FINDING POINTS ON CURVES OVER FINITE FIELDS

JOACHIM VON ZUR GATHEN*, IGOR SHPARLINSKIf, AND ALISTAIR SINCLAIR}

September 17, 2003

Abstract. We solve two computational problems concerning plane algebraic curves over finite
fields: generating a uniformly random point, and finding all points deterministically in amortized
polynomial time (over a prime field, for non-exceptional curves).

1. Introduction. Let ¢ be a prime power, F, a finite field with g elements,
f € Fylz,y] of total degree n, and C = {(a,b) € F2: f(a,b) = 0} = {f = 0} the
plane curve defined by f. We consider two problems of finding points on this curve:
probabilistically finding a uniformly distributed random point, and deterministically
computing all its points.

Curves over finite fields play a role in several applications: factoring integers with
elliptic curves, testing primality with elliptic curves (or more general algebraic vari-
eties), algebro-geometric Goppa codes, and fast multiplication over finite fields. For
these applications, special methods for finding points (if needed) are used. This pa-
per presents the first general and systematic approach to the problem, to the authors’
knowledge.

Throughout this paper, we will assume that f is squarefree, and denote by ¢ the
number of absolutely irreducible components of C which are defined over F,. The
famous theorem of Weil says that the number of points #C on C satisfies

| #C — o |< n%q'/”. (L1)

The case of an exceptional curve, corresponding to o = 0, needs special treatment
and is dealt with in Section 5. So for now we assume that o > 1.

In Section 2 we provide a polynomial-time solution for the probabilistic variant of
our question: generating a uniform random point on C. The algorithm is elementary
and is based on the idea of rejection sampling. We also use this algorithm to obtain
arbitrarily good probabilistic estimates of #C.

With deterministic methods, the “brute force” approach to computing all points
on C via finding, for each a € F, all b € F, with f(a,b) = 0, takes O"(n?¢*/?) opera-
tions in Fy, using the fastest known deterministic algorithms to factor the univariate
polynomial f(a,y), for all a € F; (Shoup 1990; Section 1.1 of Shparlinski 1999, von zur
Gathen & Shoup 1992). We present in Section 3 a deterministic method that uses
O~ (n®q) operations, i.e., polynomial time per point. The central tool for our estimates
is a bound of Perel’'muter’s (1969) on a certain exponential sum. In order to use this,
we have to study in Section 4 some geometric and arithmetic properties of the fibre
square C x, C. Our approach only works in the case of a prime field F,, with ¢ = p
prime, and does not work for exceptional curves.

Shoup (1990) has exhibited a deterministic univariate factoring algorithm which
for almost all polynomials runs in polynomial time. Our deterministic result has
two interpretations: the first is that the members of a “small” parametrized family
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f(a,y) of univariate polynomials, for all a € F,, can be factored deterministically in
(amortized) polynomial time. The second is that all points on a plane algebraic curve
over [, can be found deterministically in (amortized) polynomial time.

Finally, Section 5 presents a discussion of the case of exceptional curves which
has been excluded in the other sections.

A different set of results on our problem (and higher-dimensional varieties) was
obtained by Adleman & Huang (2001), Huang & Wong (1999), Huang & Ierardi
(1998), and Huang & Wong (1998).

2. Generating uniform random points. In order to generate random points
on a plane curve, it is natural to take random points on a coordinate axis and compute
points “above” them. So let 7: C — F, be the projection onto the first coordinate.
For 0 <i <mnlet

Ry ={a€F,: #r~'({a}) = i}

be the set of points with exactly i preimages, and r; = #R;. We assume that C
contains no vertical lines, so that no x—a with a € F, divides f. Then F;, = Jy<;<,, Ri
is a partition, and T

a= Y 1, #C= Y g

0<j<n 1<j<n

ALGORITHM 2.1. Random point.
Input: f € IF,[z,y] of degree n.
Output: Either a uniform random point (a,b) on C = {f =0} C ]Fq?, or “failure”.

Choose a € F, uniformly at random.

Compute f, = ged(y? —y, f(a,y)) € Fy[y].

Choose a random root b € F, of f,. [Then (a,b) € C.]

Set ¢ = deg f,. [Then a € R;.]

Choose YES with probability i/n, and NO with probability 1 —i/n. If YES was
chosen, return (a,b), and otherwise return “failure”.

Cul LN

THEOREM 2.2. Suppose that C is a nonexceptional curve without vertical lines. Then
the algorithm returns a uniform random point on C with probability

#—C > l (1 — nzq_1/2),

ng —n

and “failure” with probability 1 — #C/ng. For every P € C, P is returned with
probability 1/nq. The algorithm can be performed with an expected number of
O(nlognlog(ng) loglogn) operations in F,.

Proof. Let P = (a,b) € C with a € R;. Then

1 1 4 1
prob{P is returned} = — - = - L
g i n ng
We denote by M(n) a multiplication time, so that the product of two polynomials
in F, [z] of degree at most n can be computed with O(M(n)) operations in F,. Then
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we can take M(n) = nlognloglogn, and a gcd can be computed with O(M(n) logn)
operations. Using repeated squaring to calculate y? mod f(a,y) with O(M(n)logq)
operations, the cost of step 2 is O(M(n)log(ng)). The polynomial f, is a product
of i = deg f, many linear factors in F,;[z]. If we find a root using the randomized
algorithms of Cantor & Zassenhaus (1981), it will be uniformly randomly distributed
among these i roots. The algorithm splits the polynomial recursively into two factors,
one of which is ged(y(9=1/2 — 1), f,(y + b) for a random b € F,, and continues with
the smaller factor. (For even ¢, a different formula is used.) We expect O(log ) splits
to suffice, and each costs O(M (i) log(gi)) operations in F, . O

We think of ¢ as being much larger than n, say ¢ > c?n* for some constant c.
Then the success probability of Algorithm 2.1 is at least 1(1 —c¢~t). Of course, we
can increase the success probability by repeated runs of the algorithm.

We can adapt Algorithm 2.1 to obtain an arbitrarily good approximation for #C,
the number of points on C. An (¢, d)-approzimation p to #C satisfies

prob {| p— #C |< e#C} > 14,

To achieve this, we simply run Algorithm 2.1 k times, count the number ¢ of times
that YES was chosen in step 5, and return the value p = tng/k. Since YES is output
with probability #C/ng, the expected value of p is exactly #C, so it is an unbiased
estimator. The unbiased estimator theorem of Karp et al. (1989) tells us how large k,
the number of samples, should be to guarantee an (¢, d)-approximation. This value is

k = [4B1og, (2/0)e 2], (2.3)

where 3 is an upper bound on nq/#C. But ng/#C < n(1 —n2q /?)~!, so § is not
very large. In fact, assuming as before that ¢ > n*, the number of samples required
is only about 4nlog,(2/8)e 2.

It is even easier in principle to estimate the individual r;’s. We choose k£ random
values a € F;, determine for each the j with a € R;, count the number ¢ of times
that j = 4 occurred, and return the value p; = tq/k. This is obviously an unbiased
estimator of r;, and the number of samples required for an (¢, §)-approximation is as
in (2.3), where now 8 = f; is an upper bound on ¢/r;. With a parameter «, this
implies that, by taking

k = [4anlog,(2/8)e 2],

we get an (e, §)-approximation for any r; satisfying r; > ¢/a. Since

n Y > Y ir=#C,

1<i<n 1<i<n

the r;’s are on average at least #C/n> > q(n=2 — ¢~'/?). Thus “on average” k will
only be about 4n?log,(2/6)e2, assuming as before that ¢ >> n*. Such a value will
enable us to estimate the “large” r;’s, though not of course the small ones. In fact,
when ¢ is large compared to n®", then the r; separate into two classes: Lemma 2.3
of von zur Gathen & Shparlinski (1998) implies that either r; > m — 2n2ngl/?
is reasonably large, or r; < 2n2"¢'/? is very small. Of course, the “reasonably large”
may still be very small, and about g/r; samples are required. Thus if we use 8; = nl,
then in the first case we obtain an (e, §)-approximation scheme for r;, and in the
second we expect to find no a € R;.



Since

C .
ey e Y in=4c
n 1<i<n 1<i<n
the 7;’s are on average at least #C/n?. To find approximations only to the “large”
r;’s, we might use 3; = An?, with some small number \.

3. Deterministic construction of all points. In this section, we present a
deterministic algorithm for finding all points on C = {f = 0} over a prime field
F,. It employs a deterministic polynomial-time algorithm for finding all roots of the
univariate polynomials f(a,y), with a € F,. This algorithm does not factor f(a,y)
completely for all a, but we show that there are only about ,/p exceptional a, and
for these we use an always successful deterministic algorithm with time about ,/p;
thus the total time is proportional to p, which is about the size of C. Everything is
polynomial in the degree n.

As a first step, we factor f into irreducible factors in F,[z,y]. The bivariate
factoring algorithms (Lenstra 1985; von zur Gathen 1984; von zur Gathen & Kaltofen
1985) can actually be made into deterministic reductions from bivariate to univariate
factorization over finite fields. Thus f can be factored with n©(1)p!/2 operations in
F,. From now on, we assume that f is irreducible.

The projection 7 : C = {f = 0} — F, onto the first coordinate is called separable
if and only if h, = 0h/0y # 0 for each irreducible factor h € F,[z,y] of f. A simple
example of an inseparable projection is given by f = z — y? € F,[z,y]. The curve
C = {z = yP} is smooth, and all tangents to C are vertical.

Let ¢: F, — F, denote the absolute Frobenius map, with ¢(a) = a?. For our
algorithms, it is convenient to have m separable, and the next lemma describes a
simple procedure for achieving this by factoring out ¢. (It actually works over any
finite field of characteristic p.)

LeMMA 3.1. Let f € F,[z,y] be irreducible. We can compute in polynomial time
g € Fy[z,y] and an integer k < log,(deg, f) such that

idx ¢*: F) — F
gives a bijection between {f = 0} and {g = 0}, deg, g = deg, f,deg, g < deg, f, and
m: {g = 0} = F, is separable.
Proof.  We write f = 3,  fijz'y’, with each fi; € F,. Then

fy=0&=Vi,j(fi; #0=>p]|j).
If f, =0 and

h=>" fiz'y!? € Fylz,y],
y
then f(a,b) = h(a,b?) for all (a,b) € F7, and thus id x ¢: F2 — F? gives a bijection
between {f = 0} and {h = 0}. Furthermore, h is irreducible. We repeat this process
until we obtain a polynomial g € F,[z,y] and k¥ € N with g, # 0 and id x ¢* a
bijection between {f = 0} and {g = 0}. 0



ALGORITHM 3.2. Finding all points.
Input: f € Fp[x,y] of degree n, where p is a prime.
Output: A list of all points (a,b) € F2 with f(a,b) = 0.

1. Set h = 288n*[log, p]2.
2. Forall a € F, do 3-7
3. Compute fo=f(a,y) € F,[y].

4. Compute f; = ged(y? — y, fa) € Fp[y].
5 For 0 < t < h compute the two factors

o =ged((y —t)P~D2 — 1, f2), g2 = ged(y — t, f7) € F,[y]

of fx.
6. Compute the common refinement of the partial factorizations from Step 5.
7. If Step 6 returns only linear factors y — b, then add all these (a, b) to the list.

Otherwise completely factor f; with the deterministic algorithm of von zur
Gathen & Shoup (1992), and add all resulting (a, b) to the list.

THEOREM 3.3. Let p be a prime, f € F,[z,y] squarefree and non-exceptional, and
w: C = {f = 0} = F, separable. Then the algorithm correctly computes all points
on C. It uses

O(n®plog n loglog n log(np) log® p)
or O™ (n®p) operations in F,.
Proof. For all a,b € F, we have
fla,b) =0 f;(0) =0<=y—-b| f;.

Since Step 7 returns all linear factors of f;, the final list correctly contains all points
of C={f =0}

It remains to analyze the running time. The crucial point is to understand when
Step 6 succeeds in completely factoring fr. Denote by S C F, the set of all a for
which this is not the case, and s = #S. Furthermore, C, = m2(CN({a} xF,)) consists
of all b € F, with (a,b) € C. Thus

S={a€F,:Ib,ceCob#c;byc>h, andVt<h(y—>b|get <= y—c|gas)}

The refinement cost in Step 6, if done along a binary tree, is O(M(n)logn) for
each ¢, or O(hM(n)logn) in total. For a € S, an application of the algorithm from
von zur Gathen & Shoup (1992) costs O(M(n) p'/?log(np)) operations in F,. The
geds in Steps 4 and 5 are computed by repeated squaring for the required power of y
and y — ¢, reducing after each multiplication modulo f, and f, respectively.

For each a in Step 2, we find the following number of operations in Fp:

Step 3: O(n?),

Step 4: O(M(n)log(np)),

Step 5: O(h M(n)log(np)),

Step 6: O(hM(n)logn),

Step 7: 0if a € F, \ S, and O(M(n) p*/2log(np)) if a € S.
5
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The total cost is
O(p - (n® + n4M(n) log(np) log? p)+s M(n)pl/2 log(np)) (3.4)

operations, and we now show that s is O(n?(n? + logp)p'/?). This will imply the
claim about the running time. We let

Qz{ueIE‘;f:ElveIF;u=u2}:{ue]1r;<:u(p—1)/2=1}

be the set of nonzero squares in F,,, and x the quadratic character on IF,, with

1, ifbeQ,
0, ifb=0.

For the time being, we work with an arbitrary integer parameter h; only at the
end will we substitute the value from Step 1. Set H = {0,...,h —1} CF,, where we
identify F, with {0,...,p—1}. Two distinct elements b, c € F,, are h-separated if and
only if x(b —t) # x(c —t) for some t € H. A set B C F, is h-separated if any two
distinct elements of B are. With this notation, we have for a € F,

a € S = (C, is not h-separated.

The reverse implication is true if the non-h-separated b, c € C, are both at least h. If
a € S, then for at least one pair of distinct elements b, c € C,,

h= Z x((t = b)(t —c)).

0<t<h

Now we let kK € N and

w=3 S [Y x(t-v)E-o)*

a€Fp becCa 0<t<h

= S T S Xt =)t — )+ (tak — B)(ta — ).

0<t1,...,t2<h a€F, b:;c€Ca
bEc

Then, by the above, sh?* < w. We consider the set
Dy = {(a,b,¢) € F} : f(a,b) = f(a,¢c) =0,b# ¢} CFJ.

The fibre product D = C x, C is the closure of Dy in ]Fg; it has degree at most
n(n — 1) < n? and is discussed in detail in Section 4. Then

w = Z Z X(¢t(P))7

teH?2k PeD

where the inner sum is over all F,-rational points P = (a,b,c) € D with b # ¢, ¥ is
the polynomial

Y= (y—t1) - (y—tar) (2 —t1) - - (2 — tax) € Fp[y, 2]
6



in indeterminates y and z, and wt((a, b, c)) is obtained by substituting b and ¢ for y
and z, respectively.

Theorem 4.6 below says that there are at most (12kn?h'/2)?* values of t € H?* for
which p(+;) is a square in the global ring O 4 of some irreducible component A C F3
of D, where p: F[z,y, 2] — O 4 is the restriction map.

For other vectors t € F?¥ we may apply the bound on character sums along a
curve from Perel’'muter (1969) that gives

S x(@i(P)) < d- (n?(n? + 2K)p*/?) (3.5)

PeD

for some constant d. Perel’muter’s bound holds for each irreducible component of D;
we also use the fact that no such component is vertical (Lemma 3.1 of von zur Gathen
et al. 1996). Since their degrees sum to deg D < n?2, (3.5) follows. Therefore

w < (12kn*h"?)?*p + d - n?(n? + 2k)h>*p'/2,

< (OB 4 d (4 2K
Now, using k = [log, p] and h as in Step 1 of Algorithm Algorithm 3.2, we find
(12kn2h—1/2)2k < 97k < g~ logap — =1,
Hence
s = 0(n®(n® +log p)p'/?).
Together with (3.4), this proves the estimate of the total cost. 0

4. Squares on the fibre product. The goal of this section is to bound the
number of products ¥; which are squares on some irreducible component of D; this
was used in the previous proof.

Let F be an algebraically closed field, f € Flz,y] squarefree of degree n > 1,
C = {f = 0} C F? the associated plane curve, and 7: C — T the first projection.
We assume that 7 is separable. Then D = C x, C C F?, the fibre square over 7, can
be defined as the closure in F? of

Dy = {(a,b,c) € F3: f(a,b) = f(a,c) =0,b # c}.

Furthermore, let g = (f(z,y) — f(z,2))/(y — 2) € Flz,y, z].

A smooth point P = (a,b) € C is critical for 7 if and only if the tangent line
Tpc in F? is vertical. If f is irreducible, this is equivalent to fy(a,b) = 0, where
fy = 0f/0y € Fz,y]; in general, we have to replace f by its (unique) irreducible
factor on whose component P lies. Since 7 is separable, C has only finitely many
critical points.

THEOREM 4.1. Let f € F[z,y] be squarefree and m separable.
(i) D ={f(z,y) = g(z,y,2) = 0}.
(ii) D =Dy U {(a,b,b): (a,b) € C is singular or critical}.
(iii) (a,b,c) € D with b # c is singular on D if and only if either (a,b) or (a,c) is
singular on C, or both (a,b) and (a,c) are critical on C. All points of D \ Dy
are singular on D.
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X - axis

F1G. 4.1. P, P, Ps are critical for w, and Pe is singular on C. If P; = (a;,b;), then (a;,bi,b;) €
DNA fori=1,2,5,6. These four points are singular on D. Furthermore, (a1,b1,b2) € S C D, and
(a3,b3, b4) €D \ S.

(iv) degD < n(n —1) < n?.
Proof. Let
A ={(a,b,b) eF?:a,beF}, Dy ={f(z,y)=g(z,y,z2) =0},

so that A is the diagonal. Clearly D \ A = Dy, and Dy C D;. By definition, D is the
closure of Dy, and thus D C D;. We prove in the following that (ii) is valid with D
instead of D. Thus D; N A is finite, and D = D; follows, hence (i), (ii), and (iv).

So let u, v be indeterminates over F[z,y]. Then the Taylor expansion of f around
(u,v) of order 1 is

f(':U:y) = f(U,U) +fw(u,v)(a:—u) +f’y(u7v)(y _U) +h‘

in Flz,y,u,v], with some h € (z — u,y — v)?. Therefore

9(z,y, 2)
= - (o w0) =) = £y, 0)( = ) + he g, 0) = bz 2,0)

= fy(u,v) + H,
with some H € (z — u,y — v,z — v). Thus for (a,b) € C

(a,b,b) € D1 <= fy(a,b) = 0 <= (a, b) is singular or critical on C.
8



For (iii), let (a,b,c) € D with b # ¢. The Jacobian of D at (a, b, ¢) is
fz(a,b) — fa(a,c)

fz(a,b)

b—c
J(a,b,c)=| fy(a,b) w
0 _fy(aac)

b—c

After multiplying the second column by ¢ — b and then adding the first column
to the second, we obtain the matrix

fo(a;b)  fa(a,c)
A= fy(a,b) 0
0 fy(a,c)

Thus
(a,b,c) is singular on D <= rank (J(a,b,c)) <1
<= rank (4) <1
< (a,b) or (a,c) is singular on C, or both are critical on C. O

The condition that w be separable is necessary, since otherwise all points on C are
critical. Recall the example C = {z = y?}, where p = charF, from Section 3. Then
fy =0, C is smooth, and all tangent lines to C are vertical. Furthermore, Dy = O,
g= (WP —2P)/(y—2) = (y—=2)P~1, and C x, C equals {(a,b,b) € F3: a = bP}, counted
p—1 times. On the other hand, when C = {y = g(z)} is the graph of a polynomial
g € Fy[x], then 7 is separable, and D = Q.

We define

S ={(a,b,c) € D: (a,b) or (a,c) is singular or critical on C}.

We now let A be an irreducible component of D, and want to estimate the number
of ¢ such that

Yy = H (ti —y)(ti — 2)

1<i<2k

is a square in O 4. We let p: F[z,y,2] — O 4 be the restriction map.

Let t € F?* and T = {1,...,2k}. The overall goal of this section is to show in
Theorem 4.6 that only few p(¢;) are squares, when ¢ is chosen from a finite subset H
of F2*. For a simple example of a square, we take the parabola f = z — 32, so that
C={r=19y?},and D = {z —y? = y + 2 = 0} is irreducible. If K = 1 and t, = —t;,
then

p(We) = p((t1 —y)(t1 — 2)(t2 — ) (t2 — 2)) = p((t1 — )*(t1 +9)*)  (4.2)

is a square on D.

The condition that p(¢;) not be a square for (3.5) to hold is not an artifact of
Perel’'muter’s proof, but without it (3.5) may actually fail to be true.

In the sequel, we define several combinatorial objects on the index set 7. We
first collect pairs of equal values of ¢; in a systematic way. Namely, we take the
lexicographically first maximal matching on the directed graph with vertex set T,
and where (i, j) are connected if and only if ¢ < j and ¢; = t;. Then Ty C T is defined
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as the set of these first coordinates i, and 7 : Ty — T is defined by 1 () = j if (4, j)
occurs in that matching. As an example, if t3 = t5 = tg = t;1 = t13 and no other ¢;
equals these, then 71 = {3,5}, 71 (3) = 8, and 71 (5) = 11.

Next, we set,

Th={ieT\(WUn(T)): An{y=t;} CSor An{z=t;} CS}.
Then the t; for
i€T3 =T\ (TWUT(T1) UTs)
are pairwise distinct, and (71, 71(71),T»,T3) is a partition of T'. Next, we let
So=T3 x {0}, S1=T5x{1}

be two disjoint copies of T3, and define a bipartite undirected graph G = (So U S1, E)
as follows. For i,j € T, (4,0) and (j,1) are connected in G if and only if there is
some (a,b,c) € A\ S such that b =1t; and ¢ = t;.

In the example (4.2) of a parabola, we have Ty = T»> = @, and

(1,0) (1,1)
o X
(2,0) (2,1)

LeEMMA 4.3. If t € F?* is such that p(vy;) € O4 is a square, then each vertex in G
has degree at least one.

Proof. By symmetry, it is sufficient to show the claim for a vertex (i,0) € Sp.
Since i & Ty, we can choose some P = (a,t;,c) € A\ S; then ¢ # t;. Let

U():{jET:tj:ti}, U1={j€T:tj=C},

p: Flz,y,2] = O4 the restriction to A, R = Op 4 the local ring at P, which is
a Unique Factorization Domain (see e. g. Shafarevich 1974, Theorem I1.3.2), and
A= (04 = Op_4) o p the composition of p with the localization at P. Then ¢ € Up
and U(), U1 g T \ T2.

For every j € T'\ (Up U 1 (Up) U {i}), we have t; # ¢;, and thus A(y — ¢;) is a
unit in R. Similarly, each A(z —t;) with ¢; # ¢ is a unit in R. Since (a,t;) € C is not
critical for 7, we have fy(a,t;) # 0, and therefore A\(y — ¢;) € R is a local parameter
in R. Similarly, each A(z —¢;) with ¢; = ¢ is a local parameter in R.

By the above, there is a unit v € R such that

) = [T A —t) - [] Mz —t5)

JET JET
=u- [ Mu—-t)- I] Mz—ty)
JEUUT1(Ug)U{4} JEUL

is a square in R. Thus the total number of local parameters in the product is even.
We have #Uy = #11(Up) and i & UpUTy (Up). Tt follows that in the left hand product,
the number of local parameters is odd, and therefore also in the right hand product.
Thus there exists some j € T3 with t; = ¢; then {(¢,0),(j,1)} € E. O
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We now take a maximal “disjoint” matching (Vg, V1) in G of the following type.
The sets Vy, Vi C T3 are disjoint, G induces a perfect matching on (Vo x {0}) U (V] x
{1}), and this matching is maximal. Furthermore, let u : Vo — V; be the corre-
sponding bijection, with u(7) = j if and only if {(4,0), (j, 1)} occurs in the matching.

For every i € Vo = T3\ (VoU W), (i,0) is connected to some (j,1) € T5 x {1}, and
by the maximality of the matching, we have j € Vo U V1. We take p: Vo — Vo U V3
such that u(i) = j for some such j, and note that (Vy, V1, V2) is a partition of Ts.

Finally, we indicate how to describe t; for ¢ € V, succinctly if {(¢,0),(4,1)} €
E and t; is known. For this, we take an arbitrary total order < on F. For each
t € F,Cn{y = t} has at most n points, say (ai,t),...,(a;,t) with I < n and
a1 < ---<q. If j = p(@) and t = t;, then (a,,t;,t;) € D\ S for one of those points,
with 1 < r < I. We choose the smallest such 7; then C N {z = a,} consists again of
at most n points. We let v be the position of (a,t;) in this list, ordered according to
<, and set 73(i) = (r,v). Then t; is determined by j = u(3), t;, and 73(3).

Similarly, we define 73: Vo — {1,...,n}? so that for i € V4, t; is determined by
J = (@), tj, and 73(4)-

We have thus associated to any ¢ € F2* with p(¢;) a square the following data:

T]_,Tl,Tz,%,/L,T3, and tz fOI”L'ETl UT2UV£|_ (44)

LEMMA 4.5. If p(v) is a square in O 4, then t is determined by the data in (4.4).

Proof.  (T1,7:(T1),T2, Vo, V1, V2) is a partition of T, and t; = t,,(;) for each i € T;.
Thus it remains to show that each ¢; with ¢ € Vp U V4 is determined by (4.4). But
that is precisely what the construction of y and 73 achieves. |

We are now ready for the main result of this section, an upper bound on the
number of ¥; which are squares. The bound is rather coarse, but sufficient for our
purposes.

THEOREM 4.6. Let F be an algebraically closed field, f € Wz,y] squarefree, C =
{f =0} with m: C — F separable, H C I be a finite set with h elements, and k € N
positive. The number oft € H?* such that p(v);) is a square in O 4 for some irreducible
component A of C x, C is at most (12kn2h'/?)2k,

Proof. We first fix a component A of D, and show the corresponding bound. By
Lemma 4.5, it is sufficient to give an upper bound on the number of choices for the
data in (4.4).

The six sets T1, 71 (T1), T», Vo, Vi, Va form a partition of T', and there are at most
choices for this partition.

Suppose that these sets are chosen, with cardinalities c1, ¢2, ¢3, ¢4, ¢5, Cg, TESPEC-
tively. Then ¢; = ¢o, c3 < n?, and ¢4 = ¢5. The number of choices for 71 is at most
(2k)e1, for p at most (2k)°++e¢ for 73 at most (n?)¢4+¢ and for all #;’s required in
(Theorem 4.1) at most he1+¢s . (n?)°. Since ¢; + c5 < 2k/2 = k, the total comes to

62k

m = 62k ) (Zk)01+04+86 ) (n2)03+04+86 . h81+05. (4‘7)
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Since deg D < n(n — 1) by Theorem 4.1 (i), D has at most n(n — 1) < n? irreducible
components. So the total number of ¢ considered is at most n?m, and

n2m < 62k . (2k)2k . (n2h1/2)2k_

Here we use that either ¢; + ¢a + ¢5 > 0 and then n? - (n2)csteates < (n2)2k ) or

¢ + 3 + ¢4 + ¢ > 0 and then n?(h)c1+es < bk, O

5. Exceptional polynomials. In this section, we deal with the somewhat trou-
blesome case excluded so far: exceptional polynomials, for which o = 0. No analogue
of the deterministic result of Theorem 3.3 is known for them, while the probabilistic
results of Section 2 carry over easily.

We first note that it is not surprising that they are difficult to deal with, since
any subset of F? is an exceptional curve. If ¢ € F, is a nonsquare and f = 2% + ¢y?,
then f is exceptional and

{5 =0} ={00,0)}, (5.1)

and by translation and finite unions the claim follows. If char F, > 3, then (5.1) also
holds for f = 2971 + y?=1. If b € F,2\F, with b* € F,, then b9~ = (p2)(a=1)/2 = 1.
Thus f is the product of all x — by with these b, and thus f is exceptional, too.

Now given an arbitrary f € F, [z, y] of degree n, there are well-known probabilistic
algorithms with time polynomial in nloggq that factor f into its irreducible factors
over F;, (von zur Gathen & Kaltofen 1985) and test each such factor for absolute
irreducibility (Kaltofen 1985). For simplicity, assume now that f is irreducible over
F,, and not absolutely irreducible. Then Kaltofen’s algorithm can be used to find a
field extension K of F, with [K: F,;] < n and a proper factorization of f over K. If g
and h are two distinct factors, then the first coordinate of any common root is a root
of

resy(g,h) € Kla].

Thus it is easy to calculate all common roots of g and h, to check which ones are in
]Fq2, and to determine whether they are indeed roots of f. All roots of f are found in
this way; there are at most n2/4 of them (von zur Gathen et al. 1996).

THEOREM 5.2. Let f € F,[z,y] have degree n. There is a probabilistic algorithm
using (nlog q)o(l) operations in I, that determines whether f is exceptional and, if
it is, finds all points of {f = 0}.
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