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Abstract

The paper presents a randomised algorithm which evaluates the partition function of an

arbitrary ferromagnetic Ising system to any speci�ed degree of accuracy. The running

time of the algorithm increases only polynomially with the size of the system (i.e., the

number of sites) and a parameter which controls the accuracy of the result. Further

approximation algorithms are presented for the mean energy and the mean magnetic

moment of ferromagnetic Ising systems.

The algorithms are based on Monte Carlo simulation of a suitably de�ned ergodic Markov

chain. The states of the chain are not, as is customary, Ising spin con�gurations, but

spanning subgraphs of the interaction graph of the system. It is shown that the expec-

tations of simple operators on these con�gurations give numerical information about the

partition function and related quantities.

The performance guarantees for the algorithms are rigorously derived, and rest on the

fact that the Markov chain in question is rapidly mixing, i.e., converges to its equilibrium

distribution in a polynomial number of steps. This is apparently the �rst time that rapid

mixing has been demonstrated at all temperatures for a Markov chain related to the Ising

model.

Keywords: The Ising model, statistical physics, ferromagnetism, spin-glasses, parti-

tion function, #P-completeness, approximation algorithms, Markov chains, rapid mixing,

Monte Carlo simulation.

AMS subject classi�cations: 05C85, 60J10, 60J20, 60K35, 68Q20, 68Q25, 82B20,

82B31, 82B80.



1 Summary

This paper is concerned with computational solutions to a classical combinatorial problem

of statistical physics. Generally known as the Ising model, the problem has been the

focus of much attention in the physics and mathematics communities since it was �rst

introduced by Lenz [24] and Ising [14] in the early 1920s. We will not present a detailed

historical account here: a very readable survey is given by Cipra [6], while Welsh [30] sets

the Ising model in the context of other combinatorial problems in statistical physics.

The problem is easily stated. Consider a collection of sites [n] = f0; 1; : : : ; n � 1g,

each pair i; j of which has an associated interaction energy V

ij

. In most cases of physical

interest, the set E of pairs with non-zero interaction energies forms a regular lattice

graph ([n]; E). A con�guration is an assignment of positive (�

i

= +1) and negative

(�

i

= �1) spins to each site i 2 [n]. The energy of a con�guration � = (�

i

) is given

by the Hamiltonian

H(�) = �

X

fi;jg2E

V

ij

�

i

�

j

�B

X

k2[n]

�

k

;

where B is an external �eld.

In the case where all interaction energies are non-negative, such a system models the

behaviour of a ferromagnet ; in fact, it was towards an understanding of spontaneous

magnetization that the model was �rst conceived. However, the Ising model has since

become a powerful paradigm for the investigation of more general cooperative systems in

which short-range interactions between elements can give rise to long-range order.

The central problem is to compute the partition function

Z = Z(V

ij

; B; �) =

X

�

exp(��H(�));

where � > 0 is related to the temperature and the sum is over all possible con�gura-

tions � . Almost all the physical properties of the system can be computed from knowledge

of Z . Essentially, Z is the normalising factor in the calculation of probabilities: accord-

ing to the fundamental theory of statistical mechanics, the probability that the system

in equilibrium is found in con�guration � is exp(��H(�))=Z . Moreover, certain loga-

rithmic derivatives of Z correspond to quantities such as the mean energy and the mean

magnetic moment. Singularities in these derivatives generally correspond to phase tran-

sitions, when a small change in a parameter has an observable e�ect on the macroscopic

properties of the system.

The search for e�cient computational solutions to these problems has proved ex-

tremely hard and has generated a vast body of literature. A major breakthrough was

achieved in the early 1960s by Kasteleyn [19] and Fisher [11], who reduced the problem
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of computing Z for any planar Ising system (i.e., one whose graph ([n]; E) of non-zero

interactions is planar) to the evaluation of a certain determinant. This must rank as one

of the highlights in the �eld of combinatorial algorithms. It remains the state of the art

as far as exact solutions are concerned; in particular, it does not appear to generalise to

non-planar systems. On the other hand, a huge amount of computational e�ort is poured

into numerical solutions of the Ising model for three-dimensional regular lattices and

other non-planar systems. The problem is that the methods used here, while ingenious,

generally lack a rigorous theoretical base, and rely for their validity largely on physical

intuition.

In this paper, we exhibit what we believe to be the �rst provably e�cient approxi-

mation algorithm for the partition function of an arbitrary ferromagnetic Ising system.

By \e�cient" here we mean that the algorithm is guaranteed to run in time polynomial

in the number of sites n. The algorithm is a fully polynomial randomised approximation

scheme (fpras), i.e., it will produce solutions which, with very high probability, fall within

arbitrarily small error bounds speci�ed by the user, the price of greater accuracy being a

modest increase in runtime. We also show that such an algorithm is essentially the best

one can hope for, in the sense that the existence of an e�cient exact algorithm for the

problem, or even of an e�cient approximation algorithm for the non-ferromagnetic case,

would have devastating and far-reaching consequences in the theory of computation.

From the point of view of theoretical computer science, our result provides a new

example of a signi�cant combinatorial enumeration problem which is #P-complete, and

hence apparently intractable in exact form, but for which an e�cient approximation

algorithm exists. This is an intriguing class of problems, and includes the problems of

computing the volume of a convex body [9], the partition function of a monomer-dimer

system [16] and the permanent of a large class of 0{1 matrices [16]. Our algorithm

is also of interest in its own right as a further application of the general technique of

simulating an ergodic stochastic process whose rate of convergence can be analysed. This

approach has recently attracted much attention, and its full algorithmic potential is only

now becoming apparent.

The idea is the following. In order to compute weighted combinatorial sums, such as

the Ising partition function, it is often enough to be able to sample con�gurations � at

random with probabilities proportional to their weights, in this case exp(��H(�)). This

can be achieved by setting up an ergodic Markov chain whose states are con�gurations

and whose transitions correspond to small local perturbations. If the chain is designed so

that the equilibrium distribution to which it converges is the desired weighted distribution

over con�gurations, then we get a random sampling procedure by simulating the chain for

some number of steps and outputting the �nal state. For such a procedure to be e�cient,

the chain must be rapidly mixing in the sense that it gets very close to equilibrium after

a small (i.e., polynomial) number of steps. This is a highly non-trivial requirement,
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since the number of states is exponentially large. Recent developments have provided

appropriate analytical tools for establishing the rapid mixing property for chains of this

kind [27, 29, 7, 28].

The Markov chain simulation approach to the Ising model is far from new: under

the name of the Monte Carlo method, this technique has been applied extensively to

a whole range of problems in statistical physics (see, e.g., [4]). The problem with the

approach, however, is that it appears very di�cult to de�ne a Markov chain on Ising spin

con�gurations � which is rapidly mixing; indeed, the chains which are frequently used

in practical simulation studies clearly do not have this property.

We overcome this obstacle by transforming the problem to an entirely new domain,

where the con�gurations are spanning subgraphs of the interaction graph ([n]; E). Each

subgraph has an \energy" which is determined by weights attached to its edges and

vertices. Although there is no direct correspondence between con�gurations in the two

domains, and the subgraph con�gurations have no obvious physical signi�cance, the two

partition functions are, remarkably, very closely related. Moreover, and crucially, there is

a natural Markov chain on the subgraphs with the appropriate equilibrium distribution

which is rapidly mixing. Thus the Markov chain approach can be made to work e�ciently

in the new domain.

The above transformation is a classical result [26], often known as the \high-

temperature expansion" of the Ising model partition function. However, the idea of

viewing the graphs in this expansion as a statistical mechanical system which forms the

basis of a Monte Carlo simulation appears to be new. To the best of our knowledge, our

results represent the �rst rigorous proof of rapid mixing at all temperatures for a Markov

chain related to the Ising model. Moreover, this property is entirely independent of the

interaction topology and relies on no assumptions of any kind. We therefore believe that

the chain deserves further investigation as a potentially powerful experimental tool.

The mechanism by which we use sampling of subgraph con�gurations to compute the

partition function is perhaps of independent interest. This is achieved by subjecting an

Ising system with �xed interactions and at a �xed temperature to varying external �elds.

By observing a small number of con�gurations, randomly selected at appropriately chosen

values of the �eld, we are able to get an accurate estimate of Z . It is signi�cant that

this idea is motivated by combinatorial considerations and does not correspond to any

obvious physical intuition.

As mentioned earlier, it is often derivatives of the partition function, rather than

the function itself, which are of primary interest. For example, two important quan-

tities are the mean energy E = �@(lnZ)=@� , and the mean magnetic moment M =

�

�1

@(lnZ)=@B . Our approximation algorithm for Z says nothing about our ability to

compute these quantities accurately. However, it turns out that both E and M can be
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expressed in terms of expectations of certain simple operators on con�gurations in the

subgraphs domain. Thus estimates of E and M can be read o� from our con�guration

sampling algorithm, though again we may have to vary the external �eld in order to max-

imise the accuracy of the statistical experiment. As a result, we get a fpras for both E

and M as well. We regard this as con�rmation that our approach to the Ising model is

robust and computationally e�ective.

The remainder of the paper is organised as follows. In Section 2 we describe the

transformation of the Ising model to the new domain in which con�gurations are span-

ning subgraphs of the interaction graph. Section 4 is devoted to a discussion of the Markov

chain on these con�gurations, and in particular to a proof that it is rapidly mixing. This

fact is used in Section 3 to construct a fpras for the partition function of an arbitrary

ferromagnetic Ising system, and in Section 5 to construct e�cient approximation algo-

rithms for the mean energy and the mean magnetic moment. Finally, in Section 6 we

present strong evidence that our results are, in a precise theoretical sense, best possible.

2 The spins-world and subgraphs-world

Recall that our primary aim is to construct an algorithm for the following problem:

Instance: A real symmetric matrix (V

ij

: i; j 2 [n]) of interaction energies, a

real number B (the external �eld), and a positive real number � .

Output: The Ising partition function

Z = Z(V

ij

; B; �) =

X

�2f�1;+1g

n

exp(��H(�)); (1)

where the Hamiltonian H(�) is given by H(�) = �

P

fi;jg2E

V

ij

�

i

�

j

�B

P

k2[n]

�

k

,

and E is the set of unordered pairs fi; jg with V

ij

6= 0.

Our algorithm will address the ferromagnetic case of the Ising model, which is char-

acterised by the interaction energies V

ij

being non-negative. Furthermore, rather than

attempting to evaluate the partition function exactly, we shall content ourselves with a

close approximation. The phrase \close approximation" will be given a precise meaning

in the next section.

One strategy which has been applied successfully to problems of this type, and has,

for example, been used to estimate the partition function of a general monomer-dimer

system [27, 16], involves the simulation of an appropriately de�ned Markov chain. A

direct application of this strategy to the Ising partition function would proceed as follows.

View the con�gurations of the Ising system, namely the 2

n

possible spin vectors � 2

f�1;+1g

n

, as the states of a Markov chain. Choose transition probabilities between
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states so that the Markov chain is ergodic and so that, in the stationary distribution,

the probability of being in state � is Z

�1

exp(��H(�)). A reasonable way to achieve

this, and one which is often used in practice, is to allow transitions to occur between spin

con�gurations which di�er in just one component, and choose transition probabilities

according to the Metropolis rule [20]. If the resulting Markov chain is rapidly mixing,

that is, if it converges rapidly to the stationary distribution regardless of the choice of

initial state, then it can be used e�ectively to sample con�gurations � from a distribution

which is close to the stationary distribution. By collecting enough sample con�gurations,

using di�erent values of B and � , it should then be possible to estimate the partition

function Z with good accuracy.

Unfortunately, it transpires that the Markov chain described above, and which we refer

to as the spins-world process, is not rapidly mixing. It is well known that ferromagnetic

Ising systems typically exhibit a phase transition at a certain value of the parameter � ;

for values of � above this critical value, the system settles into a state in which there is a

preponderance of spins of one or other sign. Transitions between the majority +1 states

and majority �1 states occur very infrequently, simply because the stationary distribu-

tion assigns small total weight to the con�gurations with balanced spins. (Informally,

the state space has a constriction separating the majority +1 states and the majority

�1 states.) Although it could be argued that the barrier to rapid mixing just described

is somewhat trivial, there exist other more subtle barriers that apparently cannot be

surmounted.

The problem caused by the absence of rapid mixing in the spins-world process can be

circumvented by simulating a di�erent Markov chain, which we refer to as the subgraphs-

world process. The two Markov chains are structurally very di�erent; furthermore, the

subgraphs-world process has, as far as we are aware, no direct physical signi�cance.

However, the subgraphs-world process has a close connection with the Ising partition

function and, crucially in the current application, is rapidly mixing. For the time being,

we content ourselves with describing the subgraphs-world con�gurations and associated

partition function. The description of the subgraphs-world process itself is deferred to

Section 4.

We say that a subgraph is spanning if it includes all the vertices of the parent graph.

(Note that spanning subgraphs are not in general connected.) The subgraphs-world

con�gurations are spanning subgraphs of the interaction graph ([n]; E). In the sequel we

shall drop the adjective \spanning" where it seems safe to do so, and frequently identify a

spanning subgraph ([n];X) with the set X of edges which de�ne it. To simplify notation,

let

�

ij

= tanh �V

ij

and � = tanh �B: (2)
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Each con�guration X � E is assigned a weight according to the formula

w(X) = �

jodd(X)j

Y

fi;jg2X

�

ij

; (3)

where the notation odd(X) stands for the set of all odd-degree vertices in the graph X .

The subgraphs-world partition function is simply

Z

0

=

X

X�E

w(X): (4)

The above sum is generally known as the \high-temperature expansion."

It is a surprising fact that the spins- and subgraphs-world partition functions Z and Z

0

are related in a simple way. De�ne

A = (2 cosh �B)

n

Y

fi;jg2E

cosh �V

ij

; (5)

and note that A is an easily computed function of the parameters that specify the Ising

system. The following classical result [26] relates the two partition functions.

Theorem 1 Z = AZ

0

.

In recognition of the central role it plays in our algorithm, we present a full proof of this

result below.

Theorem 1 prompts us to consider a statistical mechanical system whose con�gu-

rations are spanning subgraphs of ([n]; E). We shall de�ne a Markov chain whose

states are these con�gurations, and whose stationary distribution assigns probability

�(X) = w(X)=Z

0

to con�guration X . This subgraphs-world process will be analysed

in detail in Section 4, and shown to be rapidly mixing. Hence it will provide us with

an e�cient means of sampling subgraphs-world con�gurations with probabilities roughly

proportional to their weights. Since Z

0

is a weighted sum of the con�gurations, we might

expect such a procedure to give us useful information about Z

0

itself, and hence about the

original spins-world partition function Z . The next section con�rms that this is indeed

the case.

Proof of Theorem 1 Taking equation (1) as a starting point, apply the identity e

x

=

cosh x (1 + tanh x) to recast the partition function in the form

Z = 2

�n

A

X

�2f�1;+1g

n

Y

fi;jg2E

f1 + tanh(�V

ij

�

i

�

j

)g

Y

k2[n]

f1 + tanh(�B�

k

)g;

where A is de�ned in (5). Note that the spin variables �

k

disappear from the expression

for A because �

k

= �1 for all k , and cosh x is an even function. Similarly, since tanh x
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is an odd function, the spin variables may be brought outside allowing Z to be rewritten

as

Z = 2

�n

A

X

�

Y

fi;jg2E

f1 + �

i

�

j

tanh �V

ij

g

Y

k2[n]

f1 + �

k

tanh �Bg:

Expanding the two products, and changing variables according to (2), we obtain

Z = 2

�n

A

X

�

X

X�E

 

Y

fi;jg2X

�

ij

�

i

�

j

!

X

U�[n]

 

Y

k2U

��

k

!

;

which on interchanging the order of summation yields

Z = 2

�n

A

X

X�E

X

U�[n]

X

�

W (U;X;�); (6)

where

W (U;X;�) =

Y

k2U

��

k

Y

fi;jg2X

�

ij

�

i

�

j

:

Now we claim that

P

�

W (U;X;�) = 0 unless X is a graph in which all vertices in U

have odd degree, and all vertices in [n]� U have even degree. To see this, �x U and X ,

and let k 2 [n] be such that either k 2 U and has even degree in X or k 2 [n] � U

and has odd degree in X . For any vector � 2 f�1;+1g

n

, let �

(k)

denote the vector

derived from � by inverting the sign of the k th component. Then the terms W (U;X;�)

and W (U;X;�

(k)

) are equal in size but opposite in sign. Hence the terms of the sum

P

�

W (U;X;�) cancel out in pairs.

Conversely, suppose that X is a graph in which all vertices in U have odd degree, and

all vertices in [n] � U have even degree. Then, for all � 2 f�1;+1g

n

and k 2 [n],

the terms W (U;X;�) and W (U;X;�

(k)

) are equal. Thus the value of W (U;X;�) is

independent of � and

X

�

W (U;X;�) = 2

n

�

jU j

Y

fi;jg2X

�

ij

= 2

n

w(X):

Finally, substituting for

P

�

W (U;X;�) in equation (6) we obtain the identity Z =

A

P

X�E

w(X), as required.

3 Estimating the partition function

The aim of this section is to present an e�cient approximation algorithm for computing

the partition function Z of a ferromagnetic Ising system. The section is structured as

follows. First, we de�ne precisely what we mean by an e�cient approximation algorithm.
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Then we state, without proof, the properties of the sampling procedure for subgraphs-

world con�gurations which plays a key role in our algorithm: the construction and analysis

of this procedure, based on a suitably de�ned Markov chain, is left to the next section.

Finally, we explain how to use samples produced by this procedure to obtain a reliable

approximation of Z .

Our de�nition of e�cient approximation algorithm is a very demanding one, following

Karp and Luby [18] and others. For non-negative real numbers a, ~a, �, we say that ~a

approximates a within ratio 1 + � if a(1 + �)

�1

� ~a � a(1 + �). Let f be any function

from problem instances to real numbers. (The Ising partition function is an example of

such a function.) A randomised approximation scheme for f is a probabilistic algorithm

which, when presented with an instance x and a real number � 2 (0; 1], outputs a number

which, with high probability, approximates f(x) within ratio (1 + �). We shall take the

phrase \with high probability" to mean with probability at least 3=4. This is because a

failure probability of 1=4 can be reduced to any desired value � > 0 by performing only

O(log �

�1

) trials and taking the median of the results [17]. (This claim is also justi�ed in

the proof of Lemma 3 below.) Of course, it is not enough just to obtain an accurate result

with high reliability; the result must also be obtained e�ciently. Accordingly, we call an

approximation scheme fully polynomial if it runs in time polynomial in �

�1

and the size

of the problem instance x. The reader will appreciate that a fully polynomial randomised

approximation scheme, or fpras, embodies a strong notion of e�cient approximation.

With an eye to simplicity of presentation, we shall not concern ourselves with the errors

which arise through the inexact nature of computer arithmetic. Instead, we shall assume

a computational model in which real arithmetic is performed with perfect accuracy, and in

which arithmetic operations and standard functions, such as exp, are charged at unit cost.

After all, we are aiming only at an approximate evaluation of the partition function, and

it will become apparent that our technique does not rely on intermediate computations

being carried out to untoward accuracy. Again with simplicity in mind, we will take n, the

number of sites, as the size of the problem instance, even though the number of parameters

to the model would be a more reasonable measure from an information-theoretic point of

view.

As we have already mentioned, our approximation algorithm for Z is based on a

sampling procedure for subgraphs-world con�gurations. We must now be more pre-

cise about the properties of the sampling procedure. For a ferromagnetic Ising sys-

tem h�

ij

; �i, with �

ij

and � as de�ned in equation (2) of the previous section, let 


denote the set of subgraphs-world con�gurations, i.e., the set of spanning subgraphs

of the interaction graph ([n]; E), and de�ne the probability distribution � over 
 by

�(X) = w(X)=

P

X

0
w(X

0

) = w(X)=Z

0

, where w is the weight function de�ned in equa-

tion (3). (Note that, since the system is ferromagnetic, w(X) � 0 for all X 2 
, so � is

a probability distribution.) We wish to formalise the notion of an algorithm which, given
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a ferromagnetic system, selects a con�guration from a distribution which is \close to" � .

A generator for subgraphs-world con�gurations is a probabilistic algorithm which takes

as input a ferromagnetic Ising system in the form h�

ij

; �i, plus a positive real tolerance � ,

and outputs an element of 
 drawn from a distribution p satisfying

kp � �k � �:

Here k � k denotes variation distance, i.e.,

kp � �k =

1

2

X

X2


jp(X) � �(X)j = max

A�


jp(A)� �(A)j:

It turns out to be possible to construct an e�cient generator for subgraphs-world

con�gurations, as the following theorem states.

Theorem 2 There exists a generator for subgraphs-world con�gurations which, on inputs

h�

ij

; �i and � , runs in time bounded by a polynomial in n, �

�1

and log �

�1

. Speci�cally,

the runtime of the generator is O(m

2

�

�8

(log �

�1

+ m)), where m = jEj is the number

of non-zero interactions.

Remarks (i) The presence of �

�1

in the time bound implies that the generator is

ine�cient for systems with a very small external �eld. This dependence on the �eld is

inessential and can be removed with a little extra work (see Theorem 10 of Section 5).

(ii) E�cient generators for combinatorial structures, of which the above is a particular

example, are discussed in a general framework in [27, 29].

The construction of a generator with the above properties, based on simulation of a

suitably de�ned Markov chain, is described and justi�ed in detail in the next section. For

the moment we will simply assume Theorem 2 and concentrate on showing how samples

produced by the generator can be used to obtain an e�cient approximation algorithm for

the partition function Z(V

ij

; B; �). Our approach, which we now describe, is an instance

of a computational technique which will be employed repeatedly in this paper.

Suppose we want to estimate the value of some physical quantity associated with a

ferromagnetic Ising system. The �rst step is to express the quantity as the expectation

of a suitably de�ned random variable over con�gurations in the subgraphs-world. Then

we can estimate the quantity by sampling con�gurations at random, with the aid of the

generator of Theorem 2, and computing the sample mean.

More precisely, let f be a non-negative real-valued function de�ned on the set 
 of

subgraphs-world con�gurations of a ferromagnetic Ising system. Viewing 
 as a sample
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space with probability distribution �(X) = w(X)=Z

0

, the function f becomes a random

variable with expectation

E(f) =

1

Z

0

X

X2


w(X)f(X):

It is a simple matter to get an estimate of E(f) using the generator of Theorem 2:

construct an independent sample fX

i

g of con�gurations, of size s, and compute the

sample mean s

�1

P

i

f(X

i

). Provided the tolerance input to the generator is small, this

will be an almost unbiased estimator of E(f). By making the sample size s large enough,

we can achieve any desired degree of accuracy with reasonable con�dence. Moreover,

we may drastically reduce the probability that the estimator falls outside the acceptable

range of accuracy by repeating the entire process t times and taking the median of the t

results.

The e�ciency of such an experiment depends on how large the numbers s and t

must be in order to achieve a speci�ed accuracy with speci�ed con�dence. This in turn

depends on the variance of the random variable f , or more precisely on the quantity

max(f)=E(f), where max(f) denotes the maximum value of f on 
. The next lemma

quanti�es these e�ects; the proof is straightforward and is left till the end of the section.

Lemma 3 Let f be a non-negative real-valued random variable de�ned on the set 


of subgraphs-world con�gurations of a ferromagnetic Ising system, and let � , � be real

numbers with 0 < � � 1 and 0 < � � 1=2. Then there is an experiment of the form

described above which uses a total of 504�

�2

dlg �

�1

emax(f)=E(f) samples from the gen-

erator, each with input h�

ij

; �i and tolerance � = � E(f)=8max(f), and produces an

output Y satisfying

Pr

�

Y approximates E(f) within ratio 1 + �

�

� 1� �:

Lemma 3 makes it clear that, whenever we employ the above technique, we will

need to ensure that the ratio max(f)=E(f) is not too large for the random variable f

under consideration. In particular, our criterion for e�ciency demands that the ratio be

bounded by a polynomial function of n, the size of the system.

We turn now to an explanation of how the technique can be applied to compute the

partition function Z(V

ij

; B; �). Recall from Theorem 1 of the previous section that Z =

AZ

0

, where A is simple to evaluate directly. We therefore concentrate on computing Z

0

.

Our �rst step is to write Z

0

explicitly as a function of � as follows:

Z

0

� Z

0

(�) =

X

X�E

�

jodd(X)j

Y

fi;jg2X

�

ij

=

bn=2c

X

k=0

c

k

�

2k

: (7)

10



Note that only even powers of � need be included in the sum since the number of

odd-degree vertices in a subgraph X is necessarily even. We are thus viewing Z

0

as

a polynomial in �

2

with coe�cients

c

k

=

X

X : jodd(X)j=2k

Y

fi;jg2X

�

ij

: (8)

In the ferromagnetic case all the c

k

are positive, so Z

0

(�) is an increasing function of �.

Clearly the coe�cients c

k

actually depend on the �

ij

, and hence on the interactions V

ij

of the system and on the parameter � . However, in what follows we will regard these

quantities, and therefore also the coe�cients, as �xed, and consider what happens when �

is varied. In spins-world terminology, this corresponds to subjecting a system with �xed

interactions and at a �xed temperature to a varying external �eld. Our task is to evaluate

the partition function at a speci�ed external �eld value B . By the above discussion, this

is reduced to evaluating the polynomial Z

0

(�) =

P

c

k

�

2k

at the point � = tanh�B .

Our starting point is the observation that the value of Z

0

(�) at � = 1 can be com-

puted directly. To see this, note from (7) and (8) that

Z

0

(1) =

bn=2c

X

k=0

c

k

=

X

X�E

Y

fi;jg2X

�

ij

=

Y

fi;jg2E

(1 + �

ij

): (9)

We are now going to relate the desired value Z

0

(tanh�B) to Z

0

(1) using the values of

Z

0

(�) at certain intermediate points tanh �B < � < 1.

The mechanism for relating the values of Z

0

at two points � = �

0

and � = �

1

, with

1 � �

0

> �

1

� 0, is the following. Consider the random variable f(X) = (�

1

=�

0

)

jodd(X)j

over con�gurations of the system at � = �

0

. The expectation of f is given by

E

�

0

(f) =

1

Z

0

(�

0

)

bn=2c

X

k=0

c

k

�

2k

0

 

�

1

�

0

!

2k

=

Z

0

(�

1

)

Z

0

(�

0

)

:

(Here and in the sequel we will use notation such as E

�

0

(f) to indicate the fact that the

expectation is with respect to a particular value of �, in this case �

0

.) Hence we can

estimate the quantity Z

0

(�

1

)=Z

0

(�

0

) using the sampling technique discussed earlier. By

Lemma 3, this process will be e�cient provided the ratio max(f)=E

�

0

(f) is not too large.

Clearly, this cannot be guaranteed for arbitrary values of �

0

and �

1

. However, if the

values are reasonably close together then the ratio is bounded rather tightly, as we now

show. First, note that certainly max(f) � 1. It is therefore enough to obtain a lower

bound on the expectation E

�

0

(f). Such a bound is provided by the next lemma, whose

proof we defer to the end of the section.

Lemma 4 Let �

0

and �

1

be arbitrary real numbers in the range [0; 1] satisfying �

1

<

�

0

� �

1

+ n

�1

. Then the ratio Z

0

(�

1

)=Z

0

(�

0

) is bounded below by 1=10.
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Lemma 4 suggests that we should be able to bootstrap the known value Z

0

(1) to

the desired value Z

0

(tanh �B) by performing statistical experiments at a sequence of

intermediate values of � which are a distance n

�1

apart. Speci�cally, let r < n be the

natural number satisfying

n� r

n

> tanh �B �

n � r � 1

n

; (10)

and de�ne the sequence (�

k

) for 0 � k � r + 1 by

�

k

=

(

(n� k)=n for 0 � k � r;

tanh �B for k = r + 1.

(11)

Note that �

k

2 [0; 1] and �

k+1

< �

k

� �

k+1

+ n

�1

. Hence by the above discussion we

may estimate the ratio Z

0

(�

k+1

)=Z

0

(�

k

) e�ciently for each k . This is enough to yield an

estimate of Z

0

(tanh�B), since we have

Z

0

(tanh �B) = Z

0

(1)�

r

Y

k=0

Z

0

(�

k+1

)

Z

0

(�

k

)

: (12)

We are now in a position to write down our approximation algorithm for the partition

function Z . We assume that the input consists of a ferromagnetic Ising system in the

form hV

ij

; B; �i, and a positive real � 2 (0; 1] which speci�es the desired accuracy. As

usual, we set �

ij

= tanh �V

ij

.

Step 1. Compute A = (2 cosh �B)

n

Q

fi;jg2E

cosh �V

ij

, and Z

0

(1) =

Q

fi;jg2E

(1 + �

ij

).

Step 2. De�ne the sequence (�

k

) for 0 � k � r + 1 as in (10) and (11) above. For

each k = 0; 1; : : : ; r in turn, do the following:

Let f(X) = (�

k+1

=�

k

)

jodd(X)j

for each subgraphs-world con�guration X , so

that E

�

k

(f) = Z

0

(�

k+1

)=Z

0

(�

k

). Using the technique of Lemma 3 applied to

the system at � = �

k

, with � = �=2n and � = 1=4n, compute a quantity Y

k

satisfying

Pr

�

Y

k

approximates Z

0

(�

k+1

)=Z

0

(�

k

) within ratio 1 + �=2n

�

� 1� 1=4n:

Step 3. Output the product

A� Z

0

(1)�

r

Y

k=0

Y

k

:

Theorem 5 The above algorithm is an fpras for the partition function Z of a ferromag-

netic Ising system.

12



Proof The output of the algorithm is the product of the quantities A and Z

0

(1), com-

puted exactly in Step 1, together with r + 1 � n random variables Y

k

arising from

experiments in Step 2. From (12) and the property of the Y

k

expressed in Step 2, it is

immediate that the product approximates Z(V

ij

; B; �) within ratio (1 + �=2n)

n

� 1 + �

with probability at least (1 � 1=4n)

n

� 3=4. It remains only to show that the runtime

of the algorithm is bounded by a polynomial in n and �

�1

.

Steps 1 and 3 can clearly be executed in time O(n

2

). Now consider the operation of

Step 2 for a particular value of k . Appealing to Lemmas 3 and 4, we see that the process

of computing the estimate Y

k

requires N = 20160�

�2

n

2

dlg 4ne calls to the generator of

Theorem 2. Moreover, the tolerance supplied on each call is � = �=160n, and the value

of � is never less than n

�1

. It follows from Theorem 2 that the runtime of each call is

bounded by q(n; �

�1

) for some polynomial q( � ; � ). The total execution time of Step 2 is

therefore O(nN q(n; �

�1

)), which is a polynomial function of n and �

�1

. The algorithm

therefore satis�es all the requirements of an fpras.

Remarks (i) The statement of Theorem 2 actually gives an upper bound on the poly-

nomial q appearing at the end of the above proof. From this, it is easily seen that the

overall runtime of the fpras of Theorem 5 is O

�

�

�2

m

2

n

11

log n (log(�

�1

n) +m)

�

. Now we

may assume without loss of generality that � � 2

�m

, since otherwise we can evaluate Z

exactly by brute force in time O(m�

�1

). Hence the expression for the runtime simpli�es

to O(�

�2

m

3

n

11

log n). (See also the Remark following the proof of Theorem 7 at the end

of the next section.)

(ii) Closer analysis reveals that the sequence of coe�cients (c

k

) of the polynomial ex-

pression (7) for Z

0

is log-concave, i.e.,

c

k+1

c

k�1

� c

2

k

for k = 1; 2; : : : ; bn=2c � 1:

(The proof makes use of the ideas introduced in the proof of Theorem 7 of the next

section.) This is a surprising result in its own right, since naturally occurring log-concave

sequences are quite rare in combinatorics. It also suggests an alternative method for

approximating Z : by log-concavity, for each k it is possible to choose a value of �

which assigns to con�gurations with precisely k pairs of odd-degree vertices the largest

aggregated weight. This in turn means that we can read o� all signi�cant coe�cients c

k

by sampling at appropriate values of �, again using Z

0

(1) as a reference value. (An

analogous approach was used in [27, 16] to obtain the coe�cients of a polynomial related

to matchings, or monomer-dimer con�gurations, in a graph.) This method is both more

complex and rather less e�cient than the one presented in Theorem 5. However, it does

supply more detailed information about Z , in the form of the coe�cients of Z

0

. We have

been unable to determine whether these quantities have any inherent physical signi�cance,

so we will not present the alternative algorithm in detail here.

13



We close the section by providing the missing proofs of Lemmas 3 and 4.

Proof of Lemma 3 Let Var(f) denote the variance of f , i.e., Var(f) = E(f

2

)� E(f)

2

.

The generator of Theorem 2 selects elements of 
 from a distribution p which is slightly

di�erent from � . Accordingly, de�ne the mean and variance of f with respect to this

distribution by

E

0

(f) =

X

X2


p(X)f(X);

Var

0

(f) =

X

X2


p(X)f(X)

2

� E

0

(f)

2

:

Since the variation distance satis�es kp� �k � � , we have

jE(f)� E

0

(f)j � �max(f) = � E(f)=8;

jVar(f)�Var

0

(f)j � 3�max(f)

2

= 3� E(f)max(f)=8:

(13)

Now let fX

i

g be an independent sample of size s produced by the generator, and let

Y

0

= s

�1

P

i

f(X

i

) be the sample mean. Clearly Y

0

has expectation E

0

(f) and variance

s

�1

Var

0

(f). Therefore, by Chebyshev's inequality we have

Pr

�

jY

0

� E

0

(f)j >

�

3

E

0

(f)

�

�

9

�

2

Var

0

(f)

sE

0

(f)

2

: (14)

But if jY

0

� E

0

(f)j �

�

3

E

0

(f) then, from (13),

jY

0

� E(f)j � jY

0

� E

0

(f)j + jE

0

(f) � E(f)j

�

�

3

E

0

(f) +

�

8

E(f)

�

�

3

�

1 +

�

8

�

E(f) +

�

8

E(f)

�

�

2

E(f): (15)

Note that this in turn implies that Y

0

approximates E(f) within ratio 1 + � . Moreover,

applying (13) again we have

Var

0

(f)

E

0

(f)

2

�

Var(f) +

3

8

E(f)max(f)

�

7

8

E(f)

�

2

�

11

8

E(f)max(f)

�

7

8

E(f)

�

2

<

2max(f)

E(f)

; (16)

where in the second inequality we have used the distribution-independent bound

Var(f) � E(f)max(f), valid for any non-negative random variable f . Combining (15)

and (16) with (14), and choosing sample size s = 72�

�2

max(f)=E(f), gives

Pr

�

Y

0

approximates E(f) within ratio 1 + �

�

�

18

�

2

s

max(f)

E(f)

=

1

4

: (17)
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Now consider performing the above experiment an odd number t times, independently,

and let Y denote the median of the resulting t values of Y

0

. In view of (17), the

probability that Y fails to approximate E(f) within ratio 1 + � is at most

t

X

i=(t+1)=2

�

t

i

��

1

4

�

i

�

3

4

�

t�i

�

�

1

4

�

t=2

�

3

4

�

t=2
t

X

i=(t+1)=2

�

t

i

�

�

�

3

16

�

t=2

2

t

=

�

3

4

�

t=2

:

Taking t = 6dlg �

�1

e + 1, this probability is bounded above by �

3 lg(4=3)

< � . The

random variable Y therefore satis�es the requirement of the lemma. The total

number of samples required from the generator is st, which is bounded above by

504�

�2

dlg �

�1

emax(f)=E(f) as claimed.

Proof of Lemma 4 We split the argument into two cases.

Case I: �

0

� 3=4. In this case, we have

�

1

�

0

� 1�

1

n�

0

� 1�

4

3n

:

Therefore, since Z

0

(�) =

P

bn=2c

k=0

c

k

�

2k

, and all coe�cients c

k

are positive,

Z

0

(�

1

)

Z

0

(�

0

)

�

 

�

1

�

0

!

2bn=2c

�

�

1 �

4

3n

�

n

�

1

9

;

assuming as we may that n � 2. (The problem is trivial otherwise.)

Case II: �

0

< 3=4. This case is handled by appealing to the original spins-world

expansion of Z . First note from the de�nition (4) of Z

0

that

Z

0

(�

1

)

Z

0

(�

0

)

=

Z(V

ij

; B

1

; �)

Z(V

ij

; B

0

; �)

�

 

2 cosh �B

0

2 cosh �B

1

!

n

�

Z(V

ij

; B

1

; �)

Z(V

ij

; B

0

; �)

; (18)

where � > 0 is arbitrary and B

0

, B

1

are de�ned by �

i

= tanh �B

i

. Note that B

0

� B

1

.

Moreover, the upper bound �

0

� �

1

� n

�1

translates to a bound on B

0

� B

1

via the

inequality tanh x� tanh y � (x� y) sech

2

x, valid for x � y � 0. We get

�(B

0

�B

1

) � (�

0

� �

1

)= sech

2

�B

0

� 16=7n; (19)

where we have used the fact that tanh�B

0

= �

0

< 3=4 and sech

2

x = 1 � tanh

2

x.

But from the de�nition (1) of the partition function Z we have

Z(V

ij

; B

1

; �)

Z(V

ij

; B

0

; �)

� min

�

exp

�

�(B

1

�B

0

)

P

k2[n]

�

k

�

� exp

�

�n�(B

0

�B

1

)

�

;

which by (19) is bounded below by e

�16=7

and hence by 1=10. Together with (18) this

yields the desired bound on Z

0

(�

1

)=Z

0

(�

0

).
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4 An analysis of the subgraphs-world process

We shall assume that the reader is familiar with the elementary theory of �nite Markov

chains in discrete time: an introduction can be found, for example, in [10, Chapter XV].

Assume � > 0. Taking our cue from the form of equation (4), we de�ne the subgraphs-

world process, MC

Ising

, as follows. The state space, 
, of the Markov chain MC

Ising

is

the set of all spanning subgraphs X � E ; note that j
j = 2

m

where m = jEj is the

number of unordered pairs fi; jg with �

ij

6= 0. For X;X

0

2 
 with X 6= X

0

, the

transition probability from X to X

0

is given by

p(X;X

0

) =

8

>

<

>

:

1=2m if jX �X

0

j = 1 and w(X

0

) � w(X);

w(X

0

)=(2mw(X)) if jX �X

0

j = 1 and w(X

0

) < w(X);

0 otherwise,

where X � X

0

denotes the symmetric di�erence of X and X

0

. The self-loop

probabilities p(X;X) are de�ned implicitly by complementation, so that p(X;X) =

1 �

P

X

0

6=X

p(X;X

0

). Thus, transitions in MC

Ising

are perturbations in which a single

edge is added to, or deleted from a subgraph. Note that exactly m transitions are avail-

able from any state, and all transition probabilities are bounded above by 1=2m. Hence

the transition probabilities are well de�ned, and the self-loop probabilities p(X;X) for

each state X are bounded below by 1=2.

We pause to observe that the above chain is very easy to simulate. Suppose the current

state of the chain is X 2 
. Then the transitions from X can be selected according to

the following model:

1. with probability 1=2 set X

0

= X , otherwise

2. select an edge e 2 E uniformly at random, and let Y = X � feg (the symmetric

di�erence of X and feg);

3. if w(Y ) � w(X) then set X

0

= Y ; if w(Y ) < w(X) then with probability

w(Y )=w(X) set X

0

= Y , otherwise set X

0

= X .

It will be seen that this procedure correctly models the transition probabilities speci�ed

earlier. It is worth remarking that there is no need to compute the weight functions

w(X) and w(Y ) from scratch at each iteration; since Y and X di�er by a single edge,

the quotient w(Y )=w(X) can be computed using just two multiplications.

The Markov chain MC

Ising

is irreducible (all states communicate via the empty

state ?) and aperiodic (the self-loop probabilities are non-zero). Thus there is a well

de�ned stationary distribution on 
 which is independent of the initial state. De�ne � :


 ! R by �(X) = w(X)=

P

X

0
w(X

0

) = w(X)=Z

0

. We shall see presently that � is in-

deed the stationary distribution on 
. For X;X

0

2 
 de�ne q(X;X

0

) = �(X) p(X;X

0

).
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We claim that q is symmetric in its two arguments. If X = X

0

then there is nothing

to prove. If jX � X

0

j > 1 then p(X;X

0

) = 0 and hence q(X;X

0

) = 0. Finally, it is

straightforward to verify from the de�nition of the transition probability p(X;X

0

) that

q(X;X

0

) = (2m)

�1

minf�(X); �(X

0

)g; if jX �X

0

j = 1: (20)

Since q is symmetric, the so-called detailed balance condition holds:

�(X)p(X;X

0

) = q(X;X

0

) = �(X

0

)p(X

0

;X): (21)

Suppose, as is the case here, that the function p( � ; � ) describes the transition proba-

bilities of an ergodic Markov chain. It is a fact [16, Lemma 2.1] that if there is any

function � : 
 ! R satisfying detailed balance together with the normalisation condi-

tion

P

X2


�(X) = 1, then the Markov chain is (time-)reversible, and � is its stationary

distribution. Thus the stationary distribution of the Markov chain MC

Ising

is indeed

given by �(X) = w(X)=Z

0

, as claimed above, and we can use the chain to sample con-

�gurations X 2 
 with probabilities approximately proportional to w(X).

As explained informally earlier, if the Markov chain MC

Ising

is to be the basis of an

e�cient sampling procedure for con�gurations then it must be rapidly mixing, in the sense

that, if it is allowed to evolve from a suitable initial state, the distribution of its �nal state

will be very close to the stationary distribution after only polynomially many steps. Note

that this is a highly non-trivial requirement: since the number of states in the chain is

exponentially large, we are demanding that it converges after visiting only a tiny fraction

of its state space. Our argument that the chain is rapidly mixing is in two parts: �rst, in

Theorem 6, we state a general characterisation of the rapid mixing property in terms of

a measure known as the conductance; then, in Theorem 7, we estimate the conductance

of MC

Ising

.

For an ergodic reversible Markov chain, the conductance [27, 29] is de�ned by

� = min

�

X

X2S

X

0

=2S

q(X;X

0

)

�

X

X2S

�(X)

�

;

where the minimisation is over all subsets S of states with 0 <

P

X2S

�(X) � 1=2. (Note

that 0 < � � 1.) The conductance in some sense measures the rate at which the process

can ow around the state space: speci�cally, it provides a lower bound on the conditional

probability that the stationary process escapes from a small subset S of the state space

in a single step, given that it is initially in S . Thus a chain with large conductance is

unlikely to \get stuck" in any small region of the state space, so we might expect it to

converge fast. This intuition is captured in the following theorem.

Theorem 6 Let � be the conductance of an ergodic, reversible Markov chain with sta-

tionary distribution � and min

X

p(X;X) � 1=2. Let p

(t)

denote the distribution of the
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state at time t given that the initial state is X

0

. Then the variation distance kp

(t)

� �k

satis�es

kp

(t)

� �k �

(1� �

2

)

t

�(X

0

)

:

(The requirement that min

X

p(X;X) � 1=2, i.e, that every state has a self-loop proba-

bility of at least 1/2, is a technical device which removes periodicity; note that MC

Ising

satis�es this requirement by construction.)

Proof The theorem is essentially a restatement of Theorem 3.4 of [29], to which the inter-

ested reader is referred for details; we mention here only the necessary modi�cations. The

main di�erence stems from the fact that in the former result we used the stronger relative

pointwise distance (r.p.d.), rather than the variation distance, as a measure of deviation

from the stationary distribution. In similar fashion to the r.p.d., the variation distance

at time t may be related, by elementary linear algebra, to the second eigenvalue �

1

of

the Markov chain: we get

kp

(t)

� �k �

�

t

1

�(X

0

)

: (22)

(See, for example, Proposition 2 of [7], which presents a marginally stronger result, with

2

q

�(X

0

) replacing �(X

0

) in the denominator. Note that the presence of a self-loop

probability of 1/2 on every state ensures that all eigenvalues are non-negative.) The

bound in (22) di�ers from that on the r.p.d. in Lemma 3.1 of [29] only in that �(X

0

)

replaces min

X

�(X).

Now the main result of Section 3 of [29], Lemma 3.3, relates �

1

to the conductance via

the bound �

1

� 1 � �

2

=2, valid for an arbitrary reversible chain. It is easily seen from

the proof of the lemma that the marginally stronger bound

�

1

� 1 � �

2

(23)

holds for chains in which all self-loop probabilities are at least 1/2. Putting (22) and (23)

together establishes the theorem.

Remarks (i) The heart of the above proof is the eigenvalue bound (23). This is a

discrete analogue of Cheeger's inequality for Riemannian manifolds [5]. Related bounds

have been observed by several authors: see, e.g., [8, 1, 23, 25].

(ii) Theorem 6 has a converse, which says that if a Markov chain is rapidly mixing then

its conductance cannot be too small: see, e.g., [23, 27, 28]. Thus the conductance provides

a characterisation of the rapid mixing property.
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Theorem 6 allows us to investigate the rate of convergence of a reversible chain by ex-

amining its transition structure, as reected in the conductance. In particular, if we wish

to ensure a variation distance of at most � then it is clear that �

�2

(ln �

�1

+ ln�(X

0

)

�1

)

steps su�ce. Thus the rapid mixing property will generally follow from an inverse poly-

nomial lower bound on the conductance. Such a bound is available for the chain MC

Ising

de�ned above. Speci�cally, we have

Theorem 7 The conductance of the Markov chain MC

Ising

is bounded below by �

4

=4m.

The proof of Theorem 7 is the main content of this section. Before proceeding with

it, however, let us �rst use the result to verify our claim in Theorem 2 of the previous

section that an e�cient generator for subgraphs-world con�gurations exists. This will

complete the validation of our approximation algorithm for the partition function.

Proof of Theorem 2 The generator operates as follows. Given as input a ferromagnetic

Ising system in the form h�

ij

; �i, with 0 < � � 1, and a tolerance � 2 (0; 1], simulate

the associated Markov chain MC

Ising

for 16m

2

�

�8

(ln �

�1

+ m) steps, starting in state

X

0

= ? (i.e, the empty graph on vertex set [n]). Since �

ij

< 1 for all i; j , and � � 1, it

is clear that w(X

0

) � w(X) for all con�gurations X . Hence �(X

0

) � 2

�m

. Appealing

to Theorem 6, we conclude that the speci�ed number of simulation steps is enough to

ensure a variation distance of at most � . The theorem is therefore established.

Proof of Theorem 7 The proof rests on a path counting argument, similar to those

employed in previous applications [27, 16] of the conductance bound. We present a

preliminary sketch map of the proof technique before considering the technical details

which arise when applying the path counting argument to the particular chain under

consideration.

For each pair of states I; F 2 
, a canonical path from I (the initial state) to F (the

�nal state) is speci�ed. The canonical path proceeds via a number of intermediate states

using only valid transitions of the Markov chain. Each canonical path is assigned a weight

which is the product of the stationary probabilities at the initial and �nal states; thus

the weight of the path from I to F is �(I)�(F ), independent of the intermediate states

in the path. A careful choice of canonical paths is essential to secure a good bound on

conductance.

Suppose it can be shown that, for each transition T ! T

0

, the aggregated weight of

canonical paths which use transition T ! T

0

is bounded above by b q(T; T

0

), where q is

as in equation (21). Consider any partition of the state space 
 into two sets S and S

with

P

X2S

�(X) � 1=2. Then, on the one hand, the total weight of canonical paths
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which cross the cut de�ned by S and S is at least

P

I2S

P

F2S

�(I)�(F ) = �(S)�(S ) �

�(S)=2. On the other hand, summing over transitions T ! T

0

with T 2 S and T

0

2 S ,

we have that the total weight of canonical paths which cross the cut is bounded above by

b

P

T2S

P

T

0

2S

q(T; T

0

). Since S and S represent a general partition of the state space 
,

it follows immediately that the conductance of the Markov chain is bounded below by

1=2b.

It will be perceived that the principal barrier to applying the above idea is likely to

lie in obtaining a good value for the bound b. This is achieved using a combinatorial

encoding technique, as follows. For each transition T ! T

0

, let cp(T; T

0

) denote the set

of all pairs (I; F ) 2 


2

such that the canonical path from I to F includes the transition

T ! T

0

. Fix any particular transition T ! T

0

. Then it turns out that we can de�ne

an injective map from cp(T; T

0

) to the state space 
. Since the map is injective, any

state U 2 
 picks out at most one canonical path, from I to F say, which uses the

transition T ! T

0

; the state U can be thought of as an encoding of the canonical

path. Moreover, the injective map can be chosen so that the weight of the canonical

path, namely �(I)�(F ), is roughly proportional to �(U), the probability assigned to the

encoding U by the stationary distribution. Since � is a probability distribution, the sum

of �(U) over all encodings U is at most 1; this upper bound translates to an upper bound

on the total weight of paths using T ! T

0

, and hence to a value for b.

All the above must now be specialised to the Markov chain MC

Ising

. The �rst task

is to specify a canonical path for each pair I; F 2 
. View I and F as graphs with

vertex set [n]. Let � = I � F be the symmetric di�erence of I and F , and suppose

that the graph � has 2k vertices of odd degree. (The number of odd-degree vertices in a

graph is necessarily even.) Cover � with a collection C

1

; C

2

; : : : ; C

r

of assorted trails and

circuits which are pairwise edge-disjoint, imposing the condition that the �rst k objects,

C

1

, C

2

; : : : , C

k

, are all open trails (walks with no repeated edges) while the remainder,

C

k+1

, C

k+2

; : : : , C

r

, are all circuits (closed trails).

That this can be done with so few (open) trails follows from a simple induction on k .

When k = 0, every vertex of � is of even degree, so each connected component of � is

Eulerian and can be covered by a single circuit. Now suppose k > 0 and i is a vertex

in � of odd degree. The connected component of � containing i must contain at least

one other odd-degree vertex, say j . Connect i and j by a trail, letting this be one of the

trails in the required decomposition of �. Deleting this trail from � yields a graph with

2(k � 1) odd-degree vertices, which can be covered by k � 1 trails (together with some

number of circuits) by the induction hypothesis.

The covering of � by trails and circuits is not in general unique, and we assume that some

rule is employed to pick out a particular choice of C

1

, C

2

; : : : , C

r

. We further assume

that this rule also speci�es a distinguished initial vertex for each trail or circuit, and a
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direction for each circuit. In the case of a trail the initial vertex must be an end-point

of the trail; in the case of a circuit the initial vertex may be arbitrary. The canonical

path from I to F is now obtained by unwinding the trails and circuits C

1

, C

2

; : : : , C

r

in sequence. Unwinding C

i

involves processing each edge of C

i

in sequence, starting at

the initial vertex and, in the case of a circuit, following the assigned direction. Each

processed edge, e, generates a single transition on the path from I to F . If e is in F

(and hence not in I ) the transition involves adding the edge e to the current state; if e

is in I (and hence not in F ) the transition involves deleting the edge e from the current

state. It is clear that this process de�nes a canonical path of legal transitions from state I

to state F .

The next task is to de�ne the injective map (encoding) from the set of canonical paths

using a given transition to 
. Recall that cp(T; T

0

) denotes the set of all pairs (I; F ) 2 


2

such that the canonical path from I to F employs the transition T ! T

0

. De�ne the map

�

T!T

0

: cp(T; T

0

) ! 
 by �

T!T

0

(I; F ) = I � F � (T [ T

0

) for all (I; F ) 2 cp(T; T

0

).

The intention here is that the encoding should agree with I on the trails and circuits

already processed, and with F elsewhere.

We verify that �

T!T

0

is injective by demonstrating that I and F are uniquely determined

by U = �

T!T

0

(I; F ). Indeed, given U , we can compute U � (T [ T

0

) = I � F and

hence the uniquely de�ned covering C

1

, C

2

; : : : , C

r

of I � F by trails and circuits. The

edge e = T � T

0

which is added or deleted by the transition T ! T

0

points out which

trail or circuit, C

i

, is being unwound, and how far the unwinding of C

i

has progressed.

Starting at state T

0

, we may complete the unwinding of C

i

and successive trails/circuits

to discover the �nal state F ; equally well, we may use the reverse process to recover the

initial state I . So the map �

T!T

0

is injective, as claimed.

The other property we require of the encoding is that its weight should be roughly pro-

portional to that of the encoded path. Precisely, we require of U = �

T!T

0

(I; F ) that

�(U)q(T; T

0

) � (2m)

�1

�

4

�(I)�(F ); (24)

or, equivalently, multiplying through by (Z

0

)

2

and using assertion (20),

w(U)w(T ) � �

4

w(I)w(F ) and w(U)w(T

0

) � �

4

w(I)w(F ): (25)

The veri�cation of the left hand inequality will be treated in detail below; the right hand

inequality will then be shown to follow by symmetry.

For X 2 
, write �(X) =

Q

fi;jg2X

�

ij

, so that w(X) = �(X)�

jodd(X)j

. To verify the

left hand inequality of (25) it is enough to demonstrate separately that

�(U)�(T ) � �(I)�(F ); (26)

and

jodd(U)j+ jodd(T )j � jodd(I)j � jodd(F )j � 4: (27)
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(We have used here the fact that 0 < � � 1.) We deal �rst with inequality (26),

which is the more straightforward. From the construction of canonical paths we have

I \ F � T [ T

0

� I [ F , while the de�nition of U entails U � (T [ T

0

) = I � F . It

follows by elementary set theory from these two observations that U \ (T [ T

0

) = I \ F

and U [ (T [ T

0

) = I [ F . Hence

�(U)�(T [ T

0

) = �(U [ (T [ T

0

)) �(U \ (T [ T

0

)) = �(I [ F ) �(I \ F ) = �(I)�(F );

which, together with �(T [ T

0

) � �(T ), implies inequality (26).

We now turn to inequality (27). For i 2 [n] de�ne

�(i) = �

odd(U)

(i) + �

odd(T )

(i)� �

odd(I)

(i)� �

odd(F )

(i);

where �

S

denotes the characteristic function of a set S . Note that �2 � �(i) � 2.

Inequality (27) can be re-expressed as

X

i2[n]

�(i) � 4: (28)

We shall argue that �(i) � 0 for all i outside a small set of exceptions. In order to

discuss these exceptions, we give names to three vertices which have special signi�cance.

Denote by s the initial vertex of the circuit which is in the process of being unwound

when the transition T ! T

0

is made (s is unde�ned if the transition occurs on a trail).

Denote by u and v the endpoints of the edge e = T � T

0

which is added or subtracted

during the transition T ! T

0

; vertex u is distinguished from v by being the �rst to be

encountered in the direction of unwinding. We shall see that the vertices s, u, and v are

the only ones which can provide a positive contribution to the sum in (28).

Consider �rst the conditions under which �(i) = 2 can occur. It must be the case that i

has even degree in both I and F , and odd degree in both U and T . Now it is a conse-

quence of the way canonical paths are constructed that a vertex which has even degree

in both I and F will generally have even degree in the intermediate con�guration T ;

the only exceptions are the vertex s (whose degree became odd when the unwinding of

the circuit commenced) and the vertex u (whose degree was made odd by the previous

transition, and whose parity is restored by the transition T ! T

0

itself). To summarise:

the case �(i) = 2 can only occur when i = s or i = u.

Consider now the conditions under which �(i) = 1 can occur. This case is ruled out, with

two exceptions, by simple parity considerations. Since I � F = U � (T [ T

0

), the value

of �(i) must be even unless i = u or i = v . (These are the only points at which the set

T [ T

0

may di�er from T .) Combining this observation with the previous analysis for the

case �(i) = 2, we see that only three terms of the sum occurring in (28) can possibly be

strictly positive, and that the sum itself cannot exceed 5. (The worst case is achieved by
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setting �(s) = 2, �(u) = 2, and �(v) = 1.) However, the sum cannot actually attain 5

on grounds of parity: each of the terms appearing on the left hand side of inequality (27)

is necessarily even. This completes the veri�cation of inequality (28), and hence of (27)

and the left hand inequality of (25). The right hand inequality of (25) follows by a

symmetrical argument, with the roles of T and T

0

, and u and v , interchanged.

Finally, summing (24) over all canonical paths which employ the transition T ! T

0

we obtain the following upper bound on the total weight of canonical paths which use

T ! T

0

:

X

(I;F )2cp(T;T

0

)

�(I)�(F ) �

X

(I;F )2cp(T;T

0

)

2m�

�4

�(�

T!T

0

(I; F )) q(T; T

0

) � 2m�

�4

q(T; T

0

);

where the second inequality rests on the fact that �

T!T

0

is injective. In the notation

of the sketch map presented at the beginning of the proof, b = 2m�

�4

. Therefore the

conductance of MC

Ising

is bounded below by 1=2b = �

4

=4m, as claimed at the outset.

Remark The main task in the proof of Theorem 7 is to estimate the \bottleneck"

measure b; this is then used to get a bound on conductance, and hence on the rate of

convergence of MC

Ising

. In fact, b can be used directly to obtain a signi�cantly sharper

bound on the rate of convergence: for the details, see [28]. Speci�cally, the runtime of

the generator quoted in Theorem 2 is reduced by a factor O(�

�4

), which improves the

runtime of the approximation algorithm for the partition function (Theorem 5) by a factor

of O(n

4

). Similar improvements apply to the runtimes of our other algorithms that make

use of the generator.

5 The mean energy and mean magnetic moment

Of greater immediate importance to physicists than the partition function Z itself are the

partial derivatives of lnZ with respect to � and B . The key quantities of interest are the

mean energy E = �@(lnZ)=@� , and the mean magnetic moment M = �

�1

@(lnZ)=@B .

As their names suggest, both of these can be viewed, in the spins-world, as expectations

of the corresponding physical quantities.

There is no reason to suppose that an fpras for the partition function Z will directly

yield an fpras for these derivatives of lnZ . However, we demonstrate in this section that

polynomial-time approximation algorithms for E and M do indeed exist. The construc-

tion of these algorithms relies on the surprising fact that E and M can be viewed as

expectations of appropriately de�ned random variables in the subgraphs-world. Although
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some technical complications arise, it is possible to estimate these expectations more or

less directly by simulating the subgraphs-world process for a polynomially bounded num-

ber of steps.

The mean magnetic moment is slightly easier to work with, and we treat it �rst. The

main result is preceded by a technical lemma, whose proof is deferred to the end of the

section. Recall that in the subgraphs-world distribution, each con�guration X occurs

with probability w(X)=Z

0

.

Lemma 8 Suppose the con�guration X 2 
 is randomly selected according to the

subgraphs-world distribution. Then

(i) Pr(jodd(X)j > 0) � �

2

=2, provided

P

�

ij

� 1;

(ii) Pr(jodd(X)j = 2) � �

2

=10, provided

P

�

ij

� 1 and � � n

�1

.

Theorem 9 There exists an fpras for the mean magnetic moment M = �

�1

@(lnZ)=@B ,

where Z is the partition function of a ferromagnetic Ising system.

Proof We shall express the quantity M as an expectation in the subgraphs-world by

di�erentiating the logarithm of the expansion given in Theorem 1 with respect to B .

Before doing this, it is convenient to perform some preparatory computations. Since M =

0 when B = 0, we may assume that B > 0. Recall that w(X) = �(X)�

jodd(X)j

, where

� = tanh �B by de�nition, and �(X) is independent of B . Then

@

@B

w(X) = �(X)jodd(X)j�

jodd(X)j�1

(sech�B)

2

�

= � w(X)jodd(X)j(tanh �B)

�1

(sech�B)

2

= w(X)

2�jodd(X)j

sinh 2�B

:

Furthermore, from the de�nition of A in equation (5),

@

@B

lnA =

@

@B

n ln cosh�B = n� tanh �B:

With these identities in mind, we compute M using the expansion of Theorem 1 as the

starting point:

M =

1

�

@

@B

lnZ =

1

�

@

@B

lnA+

1

�

@

@B

lnZ

0

= n tanh �B +

1

�Z

0

X

X

@

@B

w(X)

= n tanh �B +

1

Z

0

X

X

w(X)

2jodd(X)j

sinh 2�B

:
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Using, as before, the notation E(f) = (Z

0

)

�1

P

X

w(X)f(X) to express the expectation

of a random variable f in the subgraphs-world, the above identity can be written more

compactly as

M = n tanh �B +

2

sinh 2�B

E jodd(X)j: (29)

Note that to approximate M within ratio 1 + �, it is enough, since both terms of (29) are

positive, to estimate E jodd(X)j within ratio 1 + �. We propose to do this by using the

Markov chain MC

Ising

analysed in Section 4 to provide a polynomial number of sample

con�gurations X from the subgraphs-world distribution, and returning the average of

jodd(X)j over the sample. As noted in the discussion preceding Lemma 3, this approach

will yield an fpras for M provided the ratio max jodd(X)j=E jodd(X)j is bounded by a

polynomial in n. Although such a bound often holds, a more re�ned approach is necessary

in certain circumstances. We proceed by case analysis.

Case I:

P

�

ij

� 1. We identify two subcases, according to the size of �.

Case Ia: � � n

�1

. In this range, we may estimate M by direct experiment. From

Lemma 8,

E jodd(X)j � 2Pr(jodd(X)j > 0) � �

2

� n

�2

;

while, clearly, max jodd(X)j � n. Thus the ratio max jodd(X)j=E jodd(X)j is bounded

above by n

3

.

Case Ib: � < n

�1

. Intuitively, the problem when � is small is that a randomly sampled

con�guration may, with high probability, satisfy jodd(X)j = 0; in this situation, very

many trials may be required to obtain a su�ciently accurate estimate of the expectation

of jodd(X)j. The solution is to perform experiments at an increased value of �, say

�̂, at which the event jodd(X)j > 0 occurs with su�ciently high probability. Since we

shall be allowing � to vary, it is convenient, as before, to re�ne our notation to make

the dependence on � explicit. In particular, E

�̂

(f) will denote the expectation of the

random variable f when experiments are undertaken with � set to some revised value �̂.

The unsubscripted notation E(f) will be reserved for expectations with respect to the

original value of �.

Set �̂ = n

�1

and de�ne

f(X) = jodd(X)j

�

�

�̂

�

jodd(X)j

:

Straightforward manipulations yield the identity

E jodd(X)j =

Z

0

(�̂)

Z

0

(�)

E

�̂

(f); (30)

which relates the quantity we are attempting to estimate to the expectation of f at

the revised value of �. Since Z

0

(�̂) and Z

0

(�) may be estimated by the techniques of
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Section 3, we concentrate here on the estimation of E

�̂

(f). From part (ii) of Lemma 8

we have Pr

�̂

(jodd(X)j = 2) � �̂

2

=10; this inequality allows the expectation of f to be

bounded below:

E

�̂

(f) � 2

�

�

�̂

�

2

Pr

�̂

(jodd(X)j = 2) �

�

2

5

:

The maximum of f , meanwhile, satis�es the crude bound max(f) � (�=�̂)

2

n. Thus the

ratio max(f)=E

�̂

(f) is bounded above by 5n�̂

�2

= 5n

3

.

Case II:

P

�

ij

< 1. In this rather pathological case, the essential problem we face is

that a randomly sampled con�guration may, with high probability, be the empty set.

As before, we shall conduct experiments at an arti�cially inated value of � and use

equation (30) to relate the results of these experiments to the value we are attempting to

estimate. This time, however, we choose to work with �̂ = 1.

Unfortunately, even with �̂ set to 1, the highest possible value, it may still happen that

the empty con�guration X = ? occurs with very high probability. We overcome this

problem by sampling from the distribution obtained by conditioning on the event X 6= ?.

With f as before, and noting that �̂ = 1 and f(?) = 0, we have

E

�̂

(f) =

bn=2c

X

k=0

2k�

2k

Pr

�̂

(jodd(X)j = 2k)

= Pr

�̂

(X 6= ?)

bn=2c

X

k=1

2k�

2k

Pr

�̂

�

jodd(X)j = 2k

�

�

� X 6= ?

�

:

Now Z

0

(�̂) =

Q

(1 + �

ij

), and hence

Pr

�̂

(X 6= ?) =

Z

0

(�̂)� 1

Z

0

(�̂)

(31)

is easy to evaluate directly. It is enough, therefore, to estimate the expectation of f

with respect to the distribution of conditional probabilities, in which each non-trivial

con�guration X 6= ? occurs with probability (Z

0

(�̂)� 1)

�1

Q

fi;jg2X

�

ij

. This conditional

distribution may be sampled without recourse to Markov chain simulation, the direct

method being as follows. Start with X = ? and perform a sequence of m trials, each trial

determining whether a particular edge is to be added to X . The probability governing

each trial has one of two values, depending on whether any of the previous trials have

contributed an edge to X . De�ne p

ij

= �

ij

(1 + �

ij

)

�1

, and suppose that we are about

to decide whether to add a certain edge fi; jg to X . If X 6= ?, the edge fi; jg is

added to X with probability p

ij

; otherwise, the edge is added to X with probability

p

ij

[1�

Q

(1 � p

hk

)]

�1

, where the product is over all edges fh; kg whose fate is yet to be

decided, including edge fi; jg itself. It is straightforward to verify that this procedure

yields the required distribution.
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It only remains to verify that a polynomially bounded number of sample con�gurations

su�ce to provide an accurate estimate of the expectation of f . Again, we do this by

demonstrating an upper bound on the ratio between the maximum of f and the mean

of f . Observe that

Z

0

(�̂) =

Y

(1 + �

ij

) � exp

�

X

�

ij

�

� 1 + 2

X

�

ij

; (32)

and

Pr

�̂

(jodd(X)j = 2) �

1

Z

0

(�̂)

X

�

ij

; (33)

where in equation (32) we have used the fact that e

x

� 1 + 2x in the range 0 � x � 1.

Combining equations (31) and (33), we obtain a lower bound on the probability of

jodd(X)j = 2 conditional on X 6= ?:

Pr

�̂

�

jodd(X)j = 2

�

�

� X 6= ?

�

=

Pr

�̂

(jodd(X)j = 2)

Pr

�̂

(X 6= ?)

�

Z

0

(�̂)

Z

0

(�̂)� 1

1

Z

0

(�̂)

X

�

ij

�

1

2

;

the �nal step here relies on inequality (32). It follows immediately that the expectation

of f with respect to the conditional distribution is at least �

2

. Using the crude bound

max(f) � n�

2

, we see that the ratio of the maximum to the mean of f is bounded above

by n. This completes the analysis of Case II.

We conclude by analysing the time complexity of the proposed approximation scheme

for M. The worst case is realised by Case Ib, where our method demands that the three

quantities appearing on the right hand side of identity (30) be known with su�ciently high

accuracy. To obtain an fpras for M, it is enough to estimate each of these three quantities

within ratio 1 + �=4 and with failure probability 1=12. Setting � = �=4 and � = 1=12

in Lemma 3, we see that O(�

�2

n

3

) samples from the generator su�ce to estimate E

�̂

(f)

within ratio 1 + �=4 and with failure probability 1=12. The production of each sample

requires time O(m

2

�̂

�8

(log �

�1

+ m)), where �

�1

= O(�

�1

n

3

). We may assume that

� � 2

�m

, otherwise there would be time enough to evaluate M exactly using a brute

force algorithm. With this simplifying assumption, and noting that �̂ = n

�1

, the time

to produce each sample is seen to be O(m

3

n

8

), and the total time to estimate E

�̂

(f) is

O(�

�2

m

3

n

11

). The overall execution time for the algorithm is thus dominated by the time

taken to estimate Z

0

(�) and Z

0

(�̂) within ratio 1 + �=4 and with failure probability 1=12;

from remark (i) following Theorem 5 this dominant term is seen to be O(�

�2

m

3

n

11

log n).

We turn now to the mean energy E . Up to this point, we have always sampled

con�gurations with � set to some value which is at least n

�1

. In the sequel, we shall

need to sample con�gurations at smaller values of �; at these values Theorem 2 no

longer guarantees an execution time for the sampling procedure which is polynomial

in n. However, e�cient sampling is possible, even at � = 0.
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Theorem 10 There exists a generator for subgraphs-world con�gurations which, on in-

puts h�

ij

; �i and � , runs in expected time bounded by a polynomial in n and log �

�1

.

Speci�cally, the expected execution time of the generator is O(m

2

n

8

(log �

�1

+m)).

Proof The result for � � n

�1

follows directly from Theorem 2. So assume that � < n

�1

.

We employ the generator of Theorem 2 but with � arti�cially boosted to �̂ = n

�1

, and �

decreased to

^

� = �=10. To sample a con�guration X from the distribution corresponding

to the original value of �, perform a sequence of trials of the following form. First

produce a random con�guration X using the generator of Theorem 2 (with the modi�ed

parameters); then, with probability (�=�̂)

jodd(X)j

, declare the trial successful, otherwise

declare the trial a failure. The sequence of trials is halted at the �rst successful trial, and

the con�guration X produced by that trial is returned as result.

The probability that a trial is declared successful is at least Pr

�̂

(jodd(X)j = 0), which

by Lemma 4 (setting �

1

= 0 and �

0

= n

�1

) is at least 1=10. Thus the expected number

of trials required to generate a con�guration is at most 10. It is straightforward to check

that the procedure described above, viewed as a generator with respect to the original

value of �, has tolerance at most 10

^

� = � .

As in the case of the mean magnetic moment, the main result rests on a technical

lemma, whose proof is deferred.

Lemma 11 Suppose B = 0, i.e., that there is no external �eld. If w(X) � 1=32nm

2

for all X 6= ?, then Z

0

=

P

X

w(X) � m.

Theorem 12 There exists an fpras for the (negation of the) mean energy �E =

@(lnZ)=@� , where Z is the partition function of a ferromagnetic Ising system.

Proof We shall assume that B = 0, i.e., that there is no external �eld; the proof in the

general case introduces extra technical complications, but requires no new ideas. At the

end of the proof, we sketch the modi�cations required to deal with a non-zero external

�eld.

When B = 0 the partition function, Z , simpli�es to Z = A

P

X

w(X), where

A =

Y

fi;jg2E

cosh �V

ij

; w(X) =

Y

fi;jg2X

tanh �V

ij

;

and the sum is over all closed X � E . (A graph X is said to be closed if every vertex

of X has even degree.) De�ne

c =

X

fi;jg2E

V

ij

tanh �V

ij

; g(X) =

X

fi;jg2X

2V

ij

=sinh 2�V

ij

;
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and let f(X) = c+ g(X). Then

@

@�

w(X) =

@

@�

Y

fi;jg2X

tanh �V

ij

=

Y

fi;jg2X

tanh �V

ij

X

fi;jg2X

2V

ij

=sinh 2�V

ij

= w(X)g(X):

Using this identity, and starting from the expansion given in Theorem 1:

�E =

@

@�

(lnZ) =

@

@�

lnA+

@

@�

lnZ

0

=

@

@�

X

fi;jg2E

ln cosh �V

ij

+

1

Z

0

@

@�

X

X

w(X)

=

X

fi;jg2E

V

ij

tanh �V

ij

+

1

Z

0

X

X

w(X)g(X)

=

1

Z

0

X

X

w(X)(c+ g(X)):

Thus, the mean energy can be expressed as an expectation: �E = E(f). This expression

for �E immediately suggests that we attempt to estimate the mean energy by taking an

average of f(X) over some polynomially bounded set of sample con�gurations X . This

basic idea can be made to work, with a little re�nement. As before, we proceed by case

analysis.

Case I: �V

ij

> 1 for some pair i; j . The condition guarantees that the constant c is

not too small in relation to g(X), and hence that the ratio max(f)=E(f) is not too large.

This, as we have seen, implies that E(f) can be estimated by direct experiment. First

note that the existence of a pair i; j with �V

ij

> 1 entails

c � V

ij

tanh �V

ij

>

3V

ij

4

>

3

4�

: (34)

Then observe that the inequality x=sinh x < 1, valid for x > 0, implies

g(X) =

X

fi;jg2X

2V

ij

=sinh 2�V

ij

<

X

fi;jg2X

1

�

�

m

�

:

Thus max(f) = c + max(g) � c + m=� � c(1 + 4m=3), where the �nal step re-

lies on inequality (34). Since E(f) is certainly bounded below by c, it follows that

max(f)=E(f) � 1 + 4m=3 � 7m=3.

Case II: �V

ij

� 1 for all i; j . To estimate E(f) within ratio 1 + � it is enough, since c

is positive, to estimate E(g) = E(f) � c within ratio 1 + �. For simplicity, we shall, in
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the sequel, work with g instead of f . Using the bounds 1=2 < x=sinhx < 1, valid for x

in the range 0 < x � 2, we have 1=2� < 2V

ij

=sinh 2�V

ij

< 1=� , implying

1=2� < g(X) < m=�; for X 6= ?: (35)

Let C 6= ? be a closed subgraph which maximises w(C). Note that C is necessarily a

cycle, and can be found in polynomial time using a standard shortest paths algorithm.

There are two subcases, depending on the magnitude of w(C).

Case IIa: w(C) � 1=32nm

2

. In this subcase we may estimate E(g) by direct experi-

ment. Since Z

0

� w(?) + w(C) = 1 + w(C), it follows that

Pr(X = ?) =

w(?)

Z

0

=

1

Z

0

� (1 + w(C))

�1

� 1�

1

64nm

2

:

Combining this inequality with inequality (35), we obtain E(g) > (1=2�) Pr(X 6= ?) �

1=128�nm

2

. Then a further application of inequality (35) yields the required bound:

max(g)=E(g) � 128nm

3

.

Case IIb: w(C) < 1=32nm

2

. The essential problem in this case is that we have no lower

bound on the expectation of g . The solution is to increase the expectation arti�cially,

by adjusting the weight function w . Naturally, a new weight function induces a new

probability distribution on con�gurations, which in turn alters the expectation of g . It is

therefore important to adjust the weights systematically, so that it is possible to recover

the expectation of g with respect to the original distribution from the knowledge of the

expectation of g with respect to the new distribution.

The new weight function w

�

is parameterised by a real number � in the range 0 � � � 1.

We de�ne adjusted edge weights �

(�)

ij

= �

1��

ij

which induce a new weight function w

�

:

w

�

(X) =

Y

fi;jg2X

�

(�)

ij

=

Y

fi;jg2X

�

1��

ij

= w(X)

1��

:

Note that the original weight function corresponds to setting � = 0, i.e., w(X) = w

0

(X).

Note also that 0 < �

(�)

ij

� 1, so the new edge weights �

(�)

ij

correspond to a well de�ned

subgraphs-world process; as a consequence, it is possible to sample con�gurations accord-

ing to the distribution which assigns probability w

�

(X)=Z

0

�

to con�guration X , where

Z

0

�

=

P

X

w

�

(X). Let E

�

(�) denote the expectation operator with respect to the new

distribution, i.e., E

�

(h) = (Z

0

�

)

�1

P

X

w

�

(X)h(X).

Now �x � so that w

�

(C) = 1=32nm

2

; the required value of � is the solution to the

equation w(C)

1��

= 1=32nm

2

, and lies in the range 0 < � < 1. For any X 6= ?,

maximality of C implies w(C) � w(X), which in turn implies w

�

(C) = w(C)

1��

�

w(X)

1��

= w

�

(X); thus C remains a maximum weight non-trivial con�guration under
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the new weight function w

�

. Now the quantity we wish to evaluate, namely E(g), can

be written as an expectation with respect to the new distribution:

E(g) =

1

Z

0

X

X

w(X)g(X) =

1

Z

0

X

X

w

�

(X)w(X)

�

g(X)

=

Z

0

�

Z

0

E

�

(w(X)

�

g(X)): (36)

Since Z

0

and Z

0

�

can be computed by the fpras of Section 3, we merely have to show

that E

�

(w(X)

�

g(X)) can be approximated in polynomial time. As before, this can be

achieved by bounding the ratio of the maximum to the mean.

By maximality of C and inequality (35),

max

X

(w(X)

�

g(X)) � w(C)

�

m

�

:

Also, by Lemma 11 and inequality (35),

E

�

(w(X)

�

g(X)) �

w

�

(C)

Z

0

�

(w(C)

�

g(C))

�

1

32nm

3

w(C)

�

2�

=

w(C)

�

64�nm

3

:

Putting these inequalities together, we obtain

max(w(X)

�

g(X))

E

�

(w(X)

�

g(X))

� 64nm

4

:

This completes the analysis of Case IIb.

It is this �nal case which determines the execution time of the proposed fpras for �E .

Consider the cost of evaluating the three factors appearing in (36), within ratio 1 + �=4

and with failure probability 1=16. From Section 3, O(�

�2

m

3

n

11

log n) time su�ces to

obtain satisfactory estimates for the factors Z

0

and Z

0

�

. Setting � = �=4 and � = 1=16

in Lemma 3, we see that O(�

�2

nm

4

) samples from the generator su�ce to evaluate the

remaining factor, E

�

(w(X)

�

g(X)), within ratio 1 + �=4 and with failure probability

1=16. By Theorem 10, the generation of each sample requires expected time O(m

3

n

8

).

(As before, we are justi�ed in assuming that � � 2

�m

.) Thus the expected time required

to obtain a su�ciently accurate estimate of E

�

(w(X)

�

g(X)) is O(�

�2

m

7

n

9

); it can be seen

that this term dominates those which arise in the other steps of the algorithm. Now set a

de�nite upper bound on the aggregated execution time of the generator which is 16 times

the expected execution time. By this means the quoted average case time-complexity

is converted into a worst case time complexity, at the cost of introducing an additional

failure probability of 1=16. This additional failure probability may be absorbed into the

overall failure probability of 1=4 which the de�nition of fpras allows.
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Finally, we sketch the modi�cations required to handle the case of non-zero external

�eld, i.e., B > 0. Starting with the general subgraphs-world expansion for Z , and

di�erentiating lnZ with respect to � , the mean energy �E can again be expressed as

the expectation of an appropriately de�ned random variable f(X). Naturally, the form

of f is now more complex. Lemma 11 continues to hold, but with 1=64n

2

m

2

replacing

1=32nm

2

as the upper bound on w(X). The proof of Lemma 11 increases in technical

complexity, but the main idea remains as before. The complications arise from the fact

that the maximum weight non-trivial subgraph may be either a cycle (as before) or a

single edge (previously excluded). The case analysis in the proof of the theorem proceeds

as before, but the upper bound on overall execution time rises to O(�

�2

m

7

n

10

).

In this section, we have presented fully polynomial randomised approximation schemes

for the �rst derivatives of lnZ with respect to � and B . The second derivatives of lnZ

also have physical signi�cance: C = k�

2

@

2

(lnZ)=@�

2

is the speci�c heat, and X =

�

�1

@

2

(lnZ)=@B

2

the magnetic susceptibility. (Here, k denotes Boltzmann's constant.)

It is natural to ask whether the techniques presented in this section can be extended

to these quantities. With a certain amount of computational e�ort, it is possible to

express C and X as expectations of appropriate random variables in the subgraphs-

world. Unfortunately, however, these random variables are not necessarily positive, and

the proof techniques of Theorems 9 and 12 are therefore not applicable. At present, the

question of the existence of an fpras for C and X remains open.

We close the section by presenting proofs of the technical lemmas.

Proof of Lemma 8 We demonstrate, by a simple mapping argument, that

Pr(jodd(X)j = 2) � �

2

Pr(jodd(X)j = 0): (37)

Let 


k

denote the set fX 2 
 : jodd(X)j = 2kg. Associate with each con�gura-

tion X 2 


0

the set S(X) = fX

0

2 
 : jX

0

� Xj = 1g � 


1

. It is straightfor-

ward to verify that the the subsets fS(X) : X 2 


0

g are pairwise disjoint, and that

P

X

0

2S(X)

w(X

0

) � w(X)�

2

for all X 2 


0

. (For X = ? we need the condition

P

�

ij

� 1.) Thus

P

X2


1

w(X) � �

2

P

X2


0

w(X), and inequality (37) follows by di-

viding through by Z

0

.

It follows from inequality (37) that Pr(jodd(X)j > 0) � �

2

=(1 + �

2

) � �

2

=2; this deals

with the �rst part of the lemma. Furthermore, Lemma 4 assures us that Pr(jodd(X)j =

0) � 1=10 whenever � � n

�1

. Combining this observation with inequality (37) yields

the second part of the lemma.
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Proof of Lemma 11 Since B = 0, it is only the closed subgraphs X � E which

have non-zero weight: w(X) =

Q

fi;jg2X

�

ij

. Let X

0

, X

1

, X

2

; : : : , X

s�1

be an enumer-

ation of the closed subgraphs of E in order of non-increasing weight; thus X

0

= ?,

w(X

0

) = 1, and w(X

1

) � 1=32nm

2

. For each edge e = fi; jg 2 E de�ne l(e), the

length of e, to be � ln�

ij

. Extend the length function to subsets of E by summation,

so that l(X) = � lnw(X). (Clearly, these \lengths" are merely weights which com-

bine additively rather than multiplicatively. Even so, they will prove to be a convenient

notational and conceptual aid.)

De�ne L = l(X

1

) = � lnw(X

1

). Let C = (e

1

; e

2

; � � � ; e

r

) be any circuit in E ; here,

each e

i

= fv

i�1

; v

i

g is an edge, and v

r

= v

0

. De�ne d

0

= 0, and d

k

=

P

k

i=1

l(e

i

) for

1 � k � r . Call a directed edge e

k

= (v

k�1

; v

k

) of C a pier if there exists an integer h

with d

k�1

< hL=2 � d

k

. We make two observations about piers. First, the circuit C is

completely determined by the start vertex v

0

and the set of all piers. This is because the

total length of edges in C which form a span between two consecutive piers is strictly

less than L=2. Thus, the existence of two distinct spans between consecutive piers would

imply the existence of a circuit of length less than L, and hence of a non-trivial closed

subgraph of weight greater than e

�L

= w(X

1

); this would contradict the assumption that

X

1

is maximal. Second, the total number of piers in C is at most 2d

r

=L = 2l(C)=L.

Intuitively, the role of piers is to provide a compact encoding of circuits.

Now suppose � � 0, and let X � E be a general closed subgraph with l(X) � �L.

Decompose X into its connected components; each of these components is Eulerian and

hence can be regarded as a circuit with speci�ed start vertex. Encode each component

of X as a sequence consisting of the start vertex of the circuit followed by the piers

of the circuit in sequence. Encode X itself by concatenating the codes for the various

components; note that X is completely determined by the code so formed. Since each

connected component of X has length at least L, the total number of vertices in the code

(which is equal to the number of components) is at most l(X)=L = �. Furthermore, the

total number of directed edges in the code (which is the total number of piers) is at most

2l(X)=L = 2�. These observations yield an upper bound on the number of distinct codes

for closed X with l(X) � �L. The number of ways of selecting a sequence of at most

� distinct vertices is bounded by n

�

; that of selecting a sequence of at most 2� distinct

directed edges by (2m)

2�

; that of interleaving the vertex and edge sequences by 2

3�

.

Thus the number of distinct codes, and hence the number of closed X with l(X) � �L,

is bounded above by (32nm

2

)

�

.

Now consider the subsequence X

0

, X

1

; : : : , X

k�1

, consisting of the k closed subgraphs of

greatest weight (i.e., shortest length), and let � = l(X

k�1

)=L. Then the coding argument

implies (32nm

2

)

�

� k . On the other hand, from the de�nition of �, and using the bound
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on w(X

1

) guaranteed in the statement of the lemma,

(32nm

2

)

�

�

1

w(X

1

)

�

=

1

w(X

k�1

)

:

Combining these two inequalities we obtain w(X

k�1

) � k

�1

, and hence

Z

0

=

s

X

k=1

w(X

k�1

) �

s

X

k=1

1

k

�

2

m

X

k=1

1

k

:

By a well known asymptotic result [21, p. 74], the latter sum is bounded by m for all

su�ciently large m; indeed it is enough that m � 3. The lemma holds trivially for

m < 3.

6 Completeness Results

In this paper we have restricted our attention to the ferromagnetic case of the Ising

model; moreover we have contented ourselves with solutions which are approximate only.

The results of this section aim to justify these apparently limited goals. Since we are

concerned here with negative results, it will be an advantage to work with a simpli�ed

version of the Ising problem.

Instance: A symmetric matrix (V

ij

: i; j 2 [n]) with entries in f�1; 0;+1g, and

a natural number, � , presented in unary notation.

Output: The partition function Z = Z(V

ij

; �) =

P

�

2

��H(�)

, where H(�) =

�

P

fi;jg2E

V

ij

�

i

�

j

, and the sum is over � 2 f�1;+1g

n

. (As usual, E is the set

of pairs fi; jg with V

ij

6= 0.)

We refer to the problem in this form as Ising. The main points to note are that the

external �eld is zero, and that powers of e have been replaced by powers of 2. The latter

modi�cation merely amounts to a scaling of � , and is made to avoid problems which would

arise from the introduction of real arithmetic. The restrictions imposed on the various

quantities appearing in an instance of Ising ensure that the output is a rational number

whose numerator is a binary integer with a polynomially bounded number of digits, and

whose denominator is a certain power of two. The output can thus be considered as a

�xed-point binary number with an explicit \binary point". Adopting this viewpoint, it is

not di�cult to locate Ising within the class #P of combinatorial enumeration problems.

(See Garey and Johnson's book [12, p. 167] for an explanation of #P and its completeness

class.)

The two problems which form the starting point for the intractability results of this

section are MaxCut:
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Instance: An undirected graph G and a positive integer b.

Question: Is there a cut-set in G of size b? I.e., is there a partition of the

vertex set of G into two subsets such that the number of edges which span the

two subsets is at least b?

and the related #MaxCut:

Instance: An undirected graph G.

Output: The number of cut-sets in G of maximum size.

The following is a slight extension of a known result.

Lemma 13 MaxCut is NP-complete, and #MaxCut is #P-complete.

Proof NP-completeness of MaxCut is proved in [13]. The reductions used there are

not \parsimonious" [12, p. 169], and hence do not immediately imply #P-completeness

of #MaxCut. As usual, however, the reductions (given in the proofs of Theorems 1.1

and 1.2 of that paper) can be modi�ed, without great di�culty, to yield parsimonious

versions. For those who wish to follow the argument in detail, the necessary modi�cations

are presented below.

In [13, Theorem 1.1], new variables fe

i

: 1 � i � mg should be introduced, and the

de�nition of the clause set S

0

amended to read

S

0

=

m

[

i=1

n

(d

i

_ :e

i

);

(a

i

); (b

i

); (c

i

); (d

i

); (e

i

);

(a

i

_ b

i

); (a

i

_ c

i

); : : : ; (d

i

_ e

i

);

(:a

i

_ :b

i

); (:a

i

_ :c

i

); : : : ; (:d

i

_ :e

i

)

o

;

where each ellipsis stands for seven omitted disjuctions. Note that there are 26 clauses

in S

0

arising from the ith clause, (a

i

_ b

i

_ c

i

), of S . If the ith clause of S is satis�ed,

then there is precisely one way to choose truth values for the variables d

i

and e

i

so

that 20 of these 26 clauses of S

0

are satis�ed. Conversely, if the ith clause of S is not

satis�ed then, however d

i

and e

i

are chosen, at most 19 of the 26 clauses can be satis�ed.

Thus, setting k = 20m, the original proof goes through. Note that the reduction is now

parsimonious.

In [13, Theorem 1.2], duplicate clauses should be removed by replacing each clause C

0

i

=

(u

i

_ v

i

) by the seven clauses

(u

i

_ :c

i

); (:u

i

_ c

i

); (u

i

_ :d

i

); (:u

i

_ d

i

); (c

i

_ :d

i

); (:c

i

_ d

i

), and (c

i

_ v

i

);
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where c

i

and d

i

are new variables. For a given assignment to u

i

and v

i

, one must set

c

i

= d

i

= u

i

in order to maximise the total number of satis�ed clauses within these

seven. Now, if C

0

i

is satis�ed then all seven clauses may be satis�ed; however, if C

0

i

is

not satis�ed then at most six of the clauses may be satis�ed. The existing proof goes

through with k set to k

0

+ 6q . Again, the modi�ed reduction is parsimonious.

The �rst theorem of the section presents evidence that our restriction to the ferro-

magnetic case of the Ising model cannot be relaxed.

Theorem 14 There can be no fpras for Ising unless RP = NP.

RP is the class of decision problems which can be solved in polynomial time by a

certain type of randomised algorithm which is allowed one-sided errors. (See [2, p. 138]

for a precise de�nition.) It is widely conjectured that RP is strictly contained in NP. Thus

Theorem 14 can be interpreted as strong evidence that no approximation algorithm exists

for the Ising partition function in the non-ferromagnetic, or \spin-glass" case. Indeed,

the existence of such an algorithm would imply, by virtue of Theorem 14, the existence

of e�cient randomised algorithms for such hard problems as testing satis�ability of a

Boolean formula and the Travelling Salesman Problem.

Proof of Theorem 14 Let G = ([n]; E) be a graph and b a positive integer de�ning an

instance of MaxCut. Construct an instance of Ising by setting � = n, and V

ij

= �1

when fi; jg 2 E . (As usual, V

ij

= 0 when fi; jg =2 E .) Each spin-vector � partitions

[n] into two subsets, and hence de�nes a cut-set of G: cut(�) = ffi; jg 2 E : �

i

�

j

=

�1g. Note that H(�) = m � 2jcut(�)j, where m = jEj. Let N

k

denote the number

of spin-vectors � for which jcut(�)j = k . Then the simpli�ed partition function can be

re-expressed as Z =

P

m

k=0

N

k

2

�(2k�m)

.

Note that if a cut-set of size b exists in G then Z � 2

�(2b�m)

= 2

n(2b�m)

; in contrast,

if no such cut-set exists, Z � 2

n

2

�(2b�2�m)

= 2

�n

2

n(2b�m)

. Now the existence of an

fpras for Ising would imply that these two cases could be distinguished in polynomial

time, with failure probability at most

1

4

; in other words, MaxCut 2 BPP. From this it

would follow|since MaxCut is NP-complete and BPP is closed under polynomial time

reductions|that NP � BPP. However, the inclusion NP � BPP entails RP = NP [22].

Our �nal theorem states that Ising is a complete problem for the class #P. Thus

a polynomial time algorithm which solved it exactly would yield similar algorithms for

a range of presumably intractable problems, such as counting the number of satisfying

assignments of a Boolean formula and counting optimal Travelling Salesman tours. We
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should therefore not be too disappointed that we have obtained only approximation al-

gorithms for the Ising problem.

Theorem 15 Ising is #P-complete even when the matrix V

ij

is non-negative (i.e., even

in the ferromagnetic case).

Proof We present an easy polynomial-time (Turing) reduction from #MaxCut. Let

G = ([n]; E) be an instance of #MaxCut. Set V

ij

= +1 when fi; jg 2 E , and

V

ij

= 0 otherwise. Note that H(�) = 2jcut(�)j � m. With N

k

as before we have

Z =

P

m

k=0

N

k

2

�(m�2k)

= 2

�m

p(4

��

), where p(x) =

P

k

N

k

x

k

is a polynomial of de-

gree m. Suppose that the value of p is known at the points � = 0; 1; : : : ;m, i.e, at

x = 1; 4

�1

; 4

�2

; : : : ; 4

�m

. Then the coe�cients of p can be recovered in polynomial time

from these values by interpolation. Using Newton's formula, this process can be carried

out using only rational arithmetic; moreover, the lengths of the numerators and denomi-

nators all remain polynomially bounded. The leading (non-zero) coe�cient of p is twice

the number of maximum cut-sets in G. (Note that each bipartition of [n] corresponds to

a pair of opposite spin-vectors.)

Further completeness results related to the ones in this section can be found in [3, 15].
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