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Abstrat

Motivated by many reent algorithmi appliations, this paper aims to promote a systemati

study of the relationship between the topology of a graph and the metri distortion inurred

when the graph is embedded into `

1

spae. The main results are:

1. Expliit onstant-distortion embeddings of all series-parallel graphs, and all graphs with

bounded Euler number. These are the �rst natural families known to have onstant dis-

tortion (stritly greater than 1). Using the above embeddings, algorithms are obtained

whih approximate the sparsest ut in suh graphs to within a onstant fator.

2. A onstant-distortion embedding of outerplanar graphs into the restrited lass of `

1

-

metris known as \dominating tree metris". A lower bound of 
(logn) on the distortion

for embeddings of series-parallel graphs into (distributions over) dominating tree metris

is also presented. This shows, surprisingly, that suh metris approximate distanes very

poorly even for families of graphs with low treewidth, and exludes the possibility of using

them to explore the �ner struture of `

1

-embeddability.

�
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1 Introdution

Let G = (V;E) be an undireted graph. Eah assignment of non-negative weights to the edges of G

naturally de�nes a metri spae (V; �),

1

where for eah pair of verties x; y 2 V , �(x; y) = d

G

(x; y)

is the shortest-path distane between them. We say that the metri � is supported on (or generated

by) G. Let (S; �) be another metri spae. An embedding of G into (S; �) is a mapping � : V ! S.

The distortion of � is the smallest value  � 1 suh that

d

G

(x; y) � �(�(x); �(y)) �  d

G

(x; y) 8x; y 2 V:

Thus the distortion measures the maximum fator by whih any distane is strethed in the em-

bedding. (This is a slightly restrited de�nition, in whih we assume that no distanes are shrunk.

See Setion 2 for a general de�nition.)

In reent years, the idea of embedding a graph into a \nie" metri spae with low distortion has

emerged as a useful ingredient in the design and analysis of algorithms in a variety of domains.

\Nie" metri spaes are those with well-studied strutural properties, suh as Eulidean or `

1

spae, or weighted trees and distributions over them. A very inomplete list of appliations inludes

approximation algorithms for graph and network problems, suh as sparsest ut [26, 2℄, minimum

bandwidth [17, 8℄, low-diameter deompositions [26℄, and optimal group Steiner trees [19, 10℄, and

online algorithms for metrial task systems and �le migration problems [4, 6℄. These appliations,

together with its intrinsi mathematial interest, have made the study of low-distortion embeddings

a signi�ant �eld in its own right.

Most of the embeddings onsidered in the literature, notably [9, 4, 26℄, have been for metris

supported on general graphs, and give results that bound the worst-ase distortion over all graphs.

However, when the input graph has some speial struture, it is plausible that better embeddings

an be found. This is quite intuitive: it is lear that any metri is generated by the omplete graph

on its points, while only a very limited set of metris an be generated by weighting the edges

of, say, a tree. Thus the omplexity of a metri generated by a graph G intrinsially depends on

the topology of G. At present, very little is known about this interplay between the topologial

and metrial properties of the graph; the searh for onnetions between the two is emerging as

an intriguing and hallenging area. This paper fouses in partiular on the relationship between

the topology of graphs and their optimal (or near-optimal) embeddings into `

1

(i.e., real spae of

arbitrary dimension endowed with the `

1

metri).

Embeddings into `

1

have been widely studied, and are of speial importane due to their intimate

onnetion with the problem of �nding a sparsest ut in multiommodity ow networks, whih in

turn is a key ingredient in approximate solutions of many other problems in suh areas as VLSI

layout, network routing and eÆient simulations of one network by another (see, e.g., [7, 25, 23℄).

Although �nding the exat sparsest ut is a omputationally hard problem, eÆient approximation

algorithms for it an be obtained by embedding a natural metri assoiated with the optimal

multiommodity ow into `

1

; the approximation ratio depends essentially on the distortion.

One motivation behind this paper is the intriguing onjeture that any metri supported on a planar

graph (heneforth alled a planar metri) an be embedded into `

1

with onstant distortion. More

1

More orretly, a semi-metri spae, sine we allow �(x; y) = 0 even when x 6= y.
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generally, we onjeture that this holds for any family of graphs whih exludes a �xed minor.

There is some evidene to suggest that planar metris are better behaved than general metris with

respet to `

1

-embeddability. In an interesting reent development, Rao [33℄ has given an O(

p

log n )-

distortion embedding of n-point planar metris into `

1

, while the lower bound for general metris is


(log n). This result, and the deomposition lemma of [22℄ on whih it is based, attest to the speial

struture of planar metris. Further evidene for this is provided by Konjevod et al., who have

shown that any planar metri an be embedded with a distortion of O(log n) into a distribution

over dominating tree metris [24℄, while the best known upper bound for general metris is still

O(log n log log n) [5℄.

Despite this promise, urrent tehniques are apparently inadequate to resolve the above onjeture.

For embeddings into `

1

, a elebrated result of Bourgain [9℄ tells us that any metri supported on

an n-vertex graph (i.e., any metri on n points) an be embedded into `

1

with distortion O(log n);

unfortunately, the embedding tehnique is not sensitive to the topology and inurs a 
(log n)-

distortion even for the metri generated by the unit-weighted path P

n

. Similarly, the method of

Konjevod et al. of �nding distributions over dominating trees is limited by a lower bound of 
(log n)

for embedding the n� n grid [1, 24℄. Lastly, Rao gives embeddings into `

1

by �rst embedding into

`

2

, an approah that is limited by a lower bound of 
(

p

log n ) for embedding even series-parallel

graphs into `

2

[27℄.

In this paper, we systematially explore how the topology of a graph a�ets the distortion in-

urred by `

1

-embeddings of metris supported on it. Using the intimate onnetion between `

1

-

embeddability of metris supported on a graph and multiommodity ow problems de�ned on it,

one an show that graphs all of whose metris are isometrially embeddable into `

1

(i.e., embed-

dable with distortion 1) are exatly the graphs whih exlude K

2;3

as a minor, whih essentially

orresponds to the lass of outerplanar graphs. This fat, whih rests on a theorem of Okamura and

Seymour [29℄, is our starting point. As a natural next step, we onsider the family of graphs whih

have K

4

as an exluded minor. These are graphs with treewidth 2, and essentially orrespond to

the familiar lass of series-parallel graphs. Our �rst main result is an expliit `

1

-embedding of these

graphs with small onstant distortion. This is the �rst natural family known to have a onstant

distortion stritly bigger than 1. In addition, our onstrution implies a simple polynomial time

algorithm for �nding a sparsest ut within a onstant fator of optimal in series-parallel graphs. In

a similar vein, we also show that any family of graphs with bounded Euler harateristi an be

embedded into `

1

with onstant distortion. The tehnique we use for these results is to expliitly

onstrut a set of ut metris whose sum approximates the original graph metri very losely. Cut

metris arise naturally in the study of `

1

-embeddability sine any `

1

-embeddable metri

2

an be

represented as a sum of ut metris with non-negative oeÆients, and vie versa [15℄.

We then go on to study the approximation of a metri by a probability distribution over (domi-

nating) tree metris. Sine tree metris are `

1

-embeddable (and so are their non-negative ombi-

nations), this gives us an alternative to the ut metris approah. Furthermore, embeddings based

on suh metris have proved partiularly easy to work with, and possess additional properties that

have been exploited in devising approximation algorithms and online algorithms for many problems

(see, e.g., [4, 6, 3, 19, 36, 10, 12℄). It is natural to ask if we an obtain the above embeddability

results for outerplanar and series-parallel graphs using these more restrited metris. The answers

2

We shall use the unquali�ed term \`

1

-embeddable" to mean \isometrially embeddable into `

1

".
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are mixed. On the one hand, we show that this is possible for outerplanar graphs, at a small ost:

we give an expliit embedding for suh graphs into a distribution over dominating tree metris with

distortion 8 (ompared to distortion 1 obtained using uts). On the other hand, we prove a omple-

mentary negative result by exhibiting a family of series-parallel graphs for whih any distribution

over dominating tree metris must neessarily inur a distortion of 
(logn).

Thus we see that the tree metris approah breaks down at a surprisingly early stage (even for

graphs of treewidth 2), whih suggests that suh embeddings by themselves o�er little hope for

exploring the �ner struture of `

1

-embeddings. However, our results also indiate that ombining

dominating tree metris with ut metris is a potentially powerful tehnique. Indeed, the graphs

whih give the lower bound for tree embeddings mentioned above an be shown to have extremely

simple `

1

-embeddings using uts. Combining these ut metri embeddings with tree embeddings in

a areful fashion leads us to an alternative onstant distortion embedding for series-parallel graphs.

The organization of the paper losely follows the above outline. After a short setion ontaining

some de�nitions and notation, we briey illuminate the onnetion between ows and `

1

-embeddings

in Setion 3. The embeddings of series-parallel graphs and graphs with small Euler number are

desribed in Setion 4. Finally, in Setion 5, we present our positive and negative results on

embeddings into tree distributions, as well as the alternative embedding for series-parallel graphs.

2 De�nitions and notation

Metris: Let X be a set. A funtion d : X �X ! R

+

is alled a semi-metri if it is symmetri,

i.e., d(x; y) = d(y; x) for all x; y 2 X, and d(x; x) = 0 for all x 2 X, and also satis�es the triangle

inequality, i.e., d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X. If, in addition, d(x; y) = 0 holds

only when x = y, then d is a metri. In this paper, we shall only onsider �nite semi-metris.

The number of points will usually be denoted by n. Without risk of onfusion, the distintion

between metris and semi-metris may sometimes be blurred. For more details on many of the

metri onepts used here, see the book of Deza and Laurent [15℄.

Given two metri spaes, (V; �) and (W;�), and a map f : V !W , de�ne the following quantities:

kfk = max

x;y2V

�(f(x); f(y))

�(x; y)

;

kf

�1

k = max

x;y2V

�(x; y)

�(f(x); f(y))

:

We say that f has ontration kf

�1

k, expansion kfk and distortion D(f) = kfk � kf

�1

k. We say

that (W;�) r-approximates (V; �) (or that the distortion between � and � is at most r) if there

exists a map f : V ! W with D(f) � r. Often we shall onsider two distane funtions � and �

over the same vertex set V . In suh ases, we shall assume that f is the identity map. Also, � will

be said to dominate � if for all x; y 2 V , �(x; y) � �(x; y).

Let G = (V;E) be an undireted graph. A metri (V; �) is supported on (or generated by) G if it is

the shortest path metri of G w.r.t. some non-negative weighting of the edges E. Unless spei�ed

4



otherwise, we shall assume that the edge-weights w(�) satisfy w(e) = �(e), where � is the shortest-

path metri of G with weights w. Observe that if it is not the ase, the edge e an be removed

without a�eting the metri; suh an e will be alled redundant.

For a set S � V , the ut metri Æ

S

on V is de�ned by Æ

S

(x; y) = 1 if jS\fx; ygj = 1, and Æ

S

(x; y) = 0

otherwise. An important observation is that the `

1

-embeddable metris on V are preisely those

metris whih an be written as a sum of ut metris on V with non-negative oeÆients [15℄. One

impliation of this is that if two metris �

1

and �

2

on the same underlying set are `

1

-embeddable,

then so is their sum �

1

+ �

2

.

Finally, we use the following simple observation throughout the paper: if eah blok (i.e., bion-

neted omponent) G

i

of a graph G an be embedded into `

1

with distortion D

i

, then G an be

embedded into `

1

with distortion max

i

D

i

. This immediately implies, in partiular, that any metri

supported on a tree T an be embedded isometrially into `

1

. (For a more diret proof of this

latter fat, let (S

e

;

�

S

e

) be the ut obtained by deleting an edge e in T ; it an be veri�ed that

� =

P

e2T

d

T

(e) � Æ

S

e

is isometri to the tree metri d

T

[15, Prop.11.1.4℄.)

Multiommodity ows: A multiommodity ow network (V;E; P ) is spei�ed by an undireted

graph G = (V;E), where E is the set of edges along whih ow an be routed, and a set P of

unordered pairs of verties in V between whih demands an be plaed. In the unrestrited ase,

where P onsists of all pairs of verties, we shall omit expliit mention of P and refer to the network

simply as G = (V;E). Assigning non-negative apaities C to the graph edges E and demands D

to the pairs P gives us a partiular instane (V;C;D) of the multiommodity ow problem. For

bakground, see the survey by Shmoys [35℄.

The optimal solution to this problem is the maximum value � suh that there is a multiommodity

ow f respeting the edge apaities that satis�es a �-fration of eah demand. We shall refer to

� as MaxFlow(V;C;D). Its value (as well as an atual ow f whih realizes it) an be found in

polynomial time by linear programming.

A losely related problem is the sparsest ut problem, whih entails �nding a partition (A;A) of V

that minimizes the ratio

�(A) =

Capaity(A;A)

Demand(A;A)

=

C � Æ

A

D � Æ

A

:

(To make sense of the inner produts, note that C;D and the ut metri Æ

A

an all be viewed as

elements of the vetor spae R

(

n

2

)

.) We shall refer to � = min

A

�(A) as MinCut(V;C;D).

In the sequel it will be onvenient to use the following identities (see, e.g., [26℄ or [15, page 135℄ for

the proofs):

MaxFlow(V;C;D) = min

Æ2M(V )

C � Æ

D � Æ

; MinCut(V;C;D) = min

Æ2M

1

(V )

C � Æ

D � Æ

; (2.1)

where M(V ) is the set (in fat, a onvex one) of all metris over V , and M

1

(V ) is the set (again,

a onvex one) of all `

1

-embeddable metris over V . As M

1

(V ) �M(V ) (the inlusion being strit

for V of size � 5), it is always the ase that MaxFlow � MinCut.

5



In ontrast with the ase when there is just one ommodity, the MinCut is not equal to the MaxFlow

in general. The ratio  � 1 between the MinCut and the MaxFlow is alled the gap of the instane

(V;C;D). From the omputational point of view, omputing the value of the MinCut (and hene

also the value of ) is an NP-hard problem.

Graphs and Minors: An outerplanar graph G is a planar graph with an embedding in the plane

so that every vertex lies on the outer (unbounded) fae. A series-parallel graph G = (V;E) with

terminals s; t 2 V is either a single edge fs; tg, or a series ombination or a parallel ombination

of two series-parallel graphs G

1

and G

2

with terminals s

1

; t

1

and s

2

; t

2

. The series ombination of

G

1

and G

2

is formed by setting s = s

1

, t = t

2

and identifying s

2

= t

1

; the parallel ombination is

formed by identifying s = s

1

= s

2

, t = t

1

= t

2

.

The graph G = (V;E) has an H-minor if there exists a sequene of edge-deletion and edge-

ontration operations on G whih results in a graph G

0

that is isomorphi to H. Note that eah

vertex of G

0

orresponds to a (onneted) set of verties of G whih were ontrated to it. For

U � V , we say that G has an H-minor w.r.t. U if it has an H-minor G

0

suh that for every vertex

of G

0

, the orresponding set of verties of G ontains a vertex from U . Finally, we say that G is

H-free (w.r.t. U) if it has no H-minor (w.r.t. U).

It is well known that K

4

-free graphs are those whose bloks are series-parallel graphs [16, p.185℄,

and that K

2;3

-free graphs are those whose bloks are either outerplanar or isomorphi to K

4

[16,

p.81℄.

Finally, the Euler number of an undireted onneted graph G is de�ned as �(G) = jE(G)j �

jV (G)j + 1. (Throughout this paper, the symbol �(G) denotes the Euler number and not the

hromati number.)

3 Multiommodity ows, metris and graphs

Multiommodity ows have long been an objet of study in ombinatorial optimization (see [18℄

for a historial survey). The lassial theory was onerned mainly with the following question:

Under what onditions on the ow network (V;E; P ) is the MaxFlow equal to the MinCut for every

setting of apaities C and demands D? As it turns out, this question is equivalent to the following

question onerning the `

1

-embeddability of metris: What are the onditions on (V;E; P ) suh

that, for every metri � supported on G = (V;E), there exists an `

1

-embeddable metri � on V

suh that � dominates �, and � = � on P ? [34, Setion 3℄

In light of this equivalene, the lassial results about ows (in ases where the gap  = 1) have

onsequenes for `

1

-embeddability and vie versa. For instane, a well-known theorem due to

Okamura and Seymour [29℄ says that if G = (V;E) is a planar graph with outer fae F , and P

onsists only of pairs of verties in F , then the MaxFlow and MinCut are equal for all instantiations

of C and D. Taking G = (V;E) to be an outerplanar graph, letting P onsist of all pairs in V and

using the above equivalene, we an infer that all metris supported on outerplanar graphs an be

isometrially embedded into `

1

. (See also [14℄ for a diret argument.)

To state this and other suh results suintly, let us introdue some notation. For a metri �, let

6





1

(�) be the minimum distortion between � and �, where � ranges over all `

1

metris, and let 

1

(G)

be the maximum value of 

1

(�) for all metris � supported on G. Hene, we have just seen that



1

(G) = 1 for every outerplanar graph G.

In fat, this turns out to be almost a haraterization of graphs G with 

1

(G) = 1. The full

piture is that 

1

(G) = 1 i� G is K

2;3

-free. On the one hand, as mentioned earlier, eah blok of

a K

2;3

-free graph is either outerplanar or isomorphi to K

4

, and a graph is `

1

-embeddable i� eah

of its bloks is. We have already seen that outerplanar graphs are `

1

-embeddable; it is also well

known that the same holds for any metri on four points [15, Example 11.1.8℄. Thus, for every

K

2;3

-free graph G, 

1

(G) = 1. Conversely, it is well known that the metri of the unit-weighted

K

2;3

is not `

1

-embeddable [15, Example 6.3.2℄. Now if G has a K

2;3

-minor, onsider the sequene

of edge ontrations and deletions whih turn G into K

2;3

. Assigning1 to eah deleted edge, 0 to

eah ontrated edge, and 1 to the remaining edges, we obtain a semi-metri supported on G and

oiniding (as a metri spae) with that of the unit-weighted K

2;3

. Thus, 

1

(G) � 

1

(K

2;3

) > 1.

Hene we have the following haraterization:

Proposition 3.1 The lass of graphs for whih 

1

(G) = 1 is exatly the lass of K

2;3

-free graphs.

Muh reent researh on multiommodity ows has been direted towards the ase where equality

does not hold, and to �nding good bounds on the ratio  between the MinCut and the MaxFlow.

This study was pioneered in the paper of Leighton and Rao [25℄, and the results presented there

were extended in a long sequene of papers by several authors (see [35℄ for a detailed aount). The

best results known [26, 2℄ show that for any ow network (V;E; P ), the gap between the MaxFlow

and the MinCut an never be more than O(log jP j), and hene O(log n). This bound is tight when

G = (V;E) is a onstant-degree expander, all edge apaities are unity and there is unit demand

between all pairs of verties. Better results have been obtained for planar graphs, showing that in

suh graphs the gap  never exeeds O(

p

logn ) [33℄, and in fat is bounded by a onstant in the

speial ase of uniform demands [22℄.

An intimate relationship between the gap  and 

1

(G) holds even in the ase where the MaxFlow

is not equal to the MinCut, and provides a ompelling motivation for studying the quantity 

1

(G).

Theorem 3.2 For any graph G = (V;E), the worst possible gap  attained by a multiommodity

ow problem on G is exatly 

1

(G).

Proof: The diretion  � 

1

(G) was shown already in [26℄. Indeed, by de�nition of 

1

, for every

metri � supported on G, there exists an `

1

-embeddable metri Æ whih distorts � by at most 

1

(G).

But then, by de�nition of distortion,

C�Æ

D�Æ

� 

1

(G)

C��

D��

, and in view of (2.1) we are done.

For the other, apparently new, diretion  � 

1

(G), it will be onvenient to use an equivalent dual

de�nition of 

1

(�) for a metri � on V :



1

(�) = max

(C;D)

D � �

C � �

; (3.2)

where the maximum is taken over all non-negative vetors C;D indexed by ordered pairs of verties

of V whih satisfy the restrition

D�Æ

C�Æ

� 1 for any `

1

-embeddable metri Æ on V . The proof of

this equality follows from general fats about onvex ones, and is deferred to the appendix.

7



By this dual de�nition, there exists a metri � supported on G, and non-negative vetors C;D �

R

(

jV j

2

)

, suh that

D��

C��

= 

1

(G), while for any `

1

-embeddable metri Æ we have

D�Æ

C�Æ

� 1 . First

we laim that, without loss of generality, one may assume that C vanishes outside E(G). Indeed,

assume that for some pair of verties fi; kg 62 E(G), the value C(i; k) is stritly positive. Sine �

is supported on G, there exist edges e

1

= (j

0

; j

1

); e

2

= (j

1

; j

2

); :::; e

q

= (j

q�1

; j

q

) in G suh that

j

0

= i; j

q

= k and �(j

0

; j

q

) = �(j

0

; j

1

) + :::+ �(j

q�1

; j

q

). De�ne a new vetor C

0

by

C

0

(i; k) = 0;

C

0

(j

r�1

; j

r

) = C(j

r�1

; j

r

) + C(i; k) for eah r = 1; 2; ::q, and

C

0

(u; v) = C(u; v) otherwise.

Now, the pair C

0

;D an replae the pair C;D in the above de�nition of 

1

(G). Clearly, for any

metri Æ on V we have C

0

�Æ � C �Æ; in partiular, for any `

1

-embeddable Æ we have (D � Æ)=(C

0

� Æ) �

(D � Æ)=(C � Æ) � 1 , as required by (3.2). On the other hand, for �, the \worst" metri supported

on G, we have the equality C

0

� � = C � �, and thus (D � �)=(C

0

� �) = (D � �)=(C � �) = 

1

(G) .

Repeating this updating proedure for all non-edges of G, we arrive at a vetor C that vanishes

outside E(G).

Employing suh a pair C;D and bearing in mind the de�nitions of MinCut and MaxFlow given in

(2.1), we onlude that

 � (V;C;D) =

MinCut(V;C;D)

MaxFlow(V;C;D)

�

min

Æ2M

1

(V )

(C � Æ)=(D � Æ)

(C � �)=(D � �)

�

D � �

C � �

= 

1

(G) :

Reall that by Proposition 3.1, the graphs for whih 

1

(G) = 1 are exatly the K

2;3

-free graphs.

It is no oinidene that this haraterization involves exluded minors. Observe that the graph-

theoreti funtion 

1

is minor-monotone, i.e., if H is a minor of G than 

1

(G) � 

1

(H). Indeed,

edge deletion orresponds to assigning the edge the value1, while edge ontration orresponds to

assigning it the value 0. The prinipal onsequene of this observation is that F



, the family of all

graphs G with 

1

(G) � , is minor-losed for any . Hene, by a elebrated theorem of Robertson

and Seymour, any F



an be haraterized in terms of forbidden minors (see, e.g., [16, Cor.12.5.3℄).

Another onsequene of monotoniity of 

1

(G) is that the set f

1

(G)g � R where G ranges over all

�nite graphs, ontains no in�nite desending sequene. Indeed, assume that 

1

(G

1

) > 

1

(G

2

) >



1

(G

3

) > ::: is an in�nite desending sequene. By a theorem of Robertson and Seymour, there

must exist G

i

and G

j

with j > i suh that G

i

is a minor of G

j

(see, e.g., [16, Thm.12.5.2℄),

ontraditing the monotoniity of 

1

. In partiular, every point of f

1

(G)g ontains a unique \next

to the right" point. Currently, we only know that the smallest point of this set is 1, and the seond

smallest is 

1

(K

2;3

), whih an be shown to be 4=3.

An intriguing onjeture, and one of the main motivations behind this paper, is that for any non-

trivial minor-losed family F of graphs, there exists a onstant 

F

� 1 suh that for all G 2 F ,



1

(G) � 

F

.

The results in the next setion provide some evidene in support of this onjeture. We onsider

the next natural minor-losed lass of graphs ontaining K

2;3

, namely the lass of series-parallel

8



graphs, and show that they are `

1

-embeddable with onstant distortion. In addition, we bound the

distortion 

1

(G) of a graph in terms of its Euler harateristi alone, and thus establish an in�nite

sequene of natural minor-losed families with onstant distortion, namely those with bounded

Euler harateristi.

4 Constant-distortion embeddings for some graph families

In this setion, we shall present expliit onstant-distortion embeddings into `

1

of the natural minor-

losed families of series-parallel graphs, and of graphs with bounded Euler harateristi. These

are the �rst non-trivial results exhibiting (neessarily) non-isometri embeddings of graph families

with onstant distortion.

4.1 Series-parallel graphs

Our goal will be to show that any metri supported on a series-parallel graph is embeddable in

`

1

with onstant distortion. In fat, our argument is presented for the slightly more general lass

of treewidth-2 graphs, i.e., graphs whose bloks are series-parallel graphs. Reall that this is a

minor-losed family with K

4

as the exluded minor. We have not attempted to ahieve the best

possible onstant distortion, whih we believe is rather less than the value of (just under) 14 shown

here.

Theorem 4.1 Let G = (V;E) be a weighted graph with treewidth 2, and let � = �

G

be the metri

indued by the edge weights of G. Then there exists an `

1

-embeddable metri e� and a onstant

 < 14 suh that for every u; v 2 V ,

1



�(u; v) � e�(u; v) � �(u; v):

Moreover, this embedding preserves the length of edges, i.e., for every (u; v) 2 E, e�(u; v) = �(u; v).

Finally, e� an be omputed in polynomial time.

Before proving the theorem, let us briey disuss some properties of treewidth-2 graphs and the

metris generated by them. Aording to one of the many alternative de�nitions, treewidth-2

graphs an be onstruted using the following omposition proedure. Start with a single edge e

0

,

and repeatedly attah a single new vertex to the endpoints of an already existing edge (whih we

all the parent edge of the vertex); �nally, after all the verties have been attahed, remove an

arbitrary subset of the edges. We shall onsider a weighted treewidth-2 graph G together with

the sequene of intermediate weighted graphs G

2

; G

3

; :::; G

n

= G ourring during its omposition,

where G

2

is the initial edge e

0

. Eah new edge e = (u; v) will be endowed with weight �(u; v),

where � is the metri indued by G. Observe that, w.l.o.g., we may assume that no edges are

removed in the seond stage of the onstrution, sine removing a non-essential edge e (one with

weight �(e)) has no e�et on �.

The manner in whih G was onstruted implies that the metri �

i

indued by an intermediate

graph G

i

on V (G

i

) � V (G) agrees with � restrited to these verties, i.e., �

i

= �j

V (G

i

)

. A loser

9
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Figure 4.1: Anestor and related edges.

look at the struture of G reveals more information about �. Let us de�ne the notions of anestor

and related edges of a vertex. The de�nition is reursive: the anestor edges of x 2 V (G) inlude

the parent edge e = (s; t) of x, and the anestor edges of s and t. The �rst edge e

0

is an anestor

edge of both its endpoints, and thus of all x in V (G). A related edge of a vertex is an edge both

of whose endpoints lie either on anestor edges of x, or oinide with x. In partiular, all anestor

edges of x are also related edges of x.

An example is shown in Figure 4.1, in whih the verties were added in the order x

1

; x

2

; x

3

; x

4

. The

parent edge of x

4

is e

3

, its anestor edges are fe

0

; e

1

; e

3

g, while f(t; x

1

); (x

1

; x

3

); (s; x

4

); (x

3

; x

4

)g

are its related non-anestor edges.

Let e be an anestor edge of x. De�ne G

x;e

, a subgraph of G, as the union of all the related edges of

x whih were introdued after e, plus edge e itself. (For example, in Figure 4.1 the graph G

x

4

;e

1

is

the subgraph indued by the verties fs; x

1

; x

3

; x

4

g.) The subgraph G

x;e

has a partiularly simple

struture: it is onstruted by starting from e, marking it, and repeatedly attahing a single new

vertex to the endpoints of the urrently marked edge, upon whih the marked edge is unmarked

and one of the newly added edges is marked. The order of omposition of G

x;e

is indued by that

of G. The graph G

x;e

will simplify our later analysis; for the moment, observe that the distane

between any pair of verties in G

x;e

is equal to their original distane in G.

For a pair of verties x; y, the last ommon anestor edge f = (s; t) of x; y is the ommon anestor

edge of x and y whih was added last in the omposition of G. When neither x nor y lies on an

anestor edge of the other, two possibilities may our: either f separates x and y (i.e., every x-y

path passes through either s or t), or there exists a vertex q whose parent edge is f , suh that (s; q)

is an anestor edge of x (but not of y) while (t; q) is an anestor edge of y (but not of x).

We are now ready to embark on the proof of the theorem.

Proof of Theorem 4.1: We start with the indutive onstrution of the approximating metri e�.

The onstrution follows the omposition proedure for G, �rst de�ning e� on G

2

, then extending it

to G

3

, G

4

, et. in turn. In the base ase, G

2

is a single edge e

0

= (a; b), and we set e�(a; b) = �(a; b).

For the indutive step, we assume that e� is already de�ned on V (G

i�1

). Assume also that G

i

is

obtained from G

i�1

by attahing a new vertex x to the endpoints of the edge (s; t). Let

Æ =

�(x; s) + �(x; t)� �(s; t)

2

; P

s

=

�(x; t)� �(x; s) + �(s; t)

2�(s; t)

; P

t

=

�(x; s)� �(x; t) + �(s; t)

2�(s; t)

:

10



Now, the value of e�(x; �), where � stands for any vertex of G

i�1

, is de�ned as

e�(x; �) = Æ + P

s

e�(s; �) + P

t

e�(t; �) : (4.3)

The de�nition of e� immediately implies that it is omputable in polynomial time.

The argument that e� is `

1

-embeddable is indutive. The base ase is that e� on G

2

is trivially

`

1

-embeddable. For the indutive step, observe that e� on G

i

is a positive linear ombination of

three metris: the ut metri Æ

fxg

(with oeÆient Æ), the metri e� on G

i�1

with x at distane 0

from s (with oeÆient P

s

), and the metri e� on G

i�1

with x at distane 0 from t (with oeÆient

P

t

). The ut metri is `

1

-embeddable; e� on G

i�1

is `

1

-embeddable by the indution hypothesis, and

identifying the vertex x with either s or t does not a�et this. Thus, by indution, the restrition of

e� to eah G

i

(and hene to G

n

= G) is a sum of `

1

-embeddable metris, and hene is `

1

-embeddable.

The next fat to prove is that e� is dominated by �. Sine � is the shortest path metri of G, the

expansion of e� is bounded by its expansion on the edges of G; thus it suÆes to prove the stronger

statement that every edge of G maintains its length under e�, i.e., for every e = (u; v); e�(u; v) =

�(u; v). This stronger statement is again established by an indutive argument. The laim obviously

holds for G

2

. Assume that the vertex x is attahed to the edge (s; t) 2 E(G

i�1

). By the indutive

assumption, the laim holds for G

i�1

, and in partiular for (s; t). Consider, e.g., the new edge

(x; s); by (4.3), e�(x; s) = Æ + P

t

e�(s; t) = Æ + P

t

�(s; t) whih, by de�nition of Æ and P

t

, equals

�(x; s).

Bounding the ontration of e� will be the hardest part of the proof. In preparation for this, let

us give an equivalent but more intuitive \bakwards" desription of e�. We envisage the proess of

onstruting e� as starting from the �nal vertex, and ollapsing the urrent \last" vertex onto one

of the endpoints of its parent edge. More preisely, if the edge (s; t) is the parent of x, we remove

the ut metri orresponding to x (with weight Æ), and then ollapse the vertex x onto either s or t,

with probabilities P

s

and P

t

respetively. (Note that P

s

and P

t

sum to 1, and both are non-negative

by the triangle inequality.) Upon reahing G

2

, we simply remove the orresponding ut metri,

thus ollapsing the entire graph to a single point. The metri e� is just the expeted sum of the

(weighted) ut metris removed in this proess. In what follows, we shall make repeated use of this

view of e� as the expeted result of a random proess.

The bound we will prove on the ontration of e� is stated in the following lemma.

Lemma 4.2 Let x and x

�

be any two verties of G. Then, for any � 2 (

1

2

; 1), we have

e�(x; x

�

) �

(1� �)(2� � 1)

1 + �

�(x; x

�

):

Theorem 4.1 follows at one from this lemma: we simply hoose � optimally to be

p

3 � 1, and

onlude that the ontration (and hene the distortion) of e� is at most 13:92.

We will split the proof of Lemma 4.2 into two ases:

Case (i): x

�

lies on an anestor edge of x.

Case (ii): Neither x nor x

�

lies on an anestor edge of the other.
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Figure 4.2: Proof of Lemma 4.2, Case (i).

Proof of Lemma 4.2, Case (i): In this ase x

�

= s lies on an anestor edge e = (s; t) of x.

Consider the graph G

x;e

as de�ned above, and let h(s

1

; t

1

); : : : ; (s

k

; t

k

) = (s; t)i be the sequene

of anestor edges of x up to the edge on whih s lies. (See Figure 4.2.) For onveniene, set also

s

0

= t

0

= x. For 1 � i � k, de�ne

L

i

= �(s

i

; t

i

); �

i

= �(s

i�1

; s

i

); �

i

= �(t

i�1

; t

i

):

Note that for eah i � 2, either t

i�1

= t

i

with �

i

= 0, or s

i�1

= s

i

with �

i

= 0.

Denote by P

s

(resp., P

t

) the probability (under the random-proess de�nition of e�) that, when

x ollapses to the edge (s; t), it ollapses onto s (resp., t). Let � be the expeted sum of the

weights of the uts removed under all ollapses of x up to and inluding this time. Then we have

e�(x; s) = �+ P

t

e�(s; t), and therefore, by the edge preservation property of e�,

e�(x; s) = � + P

t

�(s; t) : (4.4)

Note also that not only is the atual distane �(x; s) equal in G and in G

x;e

, but the same holds for

the approximated distane e�(x; s): this is lear from (4.4) sine the quantities � and P

t

must be

equal in G and in G

x;e

. Thus in what follows we may restrit our attention to the subgraph G

x;e

.

Now let P

i

s

(resp., P

i

t

) be the probability that, when x ollapses to the edge (s

i

; t

i

), it ollapses

onto s

i

(resp., t

i

), and let �

i

be the expeted sum of the weights of the uts removed under all

ollapses of x up to and inluding this time. Assume also that t

i

= t

i�1

while s

i

; s

i�1

are distint,

as in Figure 4.2. (The other ase is handled symmetrially.) The following laim establishes three

inequalities relating the value of e�(x; s

i

) to the values of e�(x; s

i�1

) and e�(x; t

i�1

).

Claim 4.3 Let � 2 (

1

2

; 1). Then, in the above situation,

(a) If P

i�1

s

� �, then e�(x; s

i

) � e�(x; s

i�1

) + (2� � 1)�

i

.

(b) If P

i�1

t

� �, then e�(x; s

i

) � e�(x; t

i�1

) + (2� � 1)L

i

.

() Otherwise, if 1� � � P

i�1

s

� �, then e�(x; s

i

) +

2�

1��

(�

i

��

i�1

) � e�(x; s

i�1

) + �

i

.
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Proof: The proof is elementary but somewhat tehnial. Arguing as in the derivation of (4.4),

we obtain

e�(x; s

i�1

) = �

i�1

+ P

i�1

t

L

i�1

;

e�(x; t

i�1

) = �

i�1

+ P

i�1

s

L

i�1

:

(4.5)

Keeping in mind the edge preservation property of e�, and onditioning on whether x ollapsed onto

s

i�1

or t

i�1

, we an express e�(x; s

i

) as

e�(x; s

i

) = �

i�1

+ P

i�1

t

L

i

+ P

i�1

s

�

i

: (4.6)

Performing a formal manipulation, we get

e�(x; s

i

) = �

i�1

+ P

i�1

t

(L

i

+ �

i

) + (P

i�1

s

� P

i�1

t

)�

i

� �

i�1

+ P

i�1

t

L

i�1

+ (P

i�1

s

� P

i�1

t

)�

i

= e�(x; s

i�1

) + (P

i�1

s

� P

i�1

t

)�

i

;

where we have used the triangle inequality L

i�1

� L

i

+ �

i

, and (4.5). This implies (a).

Similarly,

e�(x; s

i

) = �

i�1

+ P

i�1

s

(L

i

+ �

i

) + (P

i�1

t

� P

i�1

s

)L

i

� �

i�1

+ P

i�1

s

L

i�1

+ (P

i�1

t

� P

i�1

s

)L

i

= e�(x; t

i�1

) + (P

i�1

t

� P

i�1

s

)L

i

;

implying (b).

In order to show (), onsider the hange in �. Let Æ

i�1

be the weight of the ut removed while

ollapsing s

i�1

to (s

i

; t

i

). Then

�

i

��

i�1

= P

i�1

s

� Æ

i�1

= P

i�1

s

�

�

i

+ L

i�1

� L

i

2

:

Substituting this expression for the value of (�

i

��

i�1

), and using (4.6) and (4.5), we get

e�(x; s

i

) +

2P

i�1

t

P

i�1

s

(�

i

��

i�1

) = [�

i�1

+ P

i�1

t

L

i

+ P

i�1

s

�

i

℄ +

�

P

i�1

t

(�

i

+ L

i�1

� L

i

)

�

= e�(x; s

i�1

) + �

i

:

We are now in a position to bound e�(x; s) from below in terms of �(x; s). For this purpose, we

will onstrut a path between x and s in G

x;e

, and show that every edge on this path makes a

substantial ontribution to e�(x; s). Sine the length of the path is at least �(x; s), this will yield

the desired lower bound.

The path � from s = s

k

to x in G

x;e

will be de�ned as follows. Assume we have already onstruted

some initial segment of �, and have reahed an endpoint of the edge (s

i

; t

i

), but have not yet reahed

the edge (s

i�1

; t

i�1

). Assume also, w.l.o.g., that s

i

; t

i

are again situated as in Figure 4.2; the other

ase is treated in a symmetrial manner. Then we must have reahed s

i

. Consider the value of P

i�1

t

de�ned above. If P

i�1

t

> �, we add to � the edge (s

i

; t

i�1

) of length L

i

and ontinue; otherwise,
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we add to � the edge (s

i

; s

i�1

) of length �

i

and ontinue. Upon reahing (s

1

; t

1

), we add the edge

onneting x to (s

1

; t

1

) to omplete the path �.

Clearly, � is a well-de�ned path from s = s

k

to x in G

x;e

. Moreover, by our hoie of � and the

preeding analysis (i.e., Claim 4.3), if � is hs

k

= �

0

! �

1

! �

2

! : : : ! �

m

= xi, then for every

edge (�

j�1

; �

j

) 2 � we have

e�(x; �

j

)� e�(x; �

j�1

) +

2�

1� �

(�

�

j

��

�

j�1

) � (2� � 1) � �(�

j�1

; �

j

);

where, with a slight abuse of notation, �

�

j

stands for �

r

where r is the smallest index suh that

�

j

2 (s

r

; t

r

). (Observe that (�

�

j

��

�

j�1

) � 0, so we may safely add this term for all j.)

Summing up these expressions, we arrive at

e�(x; s

k

) +

2�

1� �

�

k

� (2� � 1) � (the �-length of P )

� (2� � 1)�(x; s

k

): (4.7)

Sine learly e�(x; s

k

) � �

k

, this ompletes the proof of Case (i) of Lemma 4.2.

Proof of Lemma 4.2, Case (ii): In this ase, neither x nor x

�

lies on an anestor edge of the

other. Let (s; t) be the last ommon anestor edge of x and x

�

. As mentioned before, there are

two possibilities. The �rst is that (s; t) separates x and x

�

. The seond is that there is a triangle

T = (s; q; t) suh that (s; q) is an anestor edge of x but not of x

�

, (t; q) is an anestor edge of x

�

but not of x, and both (s; q) and (t; q) separate x from x

�

.

We start with the analysis of the �rst possibility. Let P

s

(resp., P

t

) denote the probability that

when x ollapses to (s; t), it ollapses onto s (resp., t); the probabilities P

�

s

(resp., P

�

t

) are the

orresponding values for x

�

. Also, let � (resp., �

�

) be the expeted value of the sum of the weights

of ut metris removed in the proess of ollapsing x (resp., x

�

) to the edge (s; t). By the random

proess de�nition of e�, the ollapses of x and of x

�

proeed independently of eah other; keeping

in mind that e� is preserved on edges, we get

e�(x; x

�

) = �+�

�

+ (P

s

P

�

t

+ P

t

P

�

s

)�(s; t): (4.8)

Moreover, it an be easily veri�ed that

P

s

P

�

t

+ P

t

P

�

s

�

1

2

min fP

s

+ P

�

s

; P

t

+ P

�

t

g : (4.9)

Substituting this into (4.8), assuming w.l.o.g. that the minimum is attained at t, and using (4.4),

we get

e�(x; x

�

) �

1

2

( e�(x; s) + �) +

1

2

( e�(x

�

; s) + �

�

) : (4.10)

However, adding the inequality (4.7) times the positive onstant � =

1��

1+�

to the inequality

e�(x; s)�� � 0 times the positive onstant (

1

2

� �), gives

1

2

( e�(x; s) + �) �

(1� �)(2� � 1)

1 + �

�(x; s) :
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An analogous bound holds for e�(x

�

; s). These two bounds, together with (4.10) and the triangle

inequality �(x; x

�

) � �(x; s) + �(s; x

�

), imply the Lemma when the �rst possibility ours.

We now look at the seond possibility, i.e., when there is the triangle T = (s; t; q). To ompute the

values of �(x

�

; x) and e�(x

�

; x) in the original graph G, it suÆes to look instead at the random

proess restrited to the graph H obtained by taking the graphs G

x;(s;q)

and G

x

�

;(t;q)

and attahing

them to the triangle T = (s; q; t). (This follows by the same reasoning as in Case (i), when we

argued that the values of �(x; s) and e�(x; s) in G ould be omputed by restriting our attention

to G

x;e

.)

The random proess goes as follows: the graph H is �rst ollapsed onto T , the vertex q is then

ollapsed onto either s or t, and �nally the resulting fs; tg-ut is removed. Let us de�ne a new

random proess, whih ollapsesH onto T as before, but then ollapses t onto (s; q) and removes the

resulting fs; qg-ut. Our laim is that the value of e�(x; x

�

) is the same in both proesses. Indeed,

the two proesses di�er only in the �nal step, and it is simple to hek that, given a triangle, the

random proess generates the same metri regardless of whih vertex is ollapsed onto its opposite

edge.

Now, in this new order that we have introdued, the last ommon anestor edge of x; x

�

is (s; q),

and this edge separates x and x

�

. At this point, the argument for the �rst possibility applies, and

the laim follows.

This ompletes the veri�ation of both ases in the proof of Lemma 4.2, and hene the proof of

Theorem 4.1.

Having proved the main theorem of this setion, let us state some orollaries and observations.

Muh of the ompliation in the proof arises from the need to aount for both the uts removed

and the ollapses made at eah step. Let us onsider for the moment the important speial situation

in whih no uts are removed, i.e., when the input series-parallel graph G has the property that for

all x, for all anestor edges (s; t) of x we have �(x; s)+�(x; t) = �(s; t). (Observe that this property

an be restated in a simpler form: for all x, we have �(x; a) + �(x; b) = �(a; b), where a, b are the

terminals of G. We shall point out an interesting appliation of these graphs in Setion 5.4.)

For suh graphs a stronger version of Lemma 4.2 is true: namely, e�(x; x

�

) �

1

2

�(x; x

�

). Moreover,

the proof is muh simpler than in the general setting. To see this, onsider �rst Case (i) (when

x

�

= s lies on an anestor edge of x); in this ase we atually have that e�(x; s) = �(x; s), and this

follows diretly from the de�nition of e� using indution on the omposition of G. Indeed, assume

that x is attahed to (s

1

; t

1

), and the laim has already been established for s

1

; t

1

. By de�nition of

e�,

e�(x; s) =

�(x; s

1

)

�(s

1

; t

1

)

� e�(t

1

; s) +

�(x; t

1

)

�(s

1

; t

1

)

� e�(s

1

; s) :

By the indutive hypothesis,

e�(t

1

; s) = �(t

1

; s) = �(t

1

; s

1

) + �(s

1

; s) ; e�(s

1

; s) = �(s

1

; s) :

Combining the equations, we get e�(x; s) = �(x; s) as laimed. Case (ii) of Lemma 4.2 an now be

strengthened to e�(x; x

�

) �

1

2

�(x; x

�

). This follows from (4.10), keeping in mind that � = �

�

= 0

and using the stronger version of Case (i) given above. Thus, we an onlude:
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Lemma 4.4 For the speial series-parallel graphs desribed above,

1

2

� � e� � �.

Returning now to the gap  in multiommodity ow instanes, Theorems 3.2 and 4.1 imply:

Corollary 4.5 Let G = (V;E) be a graph with no K

4

-minor. Then, for every assignment of edge

apaities C and demands D in G, the gap  = MinCut=MaxFlow is less than 14.

With the aid of a little graph-theoreti mahinery, this orollary an be generalized as follows. The

proof is somewhat orthogonal to our main development, and an be found in a separate paper [28℄.

Theorem 4.6 Let G = (V;E) be a graph, and let the set of demand pairs be a subset of pairs

from U , for some U � V . If G ontains no K

4

-minor w.r.t. U , then for every assignment of edge

apaities C and demands D in G, the gap  = MinCut=MaxFlow is less than 28.

4.1.1 Approximating the sparsest ut in series-parallel graphs

The iterative proedure used in the above proof an be exploited to �nd a near-optimal sparsest ut

in series-parallel graphs in polynomial time. Previously, this result was known only for the speial

ase of uniform demands [32, 30, 22℄. Observe that Corollary 4.5 alone does not immediately imply

the existene of a polynomial time proedure for �nding a good ut.

Theorem 4.7 There is a polynomial time 14-approximation algorithm for the Sparsest Cut problem

on series-parallel graphs.

Proof Sketh: To approximate the MinCut in a series-parallel graph, we �rst solve the orre-

sponding multiommodity ow problem, and �nd the metri � minimizing

C��

D��

(see the disussion

following Theorem 3.2). By Theorem 4.1, we an �nd in polynomial time an `

1

-metri e� that

14-approximates �. Reall the manner in whih e� is built (see equation (4.3) and the desription

following it): at eah step, it is a positive linear ombination of three `

1

-metris e�

1

; e�

2

and e�

3

.

Consequently, at least one of these metris must yield a value

C�e�

i

D�e�

i

whih is at most

C�e�

D�e�

. Choosing

this minimizing metri and ontinuing with the orresponding subgraph, we will eventually reah

a point where the remaining metri is a ut metri. This ut ahieves the desired approximation

ratio.

4.2 Embedding graphs with few edges

Reall that for a graph G = (V;E), the Euler harateristi �(G) is de�ned as jEj � jV j+ 1. It is

easy to see that, for eah  2 Z

+

, the family of graphs F



= fG j�(G) �  g is minor-losed. The

following theorem shows that graphs with low �(G) an be embedded with low distortion into `

1

:

Theorem 4.8 A metri supported on an arbitrary graph G an be embedded into `

1

with distortion

O(log�(G)), where �(G) is the Euler harateristi of G.
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Proof: The embedding will be similar in avor to that of Theorem 4.1, though muh simpler. As

before, we assume that G is 2-onneted; if not, we an apply the argument to eah of its bloks.

We also assume that G is not a yle, sine the yle metri embeds isometrially into `

1

, as an

be dedued from Proposition 3.1 (or for a diret proof see [26, Prop.5.10℄).

De�ne an isolated path to be a maximal path in G, eah of whose internal verties has degree 2.

Hene eah of its endpoints has degree at least 3. Call an isolated path B tight if its length is equal

to the distane between its endpoints. We �rst deompose d

G

, the shortest-path metri of G, into

two simpler metris: e�, whih is the shortest-path metri of a graph G

0

with the same verties and

edges as G but whih has only tight isolated paths, and e�

0

, whih is a sum of ut metris.

For this, let us onsider a weighted yle C, assuming that the weight of any edge is just its

shortest-path length. Let e = (u; v) be an edge on C. Sine C is `

1

-embeddable, the metri d

C

an

be written as a positive linear ombination of ut metris. Let d

0

be the sum of all those uts that

separate u and v, and d

1

be the sum over the remaining uts; learly, d

C

= d

0

+ d

1

. Observe that

the sum of d

0

-lengths of all the edges in E(C)� feg is neessarily exatly equal to the length of e,

or, in other words, the length of the path P = C � feg under d

0

is equal to the length of e; note

also that d

0

(e) = d

C

(e). Conerning d

1

, observe that no ut metri Æ

S

in d

1

separates u and v, so

we may assume w.l.o.g. that the orresponding set S satis�es S � V (C)� fu; vg.

All this leads to a deomposition of G into G

0

plus an `

1

metri. Suppose G has isolated paths that

are not tight. To the endpoints u and v of eah isolated path B, add an edge e = (u; v) of length

d(u; v); this forms a yle with B. The shortest path metri of eah suh yle an be deomposed

into d

0

and d

1

as above. Eah of the ut metris in d

1

naturally extends to the whole of G, and

hene d

1

, being their weighted sum, also extends to an `

1

-embeddable metri on G. Call this e�

0

.

By the preeding disussion, d

G

= d

G

0

+ e�

0

, where G

0

has the same verties and edges as G, but all

isolated paths in G

0

are now tight (as in d

0

). This is the desired deomposition.

Sine this phase involved no distortion, it suÆes for the proof of the theorem to show that any

graph G with tight isolated paths an be embedded into `

1

with distortion O(log�(G)). We will

denote the length of an isolated path B by d(B).

Let

e

G be a minor (multigraph) of G obtained by the following random proedure: for eah isolated

path B with endpoints u

B

and v

B

, hoose a value r

B

uniformly and independently from the interval

[0; d(B)℄, and ollapse all verties in B at distane less than r

B

from v

B

to this endpoint, and all

the other verties in B to u

B

. The length of the newly reated edge (u

B

; v

B

) 2 E(

e

G) is de�ned

as d(B) = d

G

(u

B

; v

B

), so that the distane between u

B

and v

B

remains unhanged. Clearly, the

minimum degree of

e

G is now at least 3. De�ne e�(�; �) = E

�

d

e

G

(�; �)

�

; being a onvex ombination of

metris, e� is a metri as well. We laim that e� losely approximates d:

Claim 4.9 For any two verties x; y of G, the expeted distane e� between x and y in

e

G satis�es

1

4

d(x; y) � e�(x; y) � d(x; y):

Proof: Let us start with two simple observations. Firstly, if neither x nor y is an internal vertex of

an isolated path, the distane between them remains the same, i.e., e�(x; y) = d(x; y). Furthermore,

a simple alulation (involving the probability that x and y are ollapsed to di�erent endpoints of

17



B) shows that the same is true for any x and y belonging to the same isolated path B. Thus e�

preserves the lengths of all the edges of G, and sine d is the shortest-path distane in G, we infer

that e� is dominated by d.

Consider now the ase when the verties x; y lie on di�erent isolated paths B and B

0

. Let s; t be

the endpoints of B, and q; r the endpoints of B

0

. De�ne P

s

and P

t

to be the probabilities that x is

ontrated to s and t respetively. P

q

and P

r

are de�ned similarly, with respet to y. Clearly,

P

s

=

d(x; t)

d(s; t)

; and P

t

=

d(x; s)

d(s; t)

:

The expressions for P

q

and P

r

are analogous. By the de�nition of e�,

e�(x; y) = P

s

P

q

� d(s; q) + P

s

P

r

� d(s; r) + P

t

P

q

� d(t; q) + P

t

P

r

� d(t; r)

= P

s

� [P

q

d(s; q) + P

r

d(s; r)℄ + P

t

� [P

q

d(t; q) + P

r

d(t; r)℄ : (4.11)

A saled version of (4.9) together with the triangle inequality implies that

P

q

d(s; q) + P

r

d(s; r) �

1

2

min fP

q

[d(s; q) + d(s; r)℄ + d(s; r) ; P

r

[d(s; q) + d(s; r)℄ + d(s; q)g

�

1

2

min fP

q

d(q; r) + d(s; r) ; P

r

d(q; r) + d(s; q)g

=

1

2

min fd(y; r) + d(s; r) ; d(y; q) + d(s; q)g

=

1

2

d(s; y):

Similarly, P

q

d(t; q) + P

r

d(t; r) �

1

2

d(t; y). Substituting these inequalities into (4.11), and using the

saled version of (4.9) again, we onlude that

d(x; y) �

1

2

fP

s

d(s; y) + P

t

d(t; y)g �

1

2

�

1

2

d(x; y) :

This ompletes the proof of the laim.

Thus d is 4-approximated by e�. To onlude the proof of the theorem, we show that e� an be

embedded into `

1

with small distortion. Note that e� is a onvex ombination of semimetris, all of

whih are supported on G

0

, the graph obtained from G by replaing eah isolated path by an edge.

The distortion of embedding e� into `

1

is no more than that of d

G

0

, so it suÆes to bound the latter.

But G

0

has very few verties. On the one hand, it has minimum degree � 3; on the other hand,

it is a minor of G, and sine taking minors annot inrease the Euler number, �(G) � �(G

0

). Let

n

0

= jV (G

0

)j, andm

0

= jE(G

0

)j. By a degree argument, m

0

�

3

2

n

0

, implying �(G) � �(G

0

) �

1

2

n

0

+1.

Consequently, G

0

has at most 2�(G) � 2 verties, and hene d

G

0

an be embedded into `

1

(e.g.,

using Bourgain's tehnique [9℄) with distortion O(log�(G)).

5 Embeddings via tree metris

The algorithms for `

1

-embeddings desribed in the previous setion were based on onstruting an

approximating set of ut metris. A di�erent approah for embedding a metri (V; �) into `

1

is
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to speify a probability distribution over trees ontaining V , suh that the expeted tree distane

between any two verties x and y in V approximates �(x; y) well. Sine trees an be embedded

isometrially into `

1

, this also gives an `

1

-embedding. Of partiular interest are embeddings into

distributions over dominating trees, in whih the distane funtion in eah tree dominates �. Find-

ing low-distortion embeddings of this kind has onsequenes for the design of many approximation

algorithms (e.g., [4, 3, 19, 36, 10, 12℄) and online algorithms (e.g., [4, 6℄). Formally:

De�nition 5.1 A metri d

G

supported on a graph G is �-probabilistially approximated by a

distribution D over (dominating) trees if

(1) eah tree T in the distribution D has V (G) � V (T );

(2) for all x; y 2 V and T in the distribution, d

T

dominates d

G

, i.e., d

G

(x; y) � d

T

(x; y);

(3) for all x; y 2 V , the expeted distane E

D

[d

T

(x; y)℄ � � � d

G

(x; y).

In this paper we will use only spanning subtrees of G, and thus (1) and (2) will automatially be

satis�ed. Sine the expansion is always maximal on the edges of G, ondition (3) an be replaed

by the more onvenient

(3

0

) for all edges e = (x; y) 2 E(G), the expeted distane E

D

[d

T

(x; y)℄ � � � d

G

(x; y).

We shall also refer to this approximation as an embedding of d

G

with distortion � into a tree

distribution D.

Distributions over trees were �rst studied by Karp, who showed that distanes in the unweighted

yle C

n

an be 2(1 �

1

n

)-probabilistially approximated by a distribution over its subtrees [21℄.

The distribution is very simple: eah possible spanning tree of G is output with probability 1=n.

This is in sharp ontrast to the deterministi ase, where it an be shown that any tree (not

neessarily a subtree) approximating the yle has 
(n) distortion [31℄. This line of enquiry was

further developed in several papers [1, 4, 5, 24, 11℄, where distributions over arbitrary dominating

trees were onsidered. The state-of-the-art results show that any graph with n verties an be

embedded into tree distributions with distortion O(log n log logn) [5℄. In the speial ase where

the graph exludes a K

s;s

-minor, a distortion of O(s

3

log n) an be ahieved [24℄. In line with our

general approah, we now study the embeddability of outerplanar and series-parallel graphs into

tree distributions.

5.1 Tree embeddings for outerplanar graphs

The �rst result of this setion shows that any metri supported on a K

2;3

-free graph an be embed-

ded into a tree distribution with distortion at most 8. Of ourse, we already know by Proposition 3.1

that suh metris are isometrially embeddable into `

1

. However, that result says nothing about the

stronger requirement that the embedding be a distribution over dominating trees. Both the main

result of this setion and the method used play an essential part in later, more diÆult onstrutions

(see, e.g., Setion 5.4, and the reent [13℄).

As usual, it suÆes to embed only the bionneted omponents of the K

2;3

-free graph, whih are

either K

4

or outerplanar. It is easy to verify that approximating any metri on n points by its

minimum-weight spanning tree inurs a distortion of at most (n� 1), so any 4-point metri an be
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embedded into a tree with distortion 3. Thus, it suÆes to bound the distortion for 2-onneted

outerplanar graphs. As always, we assume w.l.o.g. that the length of any edge is equal to the

distane between its endpoints.

We start with a omposition proedure for outerplanar graphs whih will form the basis for the em-

bedding. Given suh a graph G, one an de�ne a sequene of outerplanar graphs G

0

; G

1

; : : : ; G

t

=

G, where G

0

is a path or a yle, and the graph G

i

is obtained by attahing a path P

i

either to a

single vertex u

i

on the outer fae of G

i�1

, or to the endpoints of an edge e

i

= (u

i

; v

i

) lying on the

outer fae of G

i�1

. In the latter ase, sine the length of any edge is equal to the distane between

its endpoints in G, the path P

i

is at least as long as e

i

. This implies that the shortest-path metri

of the graph G

i

oinides with the metri indued by d

G

on V (G

i

). Clearly, the omposition of G

is ompletely spei�ed by G

0

and the sequene of paths fP

i

g.

Given an outerplanar graph G with a spei�ed omposition proedure, the path P

i

is alled slak

if either P

i

is attahed to a single vertex, or P

i

is attahed to an edge e

i

and the length of P

i

is

at least twie the length of e

i

. A omposition is alled slak if all the paths P

i

in it are slak. We

shall �rst provide an embedding proedure for an outerplanar graph G assuming that G has a slak

omposition, and then show how to extend this to all outerplanar graphs.

Lemma 5.2 Given an outerplanar graph G and a slak omposition for it, G an be embedded into

a tree distribution D with distortion at most 4.

Proof: The embedding is indutive and follows the omposition. At stage i, we shall onstrut

a random spanning tree T

i

of G

i

from a random spanning tree T

i�1

of G

i�1

, while maintaining

property (3

0

) for T

i

with � = 4; i.e., with E [d

T

i

(x; y)℄ � 4d

G

i

(x; y) for all edges (x; y) 2 G

i

.

In the base ase, if G

0

is a path, we do nothing. If it is a yle, we randomly pik an edge e of G

0

with probability proportional to its length, and delete it to get a random subtree of G

0

. Let the

length of e be l, and the length of G

0

be L. The expeted distane between the endpoints of e in

T

0

is

�

l

L

�

� (L� l) +

�

L� l

L

�

� l � 2l; (5.12)

satisfying property (3

0

).

At stage i, we look at P

i

. If it is attahed to a single vertex u

i

, we attah it to T

i�1

at u

i

to get T

i

.

Clearly, property (3

0

) ontinues to hold for T

i

. On the other hand, if P

i

is attahed to an edge e

i

,

we randomly pik an edge e from P

i

(again with probability proportional to the length of e) and

set T

i

= T

i�1

[ (P

i

�feg). It is lear that T

i

is a spanning tree of G

i

. Let us show that property (3

0

)

is maintained. By the indution hypothesis, this is true for edges (x; y) of G

i�1

, sine

E [d

T

i

(x; y)℄ = E [d

T

i�1

(x; y)℄ � 4d

G

i�1

(x; y) = 4d

G

i

(x; y):

Consider an edge e = (x; y) 2 P

i

; denote its length by l, and the length of P

i

by L

i

. Furthermore,

assuming that P

i

is attahed at the edge (u

i

; v

i

), denote d

G

i�1

(u

i

; v

i

) by d. The expeted distane

between x and y in T

i

is at most

�

l

L

i

�

� (4d + L

i

� l) +

�

L

i

� l

L

i

�

� l =

�

l

L

i

�

� (4d+ 2(L

i

� l)) � l

�

4

�

d

L

i

�

+ 2

�

:
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Sine the omposition is slak, we have d=L

i

� 1=2, and hene the expression above is at most 4l,

as required.

While it might be the ase that an outerplanar graph G does not have a slak omposition, we now

show that G an always be onverted into a graph H whih does have a slak omposition, at the

ost of a small distortion.

Lemma 5.3 Given an outerplanar graph G = (V;E), there is an outerplanar graph H = (V;E

0

)

(in fat, a subgraph of G) with a slak omposition suh that d

G

� d

H

�

1

2

d

G

.

Proof: The graph H will be a subgraph of G, with edge lengths no longer than in G and no

shorter than half those in G. Let hG

0

= P

0

; P

1

; : : : ; P

t

i be the omposition de�ning G. Our goal is

to produe a slak omposition hH

0

= Q

0

; Q

1

; : : : ; Q

t

0

i for H, thereby de�ning H in the proess.

The omposition sequene for H is initially set to be the same as that for G; we then onsider the

lowest unmarked path Q

i

, and while proessing and marking the path Q

i

, we modify possibly both

the preeding (marked) and forthoming (unmarked) paths. We maintain the following invariants

during this proess: H is always a onneted spanning subgraph of G; at eah stage, the distanes

may only derease; �nally, the edge lengths never derease by more than a fator of 2 from their

original values.

To begin, Q

0

is marked. For eah i > 0, if the path Q

i

is attahed to a single vertex, we mark it

and go on. Otherwise, Q

i

is attahed to some edge e

i

= (u

i

; v

i

) lying on some Q

k

with 0 � k < i.

If Q

i

is slak at this point, we again mark it and ontinue. So assume that the urrent length of

Q

i

is less than twie the urrent length of the edge e

i

= (u

i

; v

i

). We then do the following:

1. Modify Q

i

: Derease the lengths of all the edges inQ

i

by a fator of 1 � length(Q

i

)=length(e

i

) <

2, so that the urrent length of Q

i

beomes exatly the urrent length of e

i

. Remove Q

i

from the

sequene for H. Note that the lengths of edges in Q

i

are halved in the worst ase. They will never

be hanged again (exept that the edges may possibly be removed later).

2. Modify Q

k

: Reall that Q

i

was attahed to the ends of e

i

lying on some previously marked

path Q

k

with k < i. Sine now length(e

i

) = length(Q

i

), replae e

i

in Q

k

by the entire resaled

path Q

i

to get Q

0

k

. This does not hange any urrent distanes in the graph.

3. Modify Q

j

, j > i: Observe that shrinking the path Q

i

may have resulted in some edges

being longer than the urrent distane between their endpoints in the forthoming (but not the

preeding) paths. To overome this problem, onsider any suh edge e 2 Q

j

. If there is a path Q

j

0

,

with j

0

> j, that is attahed to the endpoints of e (and there an be only one suh path), replae

e in Q

j

with Q

j

0

and remove Q

j

0

from the sequene. If there is no suh Q

j

0

, deleting e splits Q

j

into two paths, eah attahed to a single point, and we replae the old Q

j

in the omposition with

these two new paths. Again, note that this does not alter any urrent distanes. We do not mark

any paths in this modi�ation.

The main properties of the above proedure are as follows. At eah time step, we have onneted

spanning subgraphs of G. The edges surviving upon termination were modi�ed at most one, and

their lengths were dereased at that time by at most a fator of 2. No edge-length (and hene no
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distane between any pair of verties) is ever inreased. The �nal sequene is slak. The proess

terminates when we have marked all the paths, i.e., in at most jEj steps.

Let H be the graph spei�ed by the resulting slak sequene. It is a onneted spanning subgraph of

G, with edge lengths at least half those in G. This immediately implies the lower bound d

H

�

1

2

d

G

.

The upper bound d

H

� d

G

follows from the fat that none of the steps above aused distanes to

inrease.

Now the overall proedure for embedding an outerplanar graph G is as follows. First, we obtain

the graph H with a slak omposition as in Lemma 5.3, inurring a distortion of at most 2. The

graph H (with the edge lengths doubled in order to dominate G) is then embedded into a tree

distribution with distortion at most 4 using Lemma 5.2, giving a total distortion of at most 8.

Furthermore, note that all the trees in the distribution are dominating subtrees of H with doubled

edge lengths, and thus also dominating subtrees of G. For eah suh tree T , restoring the length of

an edge e 2 T to d

G

(e) an only derease the distortion without hanging the domination property.

Hene we get the main result of this setion:

Theorem 5.4 For any metri d

G

supported on a K

2;3

-free graph G, there is an embedding of d

G

into a tree distribution D with distortion at most 8. Moreover, the embedding uses only subtrees

of G with their original edge lengths.

5.2 Tree embeddings for graphs with few edges

Theorem 5.5 Any graph G with Euler harateristi �(G) an be embedded into a dominating tree

distribution with distortion O(log�(G) log log�(G)).

Proof: The proof is very similar to that of Theorem 4.8. Reall that an isolated path in G is

a path with endpoints of degree � 3, and all internal nodes of degree 2. For every isolated path

B = hv

1

; v

2

; : : : ; v

k

i in G, we add to G a new edge e

B

between the endpoints of B, of length

d

G

(v

1

; v

k

), thus leaving the original metri una�eted. Now, for eah suh B, independently of

other isolated paths, hoose an edge e in B with probability proportional to the length of e, and

delete it. We get a distribution over graphs G

0

, where eah G

0

onsists of the same \ore" (inluding

all the newly added edges), and the \hairs" (the remnants of the isolated paths).

Eah G

0

dominates G, and the expeted expansion of any edge in B introdued by the above step

is at most 2 (by an analysis very similar to (5.12)), implying that the distortion inurred by this

distribution over G

0

-metris is at most 2.

Finally, we have to embed eah G

0

into a dominating tree distribution. It suÆes to embed the

ore, sine eah hair is already a tree and an simply be attahed to the random tree approxi-

mating the ore. As in the proof of Theorem 4.8, we onlude that the number of verties in the

ore is O(�(G)), and hene it an be embedded it into a distribution over trees with distortion

O(log�(G) log log�(G)) by the general result of [5℄. This ompletes the proof.
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5.3 Lower bounds for series-parallel graphs

In view of the results of the previous setions, Theorems 5.4 and 5.5 may inspire hope that embed-

dings into tree distributions with onstant distortion exist for other minor-losed families, suh as

series-parallel graphs. Our next result shows that this is not so; we prove a lower bound of 
(log n)

on the distortion for embedding series-parallel graphs into dominating tree distributions. This re-

sult extends those of Alon et al. [1℄ and Konjevod et al. [24℄, who gave a tehnially more involved

lower bound for the n-vertex grid, and shows that approximating graph metris by distributions

over tree metris already breaks down for families of graphs that are muh simpler than grids.

Theorem 5.6 There exists an in�nite family of series-parallel graphs fG

k

g suh that any �-

approximation of the shortest-path metri of G

k

by a distribution over dominating trees has � =


(log jV (G

k

)j).

The proof makes use of the following fat from [31℄:

Theorem 5.7 ([31℄) The distortion of any embedding of the unit-weighted yle C

n

into an (ar-

bitrary) tree is at least n=3� 1.

Proof of Theorem 5.6: The graphs G

k

are de�ned reursively. G

0

is a single unit-weighted

edge between terminals s

0

and t

0

. Indutively, H

i+1

onsists of two opies of G

i

in series, and G

i+1

onsist of two opies of H

i+1

in parallel between terminals s

i+1

and t

i+1

(see Figure 5.3). The

graph G

k

has n = 4

k

edges and �(n) verties. Observe that for any G

i

with terminals s

i

and t

i

,

both the distane between the terminals and the size of a minimum s

i

-t

i

ut are 2

i

.

Following a standard framework for establishing lower bounds for probabilisti onstrutions (see,

e.g., [37, 1, 24℄), it suÆes to ome up with a distribution D over the edges of G

k

, suh that any

tree T with V (G

k

) � V (T ) and d

T

� d

G

k

has a large expeted expansion, i.e., E

e2D

[d

T

(u

e

; v

e

)℄ �


(log jV (G

k

)j), where u

e

; v

e

denote the endpoints of edge e. More onretely, it suÆes to show

that for any tree metri d

T

� d

G

k

on V (G) we have

X

e2E(G

k

)

d

T

(u

e

; v

e

) = 
(k) �

X

e2E(G

k

)

d

G

k

(u

e

; v

e

) = 
(k) � 4

k

;

sine then the same must also hold for any distribution over dominating tree metris, implying an

expansion of 
(k) = 
(log jV (G

k

)j).

Let T be a tree ontaining the verties of G

k

whih dominates distanes in G

k

. For eah i 2 [1; ::; k℄,

assign olor i to all edges of G

k

whih su�er an expansion of at least 2

i+1

=3 � 1 in T . As a result,

eah edge in G

k

has at least one olor assigned to it, while some edges have multiple olors. Let

S

i

� E(G

k

) be the set of all edges that are assigned olor i.

How large is S

k

? Observe that any yle whih goes around the graph G

k

(i.e., a simple yle whih

inludes the terminals s

k

and t

k

) has length 2

k+1

, and therefore, by Theorem 5.7, ontains an edge

olored k. Thus S

k

hits all suh yles, and onsequently it must separate the terminals of at least

one of the four opies of G

k�1

that form G

k

. Hene jS

k

j � 2

k�1

.
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s
3

t
3

Figure 5.3: The graph G

3

How large is S

k�1

? Consider the four opies of G

k�1

forming G

k

. Arguing as before, we onlude

that eah of these opies must ontain at least 2

k�2

edges of olor k� 1. Hene, the size of S

k�1

is

at least 4 � 2

k�2

. Arguing in the same vein for eah i, we get that jS

i

j � 4

k�i

2

i�1

= 2

2k�1�i

.

For eah e 2 E(G

k

), let C

e

be the set of olors assigned to e. The expansion of e is at least

max

i2C

e

�

2

i+1

=3� 1

�

�

1

2

X

i2C

e

�

2

i+1

=3� 1

�

:

Therefore,

X

e2E(G

k

)

d

T

(u

e

; v

e

) �

1

2

X

e

X

i2C

e

�

2

i+1

=3� 1

�

=

1

2

k

X

i=1

jfe j i 2 C

e

gj �

�

2

i+1

=3� 1

�

=

=

1

2

k

X

i=1

jS

i

j �

�

2

i+1

=3� 1

�

�

1

2

k

X

i=1

2

2k�i�1

�

�

2

i+1

=3 � 1

�

>

�

k

6

�

1

4

�

4

k

:

Remark 5.8 After the preliminary version of this paper appeared, we were informed by Yair Bartal

that Theorem 5.6 for the same family of graphs an also be inferred | albeit muh less diretly

| from the result of Imase and Waxman [20℄ ombined with the general framework of Bartal [4℄.

To see this, note that the Steiner tree problem is trivially 1-ompetitive on trees, and hene an

�-probabilisti approximation of G

k

by trees implies an �-ompetitive ratio on the graphs G

k

[4,

Theorem 4℄. However, [20℄ establishes an 
(k) lower bound for the ompetitive ratio for the Steiner

problem on G

k

, and hene � = 
(k).

5.4 An alternative embedding for series-parallel graphs

In light of the lower bound of the previous setion, we annot hope to embed general series-

parallel graphs into tree distributions with onstant distortion. However, by adding an extra

ingredient (spei�ally, a ut-metri embedding of ertain speial series-parallel graphs whih we

all \bundles") to the tree metri tehnology, we will be able to ome up with an alternative
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embedding of series-parallel graphs into `

1

with onstant distortion whih is quite di�erent from

that of Setion 4.1.

The new embedding proeeds along the same lines as the embedding of outerplanar graphs in

Setion 5.1. Given a series-parallel graph G, it �rst performs preproessing and random edge

deletion steps similar to those in Lemmas 5.3 and 5.2 to get a speial tree-like series-parallel graph

whih we all a \tree of bundles" (i.e., a graph whose 2-onneted omponents are bundles). This

inurs a distortion of at most 8. The bundles are then embedded using the ut-metri tehnique

with distortion 2, yielding an embedding with total distortion at most 16 for general series-parallel

graphs. Although it has a marginally worse performane guarantee (at least in terms of the onstant

bounds we have established here), this seond algorithm is oneptually simpler, and arguably

more instrutive than that of Theorem 4.1. Sine muh of the onstrution is similar to that for

outerplanar graphs given in Setion 5.1, we shall omit the reurring details and emphasize the

di�erenes.

As in Setion 4.1, the onstrution is based on the omposition proedure for G. The ompositions

allowed here are slightly less restritive than before, in that we add paths of arbitrary lengths

between the ends of some existing edge at eah stage, rather than a single vertex (i.e., a path of

length 2). Hene the omposition onsists of a sequene of graphs G

i

, where G

0

= P

0

is a path,

and G

i

is obtained by attahing a path P

i

to already existing edge e

i

= (u

i

; v

i

). We require that

the length of P

i

be no less than the length of e

i

= (u

i

; v

i

), and that the lengths of all edges are

equal to the atual distane between their endpoints in G. We shall further relax the omposition

by permitting P

i

to be attahed to just a single vertex; suh a path will be alled free.

Call a (non-free) path slak if its length L

i

is at least twie d

i

, the length of the edge e

i

= (u

i

; v

i

).

Similarly, a path is alled taut if L

i

= d

i

. (Note that it is possible for a path to be neither taut nor

slak.) We say a omposition is slak-taut if eah (non-free) path is either slak or taut. The �rst

observation is that we an de�ne a preproessing step similar to that in Lemma 5.3 for series-parallel

graphs, whih outputs a series-parallel graph with a slak-taut omposition.

Lemma 5.9 Given a 2-onneted series-parallel graph G = (V;E), there is a series-parallel graph

H = (V;E

0

) with a slak-taut omposition suh that d

G

� d

H

�

1

2

d

G

.

The onstrution of H and the proof of its orretness are very similar to those of Lemma 5.3. One

small di�erene is that whenever we redued the length of P

i

in the sequene de�ning an outerplanar

graph, we ould always remove the edge (u

i

; v

i

) to whih P

i

was attahed. For series-parallel graphs,

many paths an be attahed to the same edge, so we annot remove it. However, sine the redued

path P

i

is taut, leaving e

i

in plae satis�es the slak-tautness ondition. Another small di�erene is

that now we annot remove a (forthoming) edge whih has beome longer than the atual distane

between its endpoints: this ould ontradit the tehnial requirement that paths must be attahed

to edges. To overome this diÆulty, we do not atually remove suh an edge, but only mark it as

\to be removed" and never touh it again until the end; then it is removed.

Before stating the next lemma, let us formally de�ne a bundle as a series-parallel graph suh that

all simple paths between its terminals are of the same length. Note that a bundle has a well-de�ned

length, whih is the distane between its terminals. Figure 5.4 shows an example of a bundle with

terminals s and t.
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2
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ts

3

Figure 5.4: A bundle: all non-labeled edges have unit length.

Consider the slak-taut omposition of H in Lemma 5.9. Observe that if P

j

is a taut path attahed

to a preeding path P

i

, and P

i

is part of a bundle, then P

j

also beomes a part of the same bundle.

In this way we obtain the maximal bundles of the graph H. Note that if a maximal bundle B

0

is attahed to two verties on some other maximal bundle B (and in partiular, B

0

annot be

onsidered a sub-bundle of B), then B

0

must be at least twie as long as the distane between its

terminals. This view allows us to de�ne another slak omposition for H, in whih we attah slak

(maximal) bundles at eah step (instead of adding slak paths).

Lemma 5.10 Given a series-parallel graph H and a slak-taut omposition for it, H an be em-

bedded into a distribution over speial subgraphs with distortion at most 4. The speial subgraphs

in this distribution have the property that all their maximal 2-onneted omponents are bundles.

The proof is similar to that of Lemma 5.2. Consider the slak omposition, where a slak bundle

is attahed at eah step. This is analogous to the slak omposition for outerplanar graphs, and

we shall use it in a similar way. Spei�ally, when adding a bundle of length L, we hoose a

value r 2 [0; L℄ uniformly at random and ut all the edges that ross a point at distane r from

a �xed terminal of the bundle. The analysis of edge expansion is idential to that in the proof of

Lemma 5.2. Sine by utting a bundle we reate smaller bundles and some free paths, we obtain a

\tree of bundles" at the end of the proedure.

The �nal step of the embedding has no outerplanar analog. Notie that bundles are preisely the

speial series-parallel graphs disussed in Lemma 4.4. Thus they an be embedded into `

1

with

distortion at most 2 using the ut-metri tehnique.

Combining Lemmas 4.4, 5.9, and 5.10, we arrive at the main result of this setion:

Theorem 5.11 The proedure desribed in this setion produes an embedding of series-parallel

graphs into `

1

with distortion at most 16.
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A Appendix: Proof of equation (3.2)

Equation (3.2) follows from a general result onerning positive real vetors. Let v; u 2 R

k

be two

positive vetors. De�ne

H(v; u) = max

i

u

i

v

i

� max

j

v

j

u

j

:

If S � R

k

is a losed set of positive vetors, de�ne H(v; S) as min

u2S

H(v; u).

Claim A.1 If K � R

k

is a losed onvex one, then

H(v;K) = max

(C;D)

D � v

C � v

; (A.1)

where the maximum is taken over all non-negative vetors D;C 2 R

k

for whih

D�u

C�u

� 1 for any

u 2 K.

In the sequel, we use �(v;K) to refer to the expression on the right hand side of (A.1). Before we

prove Claim A.1, let us explain how it implies (3.2).

A metri (V; �) on jV j = n points an be viewed as a positive vetor in R

(

n

2

)

, in whih the value

of the ij-th oordinate (for i < j) is �(i; j). Sine the set of l

1

-embeddable metris on a set V
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oinides with the set of non-negative ombinations of ut metris on V , they form a losed onvex

one in R

(

jV j

2

)

, alled the ut one (see, e.g., [15℄ for more details). Denote the ut one on V by

M

1

(V ).

Note that if v

�

is the vetor orresponding to a metri (V; �), then H(v

�

;M

1

(V )) = 

1

(�). There-

fore, applying Claim A.1 to K =M

1

(V ) and v = v

�

, we obtain (3.2).

Proof of Claim A.1: One diretion of the laim is easy: for any u 2 K and D;C as above,

D � v

C � v

� max

i

u

i

v

i

� max

j

v

j

u

j

�

D � u

C � u

� H(v; u) :

Taking the \losest" u 2 K to v, we onlude that �(v;K) � H(v;K).

For the other diretion, let B

Æ

(v) � R

k

be the set of all positive vetors x 2 R

k

suh that H(v; x) �

Æ. Clearly,

B

Æ

(v) = fx 2 R

k

j 8

r;q2[1::k℄

Æ � v

r

x

q

� v

q

x

r

� 0g :

Observe that B

Æ

(v) is a losed onvex one ontaining v. By de�nition, H(v;K) is the smallest Æ

suh that B

Æ

(v) \K 6= ;. For this ritial Æ, we laim that there exists a vetor l 2 R

k

suh that

1. l � B

Æ

(v) � 0;

2. l �K � 0;

3. l is a non-negative ombination of vetors �

rq

2 R

k

, r; q 2 [1::k℄; r 6= q, where �

rq

has �v

q

in the r-th oordinate, Æv

r

in the q-th oordinate, and 0 in all other oordinates.

Indeed, the dual one

B

�

Æ

= fy 2 R

k

j 8

x2B

Æ

hx; yi � 0g

is the onvex hull of vetors f�

rq

g, and thus the normal vetor to any supporting hyperplane of

B

Æ

(v) separating it from K has the required properties.

Let l

+

and l

�

be two non-negative vetors in R

k

with l

+

� l

�

= l, formed by taking the positive and

the negative oordinates of l respetively. By the �rst two properties of l, for any u 2 K,

l

+

�u

l

�

�u

� 1,

while

l

+

�v

l

�

�v

� 1. In the rest of the argument, l

+

will play the role of D, while l

�

will play the role

of C.

Given an arbitrary form (

P

i

d

i

x

i

) = (

P

i



i

x

i

) de�ned over non-negative x 2 R

k

with non-negative

oeÆients d

i

and 

i

, let us de�ne a new form

�

P

i

d

i

x

i

P

i



i

x

i

�

#

=

P

i

(d

i

�min(d

i

; 

i

))x

i

P

i

(

i

�min(d

i

; 

i

))x

i

:

Observe that if the value of the original form is � 1, then the value of the new form exeeds that

of the old one. Using this observation and the fat that l =

P

�

rq

�

rq

for some non-negative �

rq

's,

we an infer that

�(v;K) �

l

+

� v

l

�

� v

=

 

P

rq

�

rq

�

+

rq

� v

P

rq

�

rq

�

�

rq

� v

!

#

�

P

rq

�

rq

�

+

rq

� v

P

rq

�

rq

�

�

rq

� v

= Æ = H(v;K) ;
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whih establishes the laim.
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