj � 8d

2

.

The permutation � we 
onstru
t will satisfy f�(m); : : : ; �(m� jLj+1)g = L. It will be enough

to 
he
k that the strong balan
e 
ondition holds for 1 � k � m� jLj. It suÆ
es to show that, for

all j � d and k � m� jLj, we have

�s

j+

�

k

X

i=1

w

j

�(i)

� s

j�

; (44)

where

s

j+

�

X

i2L

(w

j

i

)

+

; s

j�

�

X

i2L

(w

j

i

)

�

:

We will need the Grinberg-Sevast'yanov result (Lemma 6.2), whi
h states that for any set of

ve
tors x

1

; : : : ; x

n

in R

d

with

P

i

x

i

= 0, there exists a permutation � 2 S

n

su
h that

k

X

i=1

x

�(i)

2 d� 
onvfx

1

; : : : ; x

n

g for 1 � k � n.

Note that the permutation �

0

de�ned by �

0

(i) = �(n+ 1� i) for all i satis�es

k

X

i=1

x

�

0

(i)

2 �d� 
onvfx

1

; : : : ; x

n

g for 1 � k � n.
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Let S

1

= f1; : : : ;mg � L, let m

0

= m� jLj, and let �

1

be a permutation on S

1

su
h that

k

X

i=1

(w

�

1

(i)

� �

1

) 2 �d� 
onvfw

i

� �

1

: i 2 S

1

g;

for all k, where �

1

=

1

m

0

P

i2S

1

w

i

. Suppose that m

0

is even and m

0

= 2r; if m

0

is odd the proof is

similar. Now, let S

2

= f�

1

(r + 1); : : : ; �

1

(m

0

)g, and let �

2

be a permutation on S

2

su
h that

k

X

i=1

(w

�

2

(i)

� �

2

) 2 d� 
onvfw

i

� �

2

: i 2 S

2

g; (45)

where �

2

=

1

r

P

i2S

2

w

i

. De�ne the permutation � by

�(i) =

(

�

1

(i); if i � r;

�

2

(i� r); if r < i � m

0

.

We must 
he
k that � satis�es (44). Fix j. W.l.o.g. s

j+

� s

j�

, so that �

j

1

� 0. For k � r we

have

k

X

i=1

w

j

�(i)

=

k

X

i=1

w

j

�

1

(i)

�

k

X

i=1

(w

j

�

1

(i)

� �

j

1

)

� �d max

1�i�m

0

fw

j

i

� �

j

1

g

� �d max

1�i�m

0

fw

j

i

g

� �s

j+

=4

� �s

j+

;

and

k

X

i=1

w

j

�(i)

=

k

X

i=1

w

j

�

1

(i)

= k�

j

1

+

k

X

i=1

(w

�

1

(i)

� �

j

1

)

� r�

j

1

+ d max

1�i�m

0

f�(w

j

i

� �

j

1

)g

=

1

2

(s

j�

� s

j+

) + d max

1�i�m

0

f�w

j

i

g+ d�

j

1

�

1

2

(s

j�

� s

j+

) + (

1

4

s

j�

) + (

1

4

s

j+

)

=

3

4

s

j�

�

1

4

s

j+

� s

j�

�

1

4

s

j+

: (46)

(We will need the extra �

1

4

s

j+

in the se
ond part of the proof.) For r < k � 2r we have

k

X

i=1

w

j

�(i)

=

r

X

i=1

w

j

�

1

(i)

+

k�r

X

i=1

w

j

�

2

(i)

: (47)
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Now if �

j

2

< 0 then the 
onditional expe
tation of

P

k

i=1

w

j

�(i)

given �

1

is at least �s

j+

+s

j�

. Hen
e

we must have

k

X

i=1

w

j

�(i)

� �s

j+

+ s

j�

� dmax

i2S

2

f�(w

j

i

� �

j

2

)g

� �s

j+

+ s

j�

� dmax

i2S

2

f�w

j

i

g

� �s

j+

+ s

j�

� s

j�

=4

� �s

j+

:

On the other hand, if �

j

2

� 0 the right-hand side of (47) 
an be bounded below as follows:

r

X

i=1

w

j

�

1

(i)

+

k�r

X

i=1

w

j

�

2

(i)

=

"

r

X

i=1

w

j

�

1

(i)

+ (k � r)�

j

2

#

+

k�r

X

i=1

(w

j

�

2

(i)

� �

j

2

)

�

�

1

2

(s

j�

� s

j+

)� d max

1�i�m

0

fw

j

i

� �

j

1

g

�

� dmax

i2S

2

f�(w

j

i

� �

j

2

)g

�

�

1

2

(s

j�

� s

j+

)� d max

1�i�m

0

fw

j

i

g

�

� dmax

i2S

2

f�w

j

i

g � d�

j

2

�

h

1

2

(s

j�

� s

j+

)� s

j+

=4

i

� s

j�

=4� s

j�

=4

= �

3

4

s

j+

� �s

j+

:

For a 
orresponding upper bound, we 
an write

k

X

i=1

w

j

�(i)

�

r

X

i=1

w

j

�

1

(i)

+ (k � r)�

j

2

+minfd; k � rgmax

i2S

2

fw

j

i

� �

j

2

g: (48)

If �

j

2

� 0, the right-hand side of (48) is bounded above by

(s

j�

� s

j+

) + dmax

i2S

2

fw

j

i

g � (s

j�

� s

j+

) + s

j+

=4 � s

j�

:

If �

j

2

< 0, the right-hand side of (48) is bounded above by

r

X

i=1

w

j

�

1

(i)

+minfd; k � rgmax

i2S

2

fw

j

i

g � (s

j�

� s

j+

=4) + s

j+

=4 � s

j�

;

where in the �rst inequality we have used equation (46).

Putting all the above together we see that � is strongly 8d

2

{balan
ed. Furthermore, in light

of (44) we know also that, for all k and j, there exists a set of indi
es S � f1; : : : ; kg, with

jSj � k + 8d

2

, su
h that

P

k

i=1

w

j

�(i)

and

P

i2S

w

j

�(i)

have opposite signs.

Now let fw

i

g

m

i=1

be arbitrary. From the above, there exists a permutation � whi
h is strongly

8d

2

{balan
ed with respe
t to the sequen
e fw

i

� �g

m

i=1

, where � =

1

m

P

m

i=1

w

i

. We 
laim that � is

also strongly 16d

2

{balan
ed with respe
t to the original sequen
e fw

i

g

m

i=1

. Fix k and j, and de�ne

�

j

=

1

m

P

m

i=1

w

j

i

. W.l.o.g. �

j

� 0. Then there exists S � f1; : : : ; kg with jSj � k + 8d

2

su
h that

X

i2S

w

j

�(i)

� k�

j

�

X

i2S

w

j

�(i)

� jSj�

j

� 0:
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In addition, there exists S � f1; : : : ; kg, with jSj � k+8d

2

, su
h that

P

i2S

w

j

�(i)

� jSj�

j

. It follows

that, for some S

0

� S with jS

0

j = k, we have

P

i2S

0

w

j

�(i)

� k�

j

. Sin
e jS

0

� f1; : : : ; kgj � 16d

2

this


ompletes the proof.
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