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Abstract

The paper is concerned with tools for the quantitative analysis of �nite Markov

chains whose states are combinatorial structures. Chains of this kind have al-

gorithmic applications in many areas, including random sampling, approximate

counting, statistical physics and combinatorial optimisation. The e�ciency of the

resulting algorithms depends crucially on the mixing rate of the chain, i.e., the

time taken for it to reach its stationary or equilibrium distribution.

The paper presents a new upper bound on the mixing rate, based on the solu-

tion to a multicommodity ow problem in the Markov chain viewed as a graph.

The bound gives sharper estimates for the mixing rate of several important com-

plex Markov chains. As a result, improved bounds are obtained for the runtimes

of randomised approximation algorithms for various problems, including comput-

ing the permanent of a 0-1 matrix, counting matchings in graphs, and computing

the partition function of a ferromagnetic Ising system. Moreover, solutions to the

multicommodity ow problem are shown to capture the mixing rate quite closely:

thus, under fairly general conditions, a Markov chain is rapidly mixing if and only

if it supports a ow of low cost.



1 Summary

In recent years, Markov chain simulation has emerged as a powerful algorithmic

paradigm. Its chief application is to the random sampling of combinatorial struc-

tures from a speci�ed probability distribution. Such a sampling procedure lies at

the heart of e�cient probabilistic algorithms for a wide variety of problems, such

as approximating the size of combinatorially de�ned sets, estimating the expecta-

tion of certain operators in statistical physics, and combinatorial optimisation by

stochastic search.

The algorithmic idea is simple. Suppose we wish to sample the elements of

a large but �nite set X of structures from a distribution � . First, construct a

Markov chain whose states are the elements of X and which converges asymp-

totically to the stationary or equilibrium distribution � over X ; it is usually

possible to do this using as transitions simple random perturbations of the struc-

tures in X . Then, starting from an arbitrary state, simulate the chain until it is

close to equilibrium; the distribution of the �nal state will be close to the desired

distribution � .

To take a typical example, let H be a connected graph and X the set of

spanning trees of H , and suppose we wish to sample elements of X from a uniform

distribution. Consider the Markov chain MC(H) with state space X which, given

a spanning tree T 2 X , makes transitions as follows: select uniformly at random

an edge e of H which does not belong to T , add e to T , thereby creating a single

cycle C , and �nally remove an edge of C uniformly at random to create a new

spanning tree T

0

. It is not hard to check that this Markov chain converges to the

uniform distribution over X .

Analysing the e�ciency of the above technique in a given application presents

a considerable challenge. The key issue is to determine the mixing rate of the

chain, i.e., the number of simulation steps needed to ensure that it is su�ciently

close to its equilibrium distribution � . An e�cient algorithm can result only if

this number is reasonably small, which usually means dramatically less than the

size of the state space X itself. For example, in the spanning tree problem above

we would want MC(H) to reach equilibrium in time bounded by some polynomial

in n, the size of the problem instance H ; however, the number of states jXj will

typically be exponential in n. Informally, we will call chains having this property

rapidly mixing. (More correctly, this is a property of families of chains, such as

MC(H), parameterised on problem instances.)

The classical theory of Markov chains has not been greatly concerned with a

quantitative study of the approach to equilibrium. This has led to the develop-

ment recently of new analytic tools, based on coupling, stopping times and group

representation theory, which have been successfully applied to chains with a regu-

lar structure such as random walks on certain special graphs or groups. The book

by Diaconis [7] gives an excellent survey.

Markov chains arising in the combinatorial applications mentioned above are

typically much more complex, however. The �rst analyses of such chains were
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made possible using a quantity called the conductance [23, 24]. Suppose we view

a (reversible) Markov chain as a weighted graph G, whose vertices are states and

whose edges are transitions. Then the conductance � � �(G) is essentially the

edge expansion of G. Equivalently, � may be viewed as the probability that

the chain in equilibrium escapes from a subset S of the state space in one step,

minimised over small subsets S . (Precise de�nitions of this and other quantities

are given in later sections.) It is intuitively reasonable that � should be related to

the mixing rate: if the above escape probability is small for some S then the cut

edges separating S from X � S constitute a \constriction" or bottleneck which

prevents rapid convergence to equilibrium. Conversely, a large value of � means

that the chain cannot get trapped by any small region of the space, and hence

should be rapidly mixing.

A useful piece of technology for obtaining lower bounds on � in complex

examples was developed in [11, 23]. The idea is to construct a canonical path 

xy

in the graph G between each ordered pair of distinct states x and y . If the

paths can be chosen in such a way that no edge is overloaded by paths, then the

chain cannot contain a constriction, so � is not too small. (The existence of a

constriction between S and X � S would imply that any choice of paths must

overload the edges in the constriction.)

More precisely, suppose � is the maximum loading of an edge by paths; then it

is not hard to show (see Theorem 3 of Section 2) that � � (2�)

�1

, so � does indeed

provide a bound on the mixing rate of the chain. The power of this observation

lies in the fact that a good collection � = f

xy

g of canonical paths can sometimes

be constructed for which � can be bounded rather tightly; indeed, the quantity

� arises very naturally from a combinatorial encoding technique, as explained in

Section 3.

In a recent paper [8], Diaconis and Stroock observed that path arguments

similar to that described above can lead directly to bounds on the mixing rate,

independently of the conductance �. In this paper, we present a new bound which

is a modi�cation of that of Diaconis and Stroock. The new bound also involves the

maximum loading of an edge by paths, but takes into account the lengths of the

paths. A simpli�ed form of the bound (Corollary 6 of Section 2) relates the mixing

rate to the product �` for a collection of paths �, where ` is the length of a longest

path in �. This bound turns out to be sharper than the conductance-based bound

above when the maximum path length ` is small compared to �.

In Section 3 of the paper, we illustrate the e�ectiveness of the new bound by

obtaining signi�cantly improved estimates for the mixing rate of several important

complex Markov chains, which have been used in the design of algorithms for

problems involving monomer-dimer systems, matchings in graphs, the Ising model,

and almost uniform generation of combinatorial structures. The factors saved in

the mixing rate translate directly to the runtime of the algorithms that use the

chains. These improvements apparently do not follow from the similar bound

given by Diaconis and Stroock because the Markov chains in question have widely
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di�ering weights on their edges. (The two bounds are equivalent if the edge weights

are uniform, e.g., in the case of random walk on a graph.)

Finally, in Section 4, we address the problem of characterising the rapid mixing

property for reversible Markov chains. It is already known that the conductance �

characterises rapid mixing, in the sense that �

�1

essentially measures the mixing

rate up to a polynomial factor (in fact, a square). In view of the foregoing results, it

is natural to ask whether a similar characterisation in terms of the path measure �

also holds. This would mean that whenever a Markov chain is rapidly mixing a

proof using a path argument exists.

We are able to answer this question in the a�rmative provided the de�nition

of � is generalised in a natural way to allow multiple rather than canonical paths

between pairs of states. This leads us to consider a multicommodity ow problem

in the graph G describing the Markov chain, in which a certain quantity of some

commodity (x; y) is to be transported from x to y for all pairs x; y 2 X . For

a given ow, � may then be interpreted as the maximum total ow through any

edge e as a fraction of its weight, or capacity. Minimising over all possible ows,

we get a quantity which we call the resistance � � �(G) of the Markov chain.

The main result of this section states that, if a reversible Markov chain is

close to equilibrium after � steps, then its resistance cannot exceed O(� ). Thus

the resistance, like the conductance, does indeed characterise the rapid mixing

property. We also observe that the quantities �

�1

and � are in fact equal up to

a factor O(logN). This is actually an approximate max-ow min-cut theorem

for the multicommodity ow problem, and is a natural generalisation of a result

obtained in a di�erent context by Leighton and Rao [17].

2 Bounds on the mixing rate

We assume familiarity with the elementary theory of Markov chains: see, e.g., [15]

for a more detailed treatment. Let X be a �nite set, and P the transition matrix

of a discrete-time Markov chain on state space X . We assume throughout that

P is irreducible (i.e., that all states communicate) and reversible with respect to

the probability distribution � on X , i.e., it satis�es the detailed balance condition

Q(x; y) � �(x)P (x; y) = �(y)P (y; x) for all x; y 2 X: (1)

Condition (1) implies that � is a stationary or equilibrium distribution for P ,

i.e., �P = � . If in addition P is aperiodic, the distribution of the state at time t

converges pointwise to � as t ! 1, regardless of the initial state. In this case

the chain is called ergodic. Simulating an ergodic chain for su�ciently many steps

starting from an arbitrary initial state, and noting the �nal state, provides an

algorithm for sampling elements of X from a distribution that is arbitrarily close

to � .

We note that the above framework is quite general for the purposes of the

combinatorial applications mentioned in the previous section. In particular, it is
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usually a straightforward matter to make condition (1) hold using as transitions

simple random perturbations of the structures in X , such as those employed in

the spanning tree example given earlier.

It is convenient to identify a reversible Markov chain with a weighted undirec-

ted graph G on vertex set X , with an edge of weight Q(x; y) connecting vertices

x and y i� Q(x; y) > 0. (Thus the graph may contain self-loops.) Note that this

graph is always connected and uniquely speci�es the chain.

As is well known, P has real eigenvalues 1 = �

0

> �

1

� �

2

� : : : � �

N�1

�

�1, where N = jXj; P is ergodic i� �

N�1

> �1. For an ergodic chain, the rate

of convergence to � is governed by the second-largest eigenvalue in absolute value,

�

max

= maxf�

1

; j�

N�1

jg. To make this statement precise, let x be the state at

time t = 0 and denote by P

t

(x; � ) the distribution of the state at time t. The

variation distance at time t with initial state x is

�

x

(t) = max

S�X

jP

t

(x; S)� �(S)j =

1

2

X

y2X

jP

t

(x; y)� �(y)j:

We will measure rate of convergence using the function �

x

de�ned for � > 0 by

�

x

(�) = minft : �

x

(t

0

) � � for all t

0

� tg:

Proposition 1 The quantity �

x

(�) satis�es

(i) �

x

(�) � (1� �

max

)

�1

�

ln�(x)

�1

+ ln �

�1

�

;

(ii) max

x2X

�

x

(�) �

1

2

�

max

(1� �

max

)

�1

ln(2�)

�1

.

Part (i) follows from [8, Proposition 3] and gives an upper bound on the time

to reach equilibrium from a given initial state x in terms of �

max

and �(x). The

converse, part (ii), which is a discrete-time version of [1, Proposition 8], says that

convergence cannot be rapid unless �

max

is bounded away from 1. (Note that in

the latter bound there is a maximisation over initial states: it is possible for a

chain to converge fast from certain states even when �

max

is close to 1. However,

even if such a state exists, �nding it requires more detailed information about the

chain than is usually available in the more complex examples of interest to us.)

Results analogous to Proposition 1 hold for measures other than the variation

distance. For example, [23, 24] give bounds in terms of the relative pointwise

distance, de�ned by �

rpd

x

(t) = max

y2X

jP

t

(x; y)� �(y)j=�(y).

In the remainder of this paper, we will ignore the technical issues arising from

the choice of initial state. Proposition 1 then shows that we can identify the rapid

mixing property with a large value of the spectral gap 1 � �

max

. Moreover, in

practice the smallest eigenvalue �

N�1

is unimportant: a crude approach is to add

a holding probability of

1

2

to every state, i.e., replace P by

1

2

(I + P ), where I

is the N � N identity matrix. This ensures that all eigenvalues are non-negative

while decreasing the spectral gap 1� �

1

only by a factor of 2. We therefore focus

attention on the second eigenvalue �

1

.
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As indicated in the previous section, the �rst upper bounds on �

1

for complex

Markov chains were based on the conductance [23, 24], de�ned by

� � �(G) = min

S�X

0<�(S)�1=2

Q(S; S)

�(S)

; (2)

where G is the weighted graph describing the chain and Q(S; S) denotes the

sum of Q(x; y) over edges fx; yg in G with x 2 S and y 2 S = X � S . The

conductance may be viewed as a weighted version of the edge expansion of G.

Alternatively, since Q(S; S) =

P

x2S;y2S

�(x)P (x; y), the quotient in (2) is just the

conditional probability that the chain in equilibrium escapes from the subset S

of the state space in one step, given that it is initially in S . Thus � measures

the ability of the chain to escape from any small region of the state space, and

hence to make rapid progress to equilibrium. The following result formalising this

intuition is from [23, 24]; see also [2, 3, 4, 16, 19, 21] for related results.

Theorem 2 The second eigenvalue �

1

of a reversible Markov chain satis�es

1� 2� � �

1

� 1�

�

2

2

:

Note that � characterises the rapid mixing property: a Markov chain is rapidly

mixing, in the sense of the previous section, if and only if � � 1=poly(n), where

n is the problem size.

In order to apply Theorem 2, it is necessary to estimate the conductance �.

Since we are usually more interested in positive results, lower bounds on � are

generally of greater interest and we focus on them for most of the rest of this

paper. (We shall consider negative results in Section 4.) In some cases such a

bound can be obtained directly, using elementary arguments [16, 24] or geometric

ideas [9, 14]. However, in many important applications the only known handle

on � is via the canonical path approach sketched in the previous section. Thus

we attempt to construct a family � = f

xy

g of simple paths in G, one between

each ordered pair of distinct states x and y , such that no edge is overloaded by

paths. The maximum loading of any edge is measured by the quantity

� � �(�) = max

e

1

Q(e)

X



xy

3e

�(x)�(y); (3)

where the maximum is over oriented edges e in G (i.e, transitions of the Markov

chain), and Q(e) = Q(u; v) if e = (u; v). Note that we may view the Markov

chain as a ow network, in which �(x)�(y) units of ow travel from x to y

along 

xy

, and Q(e) plays the role of the capacity of e. The quantity � then

measures the maximum ow along any edge as a fraction of its capacity. We shall

pursue this analogy further in Section 4.

The following simple result con�rms our intuition that the existence of a good

choice of paths should imply a large value for the conductance.
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Theorem 3 For any reversible Markov chain, and any choice of canonical paths,

� �

1

2�

:

Proof: Let S � X be a subset with 0 < �(S) �

1

2

which minimises the quotient

Q(S; S)=�(S). For any choice of paths, the total net ow crossing the cut from S

to S is �(S)�(S); moreover, the aggregated capacity of the cut edges (x; y), with

x 2 S and y 2 S , is just Q(S; S). Hence there must exist a cut edge e with

1

Q(e)

X



xy

3e

�(x)�(y) �

�(S)�(S)

Q(S; S)

�

�(S)

2Q(S; S)

=

1

2�

:

Theorems 2 and 3 immediately yield the following bound on �

1

:

Corollary 4 For any reversible Markov chain, and any choice of canonical paths,

the second eigenvalue �

1

satis�es

�

1

� 1�

1

8�

2

:

In recent work [8], Diaconis and Stroock observed that bounds on �

1

can be

obtained directly in terms of canonical paths, without appealing to the conduct-

ance bound of Theorem 2. This latter bound is potentially rather weak because

of the appearance of the square, so a direct approach may lead to sharper estim-

ates for �

1

. We now present a modi�ed version of Diaconis' and Stroock's bound

which is apparently more useful than theirs in many combinatorial applications.

In the next section, we will illustrate the e�ectiveness of the bound by obtaining

improved estimates for the second eigenvalue of several important Markov chains.

To state the new bound, we modify the measure � to take into account the

lengths of the paths. For a given collection � = f

xy

g of canonical paths, the key

quantity is now

� � �(�) = max

e

1

Q(e)

X



xy

3e

�(x)�(y)j

xy

j; (4)

where j

xy

j denotes the length (i.e., number of edges) of the path 

xy

.

Theorem 5 For any reversible Markov chain, and any choice of canonical paths,

the second eigenvalue �

1

satis�es

�

1

� 1�

1

�

:

Proof: Let L = I � P , so that the eigenvalues of L are �

i

= 1 � �

i

. Follow-

ing [8], the variational characterisation of �

1

is

�

1

= inf

 

P

x;y2X

( (x)�  (y))

2

Q(x; y)

P

x;y2X

( (x)�  (y))

2

�(x)�(y)

; (5)
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where the in�mum is taken over all non-constant functions  : X ! R. (The

constant functions are the only eigenfunctions of L with eigenvalue �

0

= 0.)

Now for any  , and any choice of canonical paths �, the denominator of (5) may

be written as follows:

X

x;y

( (x)�  (y))

2

�(x)�(y) =

X

x;y

�(x)�(y)

�

X

e2

xy

( (e

+

)�  (e

�

))

�

2

�

X

x;y

�(x)�(y)j

xy

j

X

e2

xy

( (e

+

)�  (e

�

))

2

=

X

e

( (e

+

)�  (e

�

))

2

X



xy

3e

�(x)�(y)j

xy

j

�

X

e

( (e

+

)�  (e

�

))

2

Q(e)�(�)

= �(�)

X

x;y

Q(x; y) ( (x)�  (y))

2

:

Here e

�

and e

+

denote the start and end vertices of the oriented edge e, and the

�rst inequality is Cauchy-Schwarz. The result now follows from (5).

The following simpli�ed form of Theorem 5 is often useful.

Corollary 6 For any reversible Markov chain, and any choice of canonical

paths �, the second eigenvalue �

1

satis�es

�

1

� 1�

1

�`

;

where ` � `(�) is the length of a longest path in �.

Corollary 6 may be applied in the same situations as Corollary 4, by construct-

ing paths and estimating the quantity �. Frequently, however, the maximumpath

length ` will be signi�cantly less than the estimate obtained for �; in such cases,

Corollary 6 will give a sharper bound than Corollary 4. The improved bounds

presented in the next section are all based on this observation.

Remark: Diaconis and Stroock [8] give a bound which is similar to that of

Theorem 5 but which uses a di�erent measure of path length. To get their bound

we replace j

xy

j in the de�nition (4) of � by the quantity

j

xy

j

Q;e

=

X

e

0

2

xy

Q(e)

Q(e

0

)

;

with everything else de�ned as before. Let �

DS

be the measure obtained in this

way. Diaconis' and Stroock's bound [8, Proposition 1], may be stated as

�

1

� 1� �

DS

�1

: (6)
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The examples in the next section indicate that �, or �`, may be a more useful

quantity to work with in practice that �

DS

. The reason seems to be that � has a

more \local" nature than �

DS

. To see this, note that the contribution of a path



xy

3 e to � is just

Q(e)

�1

j

xy

j�(x)�(y);

which depends only on the path length and on Q(e), while its contribution to �

DS

is

Q(e)

�1

j

xy

j

Q;e

�(x)�(y) =

X

e

0

2

xy

Q(e

0

)

�1

�(x)�(y);

which depends on the capacities Q(e

0

) of all path edges. As we shall see, this makes

the former quantity easier to use in applications where weights play a signi�cant

role, so that the capacities Q(e) vary considerably: the problem with �

DS

is that

a path 

xy

may pass through edges of very small capacity, so that j

xy

j

Q;e

is much

larger than j

xy

j.

If the Markov chain under consideration is random walk on a graph G = (X;E)

then Q(e) = 1=2jEj for all e, so j

xy

j

Q;e

= j

xy

j; hence the quantities � and �

DS

coincide in this case. Most of the examples discussed by Diaconis and Stroock [8]

are in fact random walks on graphs, so our bound yields identical results for them.

Note also that j

xy

j

Q;e

� 1 for all 

xy

and e, so certainly �

DS

is bounded below

by �. Hence the bounds of Theorem 5 and Corollary 6 can be worse than (6)

by at most a factor `. Moreover, there are examples for which � is provably

signi�cantly better than �

DS

; one such is the Ehrenfest urn model, discussed by

Diaconis and Stroock [8]. However, the two quantities seem to be incomparable

in general.

The examples in the next section and in [8] indicate that � frequently leads

to sharper bounds on �

1

than does � itself. By way of contrast, here is a simple

example where Corollary 4 provably does better than Theorem 5 and Corollary 6.

Consider asymmetric random walk on the line [0; N � 1] with reecting barriers,

i.e., X = f0; 1; : : : ; N � 1g and the transition probabilities are given by P (i �

1; i) = � , P (i; i � 1) = 1 � � for 0 < i < N , and P (0; 0) = 1 � � , P (N �

1; N � 1) = � , where � 2 (0;

1

2

) is a constant. This chain is reversible and

ergodic, with stationary distribution �(i) / r

i

, where r = �=(1 � �). In this

case there is a unique simple path between each pair of states i and j , so our

choice of canonical paths is forced. Elementary calculations show that the quantity

Q(e)

�1

P



xy

3e

�(x)�(y) is maximised on the edge e = (d

N

2

e � 1; d

N

2

e) and that its

value there is

1+r

1�r

(1 +O(r

N=2

)). Hence Corollary 4 gives the bound

�

1

� 1�

(1� r)

2

8(1 + r)

2

�

1 +O(r

N=2

)

�

: (7)

The value of �

1

for this chain is known exactly: it is 2(�(1 � �))

1=2

cos(

�

N

) =

2r

1=2

1+r

(1 + O(N

�2

)). Hence (7) di�ers from the true value asymptotically by only
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a constant factor. On the other hand, a similar calculation considering the edge

(N � 2; N � 1) shows that � � (1 + r)N + O(1). Thus Theorem 5 gives the

bound

�

1

� 1�

1

(1 + r)N

+O

 

1

N

2

!

;

which is asymptotically much worse than (7).

3 Applications

In this section we discuss a series of complex Markov chains used in combinatorial

applications whose mixing rate is currently estimated using the conductance-based

bounds of Theorem 2 or Corollary 4. In each case, we indicate the improvement

in the lower bound on the spectral gap 1 � �

1

obtained using Corollary 6. By

Proposition 1, this translates directly to a similar improvement in the mixing rate.

As the precise arguments are combinatorially delicate, our present treatment will

necessarily be very sketchy. For full details, the reader is urged to consult the

stated references.

The sharpened analysis of these Markov chains is of interest in its own right

and is our main concern here. However, it also leads to improved estimates for the

runtimes of various polynomial-time algorithms that make use of the chains. In

fact, since the runtime is dominated by the time needed to sample some number of

structures from the stationary distribution, each algorithm is immediately speeded

up by exactly the factor saved in the spectral gap. (The runtimes of the algorithms

can be readily computed from the spectral gap and are not given explicitly here;

details may be found in the references.) These improvements, though signi�cant,

are in most cases not su�cient to make the algorithms genuinely practical for

large inputs. However, they do represent a tightening of the most intricate part of

the analysis. There is undoubtedly room for re�nement of other aspects of these

algorithms, but such an investigation is beyond the scope of this paper.

(i) The monomer-dimer or all-matchings chain

Let H = (V;A) be a weighted graph with positive edge weights fc(a) : a 2 Ag,

and consider the Markov chain whose state space X consists of all matchings in H ,

i.e., subsets M � A such that no two edges in M share an endpoint. Transitions

from M are made as follows: select an edge a = fu; vg of A uniformly at random,

and then

(i) if a 2 M , move to M � a with probability 1=(1 + c(a));

(ii) if u and v are both unmatched in M , move to M + a with probability

c(a)=(1 + c(a));

(iii) if a

0

= fu;wg 2 M for some w , and v is unmatched in M , move to

(M + a)� a

0

with probability c(a)=(c(a) + c(a

0

));

9



(iv) in all other cases, do nothing.

It is easy to check using (1) that this chain is reversible with stationary distri-

bution �(M) / w(M), where w(M) =

Q

a2M

c(a) is the weight of matching M .

Simulating the chain therefore enables one to sample matchings randomly with

probabilities approximately proportional to their weights. This has several im-

portant applications to the design of polynomial-time approximation algorithms

for hard combinatorial enumeration problems. In statistical physics, H describes

a monomer-dimer system whose partition function is given by

Z(H) =

X

M

w(M): (8)

Weighted sampling of matchings enables Z to be estimated accurately. The special

case of (8) in which all edge weights are 1 corresponds to counting all matchings

in H . Moreover, by varying the edge weights in H in a suitable fashion and

sampling matchings as above, it is possible to estimate the number of matchings

in H of a given size. In particular, for most graphs the number of perfect matchings

can be estimated, a problem which corresponds to evaluating the permanent of

a 0-1 matrix. Approximate counting of various other structures may be reduced

to this problem [12, 20]. Finally, weighted sampling of matchings also enables a

matching of nearly maximum cardinality to be found with high probability, an

example of stochastic search by simulated annealing. Details of these applications

may be found in [11, 23].

In order for the resulting algorithms to be e�cient (in the sense of hav-

ing polynomially bounded runtime), accurate sampling must be possible in time

bounded by a polynomial in the size of H and c

max

= maxf1;max

a2A

c(a)g.

By Proposition 1, this requires a bound on second eigenvalue of the form

�

1

� 1 � 1=poly(jHj; c

max

). We now present a brief sketch of the canonical path

argument used to obtain such a bound. In doing so, our aim will be to illustrate

how the quantity � arises naturally from a combinatorial encoding technique. For

the details the reader is referred to [11, 23].

Let I and F be matchings in H , and consider the symmetric di�erence S =

I � F . The connected components of S are paths and cycles in H whose edges

belong alternately to I and F . The canonical path 

IF

from I to F is determined

as follows:

� order the components of S according to a �xed underlying ordering

on the paths and cycles of H ;

� \unwind" each component, removing edges of I and adding edges of F

using transitions of the Markov chain, in an obvious way.

Now let e = (M;M

0

) be an arbitrary oriented edge (transition) in the graph

describing the Markov chain, and denote by paths(e) the set of paths which pass

10



through e. The key idea is to enumerate paths(e) using the states of the chain

themselves. Speci�cally, we set up an injective mapping

�

e

: paths(e) ! X;

so that each 

IF

2 paths(e) is encoded by a unique matching �

e

(I; F ). Moreover,

we do this in a way that preserves weights, i.e.,

w(M)w(�

e

(I; F )) � w(I)w(F ): (9)

(Essentially, we just take �

e

(I; F ) to be the complement of M in the multiset

I [ F , though we have to take care to ensure that �

e

(I; F ) is indeed a matching.)

Now summing (9) over pairs I; F such that 

IF

2 paths(e), and recalling that

�(�) / w(�), we get

X



IF

3e

�(I)�(F ) � �(M)

X



IF

3e

�(�

e

(I; F )) � �(M); (10)

since �

e

is injective. But Q(e) = �(M)P (M;M

0

), so (10) gives us an upper bound

on the crucial quantity Q(e)

�1

P



IF

3e

�(I)�(F ), and hence on �.

Precisely, the bound derived in [11, 23] by this method is � � 4jAjc

2

max

. Co-

rollary 4 therefore yields

�

1

� 1� 1=128jAj

2

c

4

max

:

On the other hand, the maximum length of any canonical path is easily seen to

be at most jV j = n, so Corollary 6 gives the much sharper bound

�

1

� 1� 1=4njAjc

2

max

:

The improvement in the spectral gap 1� �

1

, and hence in the mixing rate and the

runtime of the algorithms mentioned above, is a factor of 32jAjc

2

max

n

�1

. In the

application to approximating the permanent, the largest value of c

max

is the ratio

of the number of \near-perfect" matchings to the number of perfect matchings

in H . (A near-perfect matching is a matching in which precisely two vertices

of H are unmatched.) This quantity is at least n=2, and can be quite large in

interesting cases: for example, for dense graphs (with minimum vertex degree at

least n=2), the ratio is about n

2

and jAj � n

2

=2, leading to an improvement

of O(n

5

); and [11] gives a bound on the ratio of n

10

for random graphs of low

density. (The ratio can in fact be exponentially large, but then the chain no longer

converges in polynomial time.)

(ii) Broder's chain for the dense permanent

This chain, which was proposed in [5] and analysed in [11, 23], is a restricted ver-

sion of Example (i); it again allows the number of perfect matchings in a graph to

be estimated in polynomial time provided the ratio of the number of near-perfect

matchings to the number of perfect matchings is polynomially bounded. Let H

11



be an (unweighted) graph with n vertices; the states of the chain are all perfect

matchings and all near-perfect matchings in H . Transitions are made in similar

fashion to Example (i) but without weights; the stationary distribution is uniform.

Using canonical paths similar to those in Example (i), and the same encoding tech-

nique, it can be shown that � = O(n

6

), whence �

1

� 1 �O(n

�12

) by Corollary 4.

However, since the maximum path length is at most 2n, Corollary 6 yields the

sharper bound �

1

� 1�O(n

�7

). The mixing rate is therefore reduced by a factor

O(n

5

). This is exactly the same improvement as that discussed in Section 4 of [8]:

in this case the Diaconis-Stroock bound (6) is equivalent to Theorem 5 because

there are no weights, i.e., Q(e) is uniform.

(iii) The Ising model

In this example drawn from statistical physics, the states of the Markov chain

are all subgraphs of the graph (V;A) of interactions of a ferromagnetic Ising

system, i.e., all graphs (V;A

0

) where A

0

� A. (These graphs arise from the

so-called high-temperature expansion of the partition function.) Transitions are

made by random addition or subtraction of individual edges with appropriate

probabilities. The stationary distribution assigns to each subgraph the weight

�

j

�

k

, where �; � 2 (0; 1) are parameters of the system, and j; k are respectively

the number of edges and the number of odd-degree vertices in the subgraph. By

sampling from this distribution, various important quantities, such as the partition

function of the system, can be e�ectively approximated; the details are in [13].

In [13] a choice of canonical paths is presented for which it can be shown, again

using the encoding technique sketched in Example (i), that � � 2jAj�

�4

. This

leads to the bound �

1

� 1� �

8

=32jAj

2

, from Corollary 4. The length of paths here

is at most jAj, so Corollary 6 yields the sharper bound �

1

� 1 � �

4

=2jAj

2

. The

improvement in the spectral gap is therefore a factor 16�

�4

. In the applications

discussed in [13], the parameter � is taken down to n

�1

, where n = jV j is the

number of sites in the system. Hence the improvement in the runtime is a factor

O(n

4

).

(iv) Approximate counting and uniform generation

The Markov chain considered here is of a di�erent avour from those of Examples

(i){(iii). It is based on a tree which reects an inductive construction of a class

of combinatorial structures; the structures themselves correspond to leaves of the

tree. The transition probabilities are determined by weights attached to the edges

of the tree, which in turn are derived from crude estimates of the number of struc-

tures in the subtree below the edge. Simulation of the Markov chain allows the

structures to be sampled from an almost uniform distribution, and indirectly en-

ables one to bootstrap the crude counting estimates to arbitrarily precise estimates

of the number of structures. For the details and some applications, see [23, 24].

In [23, 24] a direct argument gives the bound � � (4r

2

d)

�1

for the conduct-

ance, where d is the depth of the tree and r � 1 is the error factor allowed in the

crude counting estimates. This in turn yields, by Theorem 2, �

1

� 1� (32r

4

d

2

)

�1

.

On the other hand, using (the only possible) canonical paths we get � � 8r

2

d and

12



` � 2d, which by Corollary 6 implies �

1

� 1 � (16r

2

d

2

)

�1

. The improvement in

the spectral gap is thus a factor 2r

2

.

4 Multicommodity ow

In this section we present a natural generalisation of the path-counting ideas of

Section 2. We consider a multicommodity ow problem in the graph G describing

a reversible Markov chain, and obtain upper bounds on �

1

in terms of a measure

on ows which is analogous to the measure � of Section 2. Moreover, there is

also a matching lower bound on �

1

in terms of this measure, so that it, like the

conductance �, captures the mixing rate of a Markov chain rather closely.

As in Section 2, let G be the weighted graph describing a reversible Markov

chain with stationary distribution � . Let us view G as a ow network by assigning

to each oriented edge e of G the capacity Q(e). Now imagine that, for each

ordered pair of distinct vertices x and y , a quantity �(x)�(y) of some commodity

(x; y) is to be transported from x to y along the edges of the network. The object

is to construct a ow which minimises the total throughput through any oriented

edge e as a fraction of its capacity Q(e). This is entirely analogous to our previous

measure �, except that we are now allowing multiple paths between states rather

than canonical paths. Thus it is natural to suppose that our new measure will

yield similar bounds on the mixing rate.

Formally, a ow in G is a function f : P ! R

+

which satis�es

X

p2P

xy

f(p) = �(x)�(y) for all x; y 2 X; x 6= y ;

where P

xy

is the set of all simple directed paths from x to y in G and P =

S

x6=y

P

xy

. Now extend f to a function on oriented edges by setting

f(e) =

X

p3e

f(p);

i.e., f(e) is just the total ow routed by f through e. By analogy with the

de�nition (3) of �, the quality of a ow f is measured by the quantity �(f),

which is the maximum value over oriented edges e of the ratio f(e)=Q(e).

Theorem 3 and Corollary 4 carry over immediately to this more general setting.

Theorem 3

0

For any reversible Markov chain, and any ow f ,

� � (2�(f))

�1

:

Corollary 4

0

For any reversible Markov chain, and any ow f , the second ei-

genvalue �

1

satis�es

�

1

� 1�

1

8�(f)

2

:

13



In order to generalise the measure � from Section 2 to a ow f , de�ne a

function f on oriented edges by

f(e) =

X

p3e

f(p)jpj;

where jpj is the number of edges in the path p. (We may think of f (e) as

the elongated ow through e.) Now set �(f) = max

e

f(e)=Q(e). The proof of

Theorem 5 carries over almost unchanged, and the analogue of Corollary 6 is then

immediate.

Theorem 5

0

For any reversible Markov chain, and any ow f , the second eigen-

value �

1

satis�es

�

1

� 1�

1

�(f)

:

Corollary 6

0

For any reversible Markov chain, and any ow f , the second ei-

genvalue �

1

satis�es

�

1

� 1 �

1

�(f)`(f)

;

where `(f) is the length of a longest path p with f(p) > 0.

There are examples in which the extra exibility provided by ows (as opposed

to canonical paths) is necessary in order to achieve good bounds on the mixing

rate. Consider random walk on the complete bipartite graph K

2;N�2

, with vertex

set X = f0; 1; : : : ; N � 1g and edges f0; ig, f1; ig for i = 2; 3; : : : ; N � 1, in

which transitions from each vertex are made by choosing a neighbour uniformly at

random. (This process is periodic, but can be made ergodic by adding a holding

probability of 1/2 to every vertex.) In the stationary distribution each vertex

occurs with probability proportional to its degree, and Q(e) = 1=4(N � 2) for

all edges e. It is easy to construct a ow f with �(f) = O(1), by distributing

ow evenly over all shortest paths between each pair of vertices. By Corollary 4

0

this gives an estimate for the spectral gap which is correct to within a constant

factor. However, since �(0)�(1) = 1=16, it is clear that the best value for �

(or �) obtainable using canonical paths is 
(N), leading to the weak bound

�

1

� 1� 
(N

�2

) (or �

1

� 1� 
(N

�1

)).

Here is a further example that illustrates the use of Theorem 5

0

. Consider the

Bernoulli-Laplace di�usion model, whose state space X is the set of all k -element

subsets of [n] = f0; 1; : : : ; n � 1g. Transitions are made from a given subset

x 2 X by selecting uniformly at random an element i of x and an element j

of [n]� x and replacing i by j in x. The stationary distribution here is uniform,

�(x) = N

�1

for all x 2 X , where N = (

n

k

). Now let x; y be distinct elements

of X , with jx� yj = 2m. We de�ne a ow f by routing (N

2

m!

2

)

�1

units of ow

from x to y along each of the m!

2

shortest paths (of length m) from x to y .

14



(Each such path corresponds to an ordering of the m elements of x � y and an

ordering of the m elements of y � x.)

Now let e = (z; z

0

) be an arbitrary transition, with z

0

= z [ fjg � fig. To

bound the ow through e, we again use the encoding technique sketched in Ex-

ample (i) of Section 3. Let paths(e) denote the set of paths p 3 e with f(p) > 0.

We de�ne a many-to-one mapping �

e

: paths(e) ! X as follows: if p is a path

from x to y , set �

e

(p) = x� y � z

0

. Note that �

e

(p) � z

0

= x � y , so all paths

p with a given image under �

e

have the same length m and carry the same ow

(N

2

m!

2

)

�1

, where 2m = j�

e

(p)� z

0

j. Moreover, the number of such paths is

m�1

X

r=0

 

m� 1

r

!

2

r!

2

(m� r � 1)!

2

= m(m� 1)!

2

:

(Here r corresponds to the distance along the path from x to z .) Thus the total

elongated ow through e contributed by these paths is m

2

(m� 1)!

2

(N

2

m!

2

)

�1

=

N

�2

. Finally, summing over images �

e

(p), and noting that the range of �

e

consists

of all subsets that contain i and do not contain j , we see that

f(e) =

1

N

2

 

n� 2

k � 1

!

=

k(n� k)

Nn(n � 1)

:

But since Q(e) = (Nk(n � k))

�1

for all edges e, we deduce that � �

k

2

(n�k)

2

n(n�1)

.

Theorem 5

0

therefore yields the bound �

1

� 1 �

n(n�1)

k

2

(n�k)

2

. In the case n = 2k ,

the exact value is �

1

= 1 � 2=k , so the estimate is correct within a factor of

about k=2. It seems di�cult to get this close using canonical paths. A similar

bound was obtained by a slightly di�erent method in [8]. The above idea of using

all geodesic paths �rst appeared in the analysis of a Markov chain on matchings

by Dagum et al [6].

By analogy with the conductance �, we may de�ne the resistance

y

of a revers-

ible Markov chain described by a graph G by

� � �(G) = inf

f

�(f);

where the in�mum is taken over all valid ows in G. Corollary 4

0

indicates

that � provides a lower bound on the spectral gap of the form 
(�

�2

). Thus in

particular a family of Markov chains will be rapidly mixing if � is bounded above

by a polynomial in the problem size. From Theorem 2 we already know that �

characterises the rapid mixing property, since it measures the spectral gap up to

a square. It is natural to ask whether � provides a similar characterisation.

y

This terminology is chosen because, as we shall see shortly, � is almost the inverse of the

conductance �. It should not be confused with the resistance of a graph familiar from electrical

network theory.
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This is indeed the case. We will show that, if a reversible Markov chain is close

to equilibrium after � steps, then it supports a ow f for which �(f) = O(� ),

where N = jXj is the number of states. Therefore, the chain is rapidly mixing if

and only if � is bounded above by a polynomial in the problem size.

In order to state this result (Theorem 8), we need to formalise the notion of the

time � for a chain to become close to equilibrium. With �

x

de�ned as in Section 2,

set � = max

x2X

�

x

(1=4), i.e., � is the time taken for the variation distance from

an arbitrary initial state to fall to 1/4. As will become clear, the value 1/4 is not

signi�cant and could be replaced by any su�ciently small constant. First we need

a simple technical lemma.

Lemma 7 For any t � 2� and all x; y 2 X ,

P

t

(x; y)

�(y)

�

1

8

:

Proof: Fix arbitrary states x; y 2 X , and consider the set Z = fz 2 X :

P

�

(y;z)

�(z)

�

1

2

g. It is not hard to see that �(Z) �

1

2

, which by de�nition of �

ensures that P

t

(x;Z) �

1

4

for all t � � .

Now we have, for any t � 2� ,

P

t

(x; y) �

X

z2Z

P

t��

(x; z)P

�

(z; y)

= �(y)

X

z2Z

P

t��

(x; z)

P

�

(y; z)

�(z)

�

�(y)

2

X

z2Z

P

t��

(x; z)

�

�(y)

8

;

where in the second line we have used the fact that �(y)P

�

(y; z) = �(z)P

�

(z; y),

which follows from reversibility.

Theorem 8 The resistance of an ergodic reversible Markov chain satis�es

� � 16�;

where � is de�ned as above.

Proof: We show how to construct a ow f with the stated bound on �(f). Let

t = 2� . For a given state x, the choice of paths used to carry ow from x to other

states is determined by the t-step evolution of the Markov chain itself, starting

at x. More precisely, let P

(t)

xy

denote the set of all (not necessarily simple) paths

of length exactly t from x to y in the underlying graph G, and for p 2 P

(t)

xy

let

16



prob(p) denote the probability that the Markov chain, starting in state x, makes

the sequence of transitions de�ned by p. Note that Lemma 7 guarantees that

P

(t)

xy

is non-empty for all x; y . Now for each x; y and p 2 P

(t)

xy

, set

f(p) =

�(x)�(y)prob(p)

P

p2P

(t)

xy

prob(p)

=

�(x)�(y)prob(p)

P

t

(x; y)

; (11)

and set f(p) = 0 for all other paths p 2 P . Note that

P

p2P

(t)

xy

f(p) = �(x)�(y)

for all x; y . Strictly speaking, f is not a ow according to our de�nition since the

paths in P

(t)

xy

are not necessarily simple; however, we can always obtain a ow f

0

from f , without increasing the throughput through any edge, by simply bypassing

the cycles on all paths. We now proceed to estimate �(f

0

).

From (11), the ow routed by f

0

through e is

f

0

(e) �

X

x;y

X

p2P

(t)

xy

p3e

�(x)�(y)prob(p)

P

t

(x; y)

� 8

X

x;y

X

p2P

(t)

xy

p3e

�(x)prob(p); (12)

where the second inequality follows from Lemma 7. Now the �nal double sum

in (12) is precisely the probability that the Markov chain, when started in the

stationary distribution � over X , traverses the oriented edge e within t steps.

But this probability is at most tQ(e), since the probability that the stationary

process traverses e in any one step is precisely Q(e). Combining this observation

with (12) yields

�(f

0

) = max

e

f

0

(e)

Q(e)

� 8t = 16�;

as required.

Remarks: (a) An analogous result in terms of the elongated ow measure �

also holds: since the proof of Theorem 8 uses only paths of length t = 2� , we

have constructed a ow f for which �(f) = O(�

2

).

(b) We have stated Theorem 8 in terms of the variation distance, for con-

sistency with our earlier approach. It should be clear that similar formula-

tions in terms of other measures are possible. For example, de�ne �

rpd

(t) =

max

x;y

jP

t

(x; y)� �(y)j=�(y), the relative pointwise distance at time t maximised

over initial states x. Then the proof of Theorem 8 shows that

� �

�

1��

rpd

(t)

�

�1

t ;

provided t is large enough that P

t

(x; y) > 0 for all x; y 2 X . A similar result

has been observed independently by Jim Fill [10].
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In fact, a direct comparison of � and � sheds some interesting light on these

two quantities. It is convenient at this point to introduce a symmetrised version

of �, namely

�

0

= min

S�X

0<�(S)<1

Q(S; S)

�(S)�(S)

:

Clearly � � �

0

� 2�, so � and �

0

di�er by at most a constant factor. Inspection

of the proof of Theorem 3 reveals that the marginally stronger bound

�

0

� �

�1

(13)

also holds. The reader will recognise this bound as nothing other than the trivial

direction of the max-ow min-cut theorem for our multicommodity ow problem:

the net ow across any cut cannot exceed the capacity of the cut.

y

In view of

the well-known result for single commodity ows, one might ask whether equality

holds in (13). We have already seen an example where �

0

= �

�1

, namely the

asymmetric random walk of Section 2. The reason for this is that the underlying

graph G is a tree, so there is a unique valid ow f , and it is easy to see that the

only cuts we need consider in the de�nition of �

0

are single edges. Hence we have

�

0

= min

e

Q(e)

P

x2S

�(x)

P

y2S

�(y)

= min

e

Q(e)

f(e)

= �

�1

;

where (S; S) is the partition of X induced by the cut edge e.

The above question was extensively studied in more generality, and in a totally

unrelated context, by Matula and Shahrokhi [18, 22]. The determination of � is

a case of what Matula and Shahrokhi call the Maximum Concurrent Flow Prob-

lem, while computing �

0

is a case of the Sparsest Cut Problem. Matula and

Shahrokhi show that these two problems are \near-duals" of one other, and make

this statement precise. They call graphs for which equality holds in (13) bot-

tleneck graphs, and identify some examples. In our language, these include tree

processes (i.e., Markov chains whose underlying graph G is a tree), and random

walks on complete graphs, cycles and cubes. More signi�cantly, they also exhibit

examples for which equality de�nitely does not hold. To see that this can happen,

consider the random walk on K

2;N�2

discussed earlier. It is not hard to verify

that �

0

= 1 + O(N

�2

) (and �

0

= 1 when N is even), but that the resistance

� =

5

4

+O(N

�1

). Asymptotically, therefore, � exceeds �

0�1

by a factor

5

4

. Thus

we are led to ask by how much � can exceed �

0

�1

in general.

This question was addressed, again in a di�erent context, by Leighton and

Rao [17]. They show that, in the case of uniform ow between all pairs of vertices

y

Note that our problem can be recast in more conventional ow maximisation terms as

follows: determine the maximum value of F such that F�(x)�(y) units of commodity (x; y)

can be transported from x to y , for every pair x; y , and such that the ow through any edge e

does not exceed its capacity Q(e). The maximum such F is precisely �

�1

.
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(i.e., in our language, the stationary distribution � is uniform: �(x) = N

�1

for

all x 2 X ), � cannot exceed �

�1

by more than a factor O(logN). This yields an

approximate max-ow min-cut theorem for the (uniform) multicommodity ow

problem. Moreover, this bound is tight since � = 
(

logN

�

) for random walk on an

expander graph of constant degree: here � is constant, but � = 
(logN) since

the distance between most pairs of vertices is 
(logN) and the graph has only

�(N) edges. As has been observed by

�

Eva Tardos, Leighton and Rao's result

actually holds in the more general situation where the ow between each pair x; y

is of the form v(x)v(y) for any �xed function v : X ! R

+

. In our setting, this

leads to the following result for arbitrary stationary distributions; since the proof

is essentially the same as that of [17, Theorem 1] we omit it here.

Theorem 9 For any reversible Markov chain with N states,

� = O

 

logN

�

!

:

Putting together Theorem 9 and Theorem 2, we obtain a lower bound on the

second eigenvalue in terms of �.

Corollary 10 For any reversible Markov chain with N states, the second eigen-

value �

1

satis�es

�

1

� 1 �O

 

logN

�

!

:

As far as bounds on the mixing rate are concerned, Theorem 8 is rather

stronger than Corollary 10: Theorem 8 says that � = 
(�), whereas Corollary 10,

in conjunction with Proposition 1(ii), gives the weaker bound � = 
(�= logN).

However, Theorem 9 and Corollary 10 seem to be of interest in their own right.
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