Problem Set 2 Solutions

1. (a) In this case the random map f is chosen u.a.r. from the set $\{f', f''\}$, where $f'(0) = 1$, $f'(1) = 0$ and $f''(0) = 1$, $f''(1) = 1$. Denote $F_{-t}^0 = f_{-1} \circ \cdots \circ f_{-t}$, where the f_i are iid samples from the above distribution.

(b) Let $T = \min\{t : F_{-t}^0$ is constant $\}$ be the stopping time for CFTP, and let $Z_{-\infty}^0$ denote the constant value of F_{-T}^0. Then

$$\Pr[Z_{-\infty}^0 = 1] = \sum_{t \geq 1} \Pr[Z_{-\infty}^0 = 1|T = t] \Pr[T = t].$$

(1)

Now note that $f_{-T} = f''$, and $f_{-i} = f'$ for $1 \leq i < t$. Thus $\Pr[T = t] = 2^{-t}$, and $F_{-T}^0 = 1$ if T is odd, and 0 otherwise. Hence (1) becomes

$$\Pr[Z_{-\infty}^0 = 1] = \sum_{t \geq 1, t \text{ odd}} 2^{-t} = \frac{2}{3},$$

as desired.

(c) Evidently the forward simulation $F_0^t = f_t \circ \cdots \circ f_1$ halts at the first time T for which $f_T = f''$. But then clearly the constant value of F_T^0 is 1.

2. (a) Since both F_0^t and F_{-t}^0 consist of the composition of t independent random maps drawn from the same distribution, it is clear that the probabilities that they are constant are equal. Thus the distributions of T and T' are the same. (Note that this does not imply that the distributions of F_T^0 and F_{-t}^0 are the same!)

(b) Note that the random map f defines a (standard pairwise) coupling via $(X, Y) \mapsto (f(X), f(Y))$. The coupling time for this coupling, maximized over X and Y, is clearly dominated by the coalescence time T', since if F_0^t is constant then certainly coupling has occurred for all pairs. Hence our familiar coupling technology gives $D(t) \leq \Pr[T' > t]$. But by part (a) this latter probability is precisely $\Pr[T > t]$.

(c) Consider two copies X_t, Y_t of the Markov chain started at $X_0 = \top$ and $Y_0 = \bot$ respectively. For any state z let $h(z)$ denote the height of z, i.e., the length of a longest chain in the partial order whose top element is z, and let $H(X_t, Y_t) = h(X_t) - h(Y_t)$ denote the height difference between X_t and Y_t. Note that $H(X_t, Y_t) \geq 0$ by monotonicity. Now clearly we have

$$\Pr[T > t] = \Pr[T' > t] = \Pr[H(X_t, Y_t) \geq 1] \leq \mathbb{E}[H(X_t, Y_t)] = \mathbb{E}[h(X_t) - h(Y_t)].$$

But this last expectation is just

$$\mathbb{E}[h(X_t)] - \mathbb{E}[h(Y_t)] \leq \|p^{(t)}_\top - p^{(t)}_\bot\| \max_z h(z) \leq D(t)h,$$

as claimed.

(d) By submultiplicativity of $D(t)$ and the definition of τ_{mix}, setting $t = [\tau_{\text{mix}} \log(h\varepsilon^{-1})]$ ensures that $D(t) \leq h^{-1}\varepsilon$. Plugging this in to part (c) gives $\Pr[T > t] \leq hD(t) \leq \varepsilon$, as required.
3. (a) For a spin configuration \(\sigma \), let \(H_\sigma \) denote the subgraph consisting of all edges that connect neighbors with equal spins in \(\sigma \). Say that a subgraph \(H \) and spin configuration \(\sigma \) are compatible, written \(H \sim \sigma \), if \(H \subseteq H_\sigma \). (Thus \(H \sim \sigma \) iff no edge of \(H \) connects unequal spins.)

We now construct a probability distribution on compatible pairs \((H, \sigma) \) in two different ways. First, for any given \(H \), note that there are \(2^{\mathcal{C}(H)} \) compatible configurations \(\sigma \), corresponding to the two spin choices for each connected component of \(H \). We pick one of these at random by flipping a fair coin to select the spin of each component independently. If \(H \) itself was chosen at random from \(\pi \), the resulting distribution on pairs is

\[
\mu(H, \sigma) = \frac{1}{Z} p^{|H|} (1 - p)^{|E| - |H|} 2^{\mathcal{C}(H)} 2^{-\mathcal{C}(H)} = \frac{1}{Z} p^{|H|} (1 - p)^{|E| - |H|}.
\]

Secondly, for any given \(\sigma \), note that there are \(2^{|H_\sigma|} = 2^{|E| - |U(\sigma)|} \) compatible subgraphs \(H \), namely all subgraphs of \(H_\sigma \). We pick one of these at random by including each edge of \(H_\sigma \) independently with probability \(p \). If \(\sigma \) was chosen at random from \(\hat{\pi} \), the resulting distribution on pairs is

\[
\hat{\mu}(H, \sigma) = \frac{1}{Z} \lambda^{U(\sigma)} p^{|H|} (1 - p)^{|E| - U(\sigma) - |H|} = \frac{1}{Z} p^{|H|} (1 - p)^{|E| - |H|},
\]

where we have used the suggested correspondence \(\lambda = 1 - p \).

But since both (2) and (3) are probability distributions and assign the same relative weight to each pair \((H, \sigma) \), we must have \(Z = \hat{Z} \).

The procedures for mapping subgraphs to configurations and vice versa are as described above.

(b) The heat bath dynamics is specified by the following transition rule from a given subgraph \(H \):

- pick an edge \(e \in E \) and a real \(r \in [0, 1] \) u.a.r.
- include edge \(e \) in the new subgraph if \(r \leq p_e \), else do not include \(e \)

Here \(p_e \) is the conditional probability of edge \(e \), given the rest of \(H \) (i.e., if \(e \) is not a “cut edge” wrt \(H \) (so that \(H + e \) has the same number of connected components as \(H - e \) then \(p_e = p \), else \(p_e = p/(2(1-p)) = p/(2-p) \).

Now define a partial order \(\preceq \) on subgraphs by \(H \preceq H' \) iff \(H \supseteq H' \) (i.e., all edges of \(H' \) are edges of \(H \)). The unique minimal and maximal elements are \(G \) and \(\emptyset \) (the graph with vertex set \(V \) and no edges) respectively. A complete coupling is obtained by picking a single pair \((e, r) \) in the above transition rule. To check this is monotone, suppose \(H \preceq H' \). It is sufficient to show that, for all edges \(e \), \(p_e \geq p_e' \), where \(p_e, p_e' \) are the thresholds in the above transition rule for \(H \) and \(H' \) respectively: this ensures that \(e \) cannot be included into \(H' \) but not into \(H \). Observe that \(p_e \) and \(p_e' \) can differ only if \(e \) is a cut edge in one of \(H, H' \) and not the other. Since \(H \preceq H' \), \(e \) must be a cut edge in \(H' \), whence

\[
p_e' = \frac{p}{2-p} \leq p = p_e,
\]

as required.

4. We first assume the following lemma, as suggested in the hint:

Lemma: For all states \(x, y \) and all \(t \geq 2\tau_{\text{mix}} \), \(\frac{p_{\pi(y)}(y)}{\pi(y)} \geq \frac{1}{8} \).

Now construct the following flow. Let \(t = 2\tau_{\text{mix}} \), and let \(P_{xy}^t \) denote the set of all paths of length exactly \(t \) from \(x \) to \(y \) in the Markov chain. Distribute the flow \(\pi(x)\pi(y) \) from \(x \) to \(y \) among the paths \(p \in P_{xy}^t \) in the proportions \(\text{prob}(p) \), where \(\text{prob}(p) \) denotes the probability of taking path \(p \) starting in state \(x \) conditional on ending in state \(y \) at time \(t \). Thus we are effectively letting the \(t \)-step evolution of the Markov chain choose the flow. (Note that some flow may be routed along non-simple paths \(p \); however, we can always make these paths simple by removing cycles, without increasing the cost of the flow. Thus we can safely ignore this issue.)
Call the resulting flow f. Then for any transition e, the flow along e is given by

$$f(e) = \sum_{xy} \sum_{p \in P^+_{xy} \setminus \Omega} \frac{\pi(x) \pi(y) \text{prob}(p)}{p^e_x(y)} \leq 8 \sum_{xy} \sum_{p \in P^+_{xy} \setminus \Omega} \pi(x) \text{prob}(p),$$

where the inequality follows from the above lemma. But the final double sum is precisely the sum of the probabilities that the Markov chain, started in stationarity, traverses edge e in each time step; this in turn is exactly $tQ(e)$, since the probability that the stationary chain traverses e in any given step is $Q(e)$. Hence we have

$$\rho(f) = \max_e \frac{f(e)}{Q(e)} \leq 8t = 16\tau_{\text{mix}},$$

as required.

It remains to go back and prove the lemma.

Proof of Lemma: Define the set of states $S = \{z : p^e_z(z) \geq \frac{1}{2}\}$. It is easy to check that $|S| \geq \frac{1}{2}$, and hence by definition of the mixing time $p^\tau_x(S) \geq \frac{1}{4}$, where τ denotes τ_{mix}. Thus we have

$$p^\tau_x(S) \geq \sum_{z \in S} p^\tau_x(z)p^\tau_z(y) \geq \pi(y) \sum_{z \in S} p^\tau_x(z) \frac{p^\tau_y(z)}{\pi(z)} \geq \frac{\pi(y)}{2} \sum_{z \in S} p^\tau_z(z) \geq \frac{\pi(y)}{8}.$$

This completes the proof of the lemma.

5. (a) Fix some arbitrary (non-self-loop) transition e in the Markov chain; suppose that e starts in a permutation x and switches the cards in positions i, j, k, with $j > k$. Let $\text{paths}(e)$ denote the set of all paths γ_{xy} that pass through e. We define an injective mapping $\eta_e : \text{paths}(e) \rightarrow \Omega$ as follows. For each pair $(x, y) \in \text{paths}(e)$, we refer to the positions of a given card in x, y, z respectively as its initial, final and current positions. The permutation $\eta_e(x, y)$ is then defined as follows:

- place the cards z_1, z_2, \ldots, z_k in their initial positions;
- place the remaining $n - k$ cards in the vacant positions in the order in which they appear in the final permutation y.

Clearly $\eta_e(x, y)$ belongs to Ω. We need to check that it is injective. To see this, given e and $\eta_e(x, y)$ we can uniquely recover y by noting that the final positions of cards z_1, \ldots, z_k are the same as their current positions, and the final order of the remaining cards can be read off from $\sigma_e(x, y)$. To recover x, note that the initial positions of z_1, \ldots, z_k are just as in $\eta_e(x, y)$; but these positions determine, for every i, the current position of the card initially in position i, since each previous transition on the path involved moving one of z_1, \ldots, z_k into its final position. Hence, by simulating these transitions, we can deduce the initial positions of all the cards and so recover x.

Since η_e is injective, we deduce that $|\text{paths}(e)| \leq |\Omega|$, as required.

(b) From part (a) we may deduce that the flow through any transition e is $f(e) \leq \frac{1}{|\Omega|}$. Moreover, the capacity of e is $Q(e) = (2{(n) \choose 2}|\Omega|)^{-1}$. Hence the cost of the flow is $\rho(f) = \max_e \frac{f(e)}{Q(e)} \leq 2{(n) \choose 2} = O(n^2)$. Clearly, the length of a longest flow-carrying path is $\ell(f) = n$. And for any $x \in \Omega$ we have $\pi(x) = (n!)^{-1}$, so $\log \pi(x)^{-1} = O(n \log n)$. Plugging all this into our general bound on the mixing time from Lecture 10 gives

$$\tau_x(\varepsilon) \leq \rho(f)\ell(f)(2 \ln \varepsilon^{-1} + \ln \pi(x)^{-1}) = O(n^3(n \log n + \log \varepsilon^{-1})).$$