
CS294 Partition Functions Fall 2023

Lecture Note 2
Instructor: Alistair Sinclair

Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They
may be distributed outside this class only with the permission of the Instructor.

2.1 #P-Completeness

As mentioned in the previous lecture, counting problems can be viewed as a natural generalization of decision
problems, in which the goal is to count the number of solutions rather than just to determine whether at
least one solution exists. Valiant [Val79a, Val79b] introduced the class #P to formally capture this notion.

Definition 2.1. Let Σ be a finite alphabet. A function f : Σ∗ → N belongs to #P if there is a polynomial
time non-deterministic Turing machine M s.t., for any input x ∈ Σ∗, the number of accepting computations
of M on x is exactly f(x).

All “natural” problems in NP have a counting version in #P. For example, to see that #SAT (counting
satisfying assignments of a boolean formula ϕ) is in #P, we simply design a Turing machine that non-
deterministically checks every possible assignment and accepts if the assignment satisfies ϕ.

Definition 2.2. A function f : Σ∗ → N is #P-hard if the computation of any function in #P is polynomial
time reducible to the computation of f . If in addition f belongs to #P then f is #P-complete.

Again, it is easy to see that the counting versions of most NP-complete decision problems are #P-complete.
This follows from the fact that most reductions proving NP-completeness are (or can be modified to be)
parsimonious, in the sense that they preserve the number of solutions (possibly up to some easily computed
factor). This applies in particular to Cook’s generic reduction from any problem in NP to SAT, establishing
that #SAT is #P-complete. #P-completeness for other problems follows by parsimonious reduction from
#SAT.

2.2 The permanent

#P-completeness starts to become interesting when we observe that the counting versions of many decision
problems in P are also #P-complete! The first major result of this kind is also due to Valiant [Val79a],
who proved that counting the number of perfect matchings in a bipartite graph is #P-complete. Note that
deciding whether a given bipartite graph has a perfect matching is well known to be in P, e.g., via a reduction
to network flow. The counting problem here is also of wider interest because it is equivalent to computing
the permanent of the adjacency matrix of the graph. The permanent of an n× n matrix A is defined as

per(A) :=
∑

σ

n∏
i=1

ai,σ(i), (2.1)

where the sum is over all permutations σ of [n]. Note that this formula is syntactically very similar to that
of the determinant, the only difference being that in the determinant each term includes the sign of the
permutation σ.

2-1

2-2 Lecture 2: Alistair Sinclair

Exercise: Verify that, for a bipartite graph G = (V1, V2, E) with |V1| = |V2| = n, the number of perfect
matchings in G is equal to per(A(G), where A(G) is the bipartite adjacency matrix of G (with rows, columns
indexed by V1, V2 respectively).

Theorem 2.3 ([Val79a]). Computing the permanent of a matrix A with 0-1 entries is #P-complete.

We present a proof that is slightly simpler than Valiant’s original one, and is usually attributed to Papadim-
itriou and Arora/Barak.

Proof. Evidently the problem is in #P: per(A) is just the number of non-zero terms in (2.1), and a non-
deterministic Turing machine can check each permutation σ and accept iff the corresponding term is non-zero.

To prove #P-hardness, we give a reduction from #3-SAT, the problem of counting the number of satisfying
assignments of a formula ϕ in 3-CNF. The reduction uses an alternative graphical characterization of the
permanent. Let GA be the n-vertex directed graph (possibly with self-loops) whose adjacency matrix is A.
A cycle cover of GA is a set of directed cycles that includes each vertex exactly once. Then it is easy to see
[Exercise!] that per(A) is equal to the number of cycle covers of GA. Thus, given ϕ, it suffices to construct
a directed graph Gϕ such that the number of cycle covers of Gϕ is equal to (some easily computed factor c
times) the number of satisfying assignments of ϕ.

We construct Gϕ using three types of gadget: a variable gadget, a clause gadget, and an XOR gadget. (See
figure 2.1.) The edges of the XOR gadget are labeled with integer weights (some of which are negative); all
unlabeled edges have weight 1. We will show that the sum of the weights of all cycle covers of Gϕ is equal
to 43m times #SAT(ϕ), where the weight of a cycle cover is the product of the weights of its edges and m
is the number of clauses in ϕ.

Figure 2.1: Gadgets

The key properties of these gadgets are the following. (In the variable and clause gadgets, we refer to the
solid edges as “external” and the dotted ones as “internal”.)

variable: This gadget has exactly two cycle covers, one of which takes the external edges on the “true” side and
the self loops on the “false” side, and vice versa. The length of each of the true/false chains is equal
to the number of clauses in which the variable appears. [The choice of cycle cover will correspond to
setting the value of this variable to true or false.]

Lecture 2: Alistair Sinclair 2-3

clause: This gadget has exactly one cycle cover that omits each non-empty subset of the external edges (and
no cycle cover that includes all the external edges). [The omitted edges will correspond to the literals
that are satisfied in this clause, of which there must be at least one.]

XOR: This is the most subtle gadget, and has only two families of cycle covers with non-zero combined
weight: those that include the external edges from u and to u′, and those that include the external
edges from v and to v′. Each of these families has total weight 4. These properties can be verified by
writing the adjacency matrix of the gadget as

B =

0 −1 −1 1
0 1 2 1
0 3 0 1
1 1 1 −1

where the rows/columns of B are enumerated as a, b, c, d in the diagram of the gadget. Now one can
readily check that

per(B) = per(Ba,a) = per(Bc,c) = per(Bac,ac) = 0 ;
per(Ba,c) = per(Bc,a) = 4 ,

where Bi,j denotes the submatrix of B obtained by deleting the ith row and jth column. Note in
particular how the negative matrix entries ensure that unwanted cycle covers cancel out. [This gadget
functions as an XOR, in the sense that, when inserted into the graph to replace edges (u, u′) and (v, v′),
it gives a non-zero contribution only to cycle covers that include exactly one of these edges. This will
be used to ensure consistency between the variable and clause gadgets.]
Exercise: Verify the above properties of per(B) and its submatrices, and that these properties imply
the desired consequences for the cycle covers of the gadget claimed above.

The entire graph Gϕ consists of one variable gadget for each variable of ϕ, one clause gadget for each
clause, and one XOR gadget for each occurrence of a literal in a clause (3m in total), inserted between the
corresponding variable and clause gadgets. Figure 2.2 illustrates how this works for one sample clause. Note
in particular how the XOR gadgets are used to ensure that, in any cycle cover, the external edges omitted
in any clause gadget correspond precisely to those variables whose assignment satisfies the clause. This
observation, and the fact that any cycle cover must omit at least one edge from each clause, ensures that
each satisfying assignment corresponds to a set of cycle covers of total weight precisely 43m (note that 3m
is the total number of XOR gadgets). This completes the reduction.

So far we have shown that computing the permanent of a matrix with small integer values is #P-hard. To
complete the proof of the theorem, we need to show that this still holds when the matrix entries are 0-1.
Note first that an edge (u, v) of weight w > 1 can be replaced by w parallel paths u → xi → v with all edges
of weight 1 without changing the value of the permanent. Since the only negative edge weights are −1, this
gets us to the case where all non-zero matrix entries are in {±1}. Now note that the resulting permanent
certainly lies in the range [−n!, n!], so since n! < 2n2

it suffices to compute it modulo 2m + 1 for m ≈ n2.
The −1 entries now become 2m, and can be replaced by m edges of weight 2 in series, each of which can
then be replaced by two parallel paths as before, leaving us with a graph with only unit edge weights. These
operations cause only a polynomial blow-up in the size of the graph.

2.3 Other problems

The permanent plays a role in #P-completeness analogous to that played by SAT in NP-completeness, in
that many other (non-obvious) problems can be proved #P-complete via reduction from it (see Valiant’s

2-4 Lecture 2: Alistair Sinclair

Figure 2.2: Portion of the graph Gϕ involving one clause.

paper [Val79b] for several examples). The more interesting of these reductions are not parsimonious, but
use other techniques such as polynomial interpolation. We give two illustrative examples of non-trivial
#P-hardness reductions.

Let #(s, t)-PATHS be the problem of counting the number of simple paths between vertices s and t in a
graph G.

Theorem 2.4. #(s, t)-PATHS is #P-complete

Proof. We give a reduction from #HAM, counting Hamilton paths in a graph. (This standard NP-complete
problem is easily seen to be #P-complete by parsimonious reduction from #SAT.) Construct graph G′ by
replacing each edge of G by a “chain of diamonds” of length k. Then each (s, t) path in G of length `
corresponds to 2k` paths of length k` in G′. Thus the total number of (s, t) paths in G′ is

∑
` p`2k`, where p`

is the number of such paths of length ` in G. Now we choose k large enough so that the final term pn−12k(n−1)

dominates the sum of all the other terms. Specifically, we have (rather crudely)
∑

`<n−1 p`2k` ≤ n!2k(n−2) ≤
2n2+k(n−2), which is less than 2k(n−1) if we take k > n2. With this choice of k, we can read off the top
coefficient pn−1 from the total number of paths in G′ by truncation, giving us the number of Hamilton paths
from s to t.

The above reduction is quite straightforward because it is easy to “boost” the number of structures corre-

Lecture 2: Alistair Sinclair 2-5

sponding to the “hard” coefficient pn−1 in the polynomial Z(λ) :=
∑

` p`λ
`. Here is a more sophisticated

example that uses the full power of polynomial interpolation.

Let #MATCH be the problem of counting the number of matchings (of all sizes) in a graph G. (Note that
the corresponding decision problem here is trivial: every graph contains the empty matching!)

Theorem 2.5. The problem #MATCH is #P-complete.

Proof. We give a reduction from counting perfect matchings to #MATCH. Let G be an arbitrary bipartite
graph with 2n vertices, and for 0 ≤ k ≤ n let mk denote the number of matchings in G with exactly k edges.
Now let Gs denote the graph obtained by appending to each vertex v on the left side of G s new vertices, each
connected only to v. Then the total number of matchings in Gs is

∑
k mk(s+1)n−k = (s+1)n

∑
k mk(1

s+1)k.
Note that, by varying s, we obtain different points on the matching polynomial ZG(λ) =

∑
k mkλk of G.

Since Z has degree at most n, if we evaluate it at n+1 different points we can use Lagrange interpolation to
recover all its coefficients, i.e., the numbers of matchings of every size in G (including, in particular, mn, the
number of perfect matchings). Each such evaluation involves solving the problem #MATCH on a graph Gs,
and the interpolation runs in time polynomial in n and the logarithms of the sizes of the numbers involved.
This completes the reduction.

An alternative perspective on #MATCH is provided by looking more closely at the matching polynomial (or
monomer-dimer partition function) ZG(λ). Clearly, if we view λ as part of the input, then computing ZG(λ)
is #P-hard, since we could evaluate the polynomial at n + 1 values of λ and use interpolation to extract all
the coefficients, including the number of perfect matchings mn. Moreover, Theorem 2.5 also tells us that it
is #P-hard to evaluate ZG(λ) at the point λ = 1. But what about other fixed values of λ? We can show
that this problem is in fact #P-hard at every fixed value of λ (except for λ = 0 when Z(0) is trivially 1).
The trick is to modify G so as to simulate different values of λ, as we did in the proof of Theorem 2.5. For
the graphs Gs defined there, notice that

ZGs
(λ) =

∑
k

mkλk(1 + sλ)n−k = (1 + sλ)n
∑

k

mk

(
λ

1 + sλ

)k

= (1 + sλ)nZG

(
λ/(1 + sλ)

)
.

Thus evaluating the matching polynomial ZGs
at any fixed, non-zero value of λ, for a sequence of values

of s, is tantamount to evaluating ZG at the set of points { λ
1+sλ}. This allows us to interpolate and find the

coefficients of ZG. We have proved:

Theorem 2.6. The problem of computing the matching polynomial ZG(λ) at any fixed value λ 6= 0 is
#P-hard.

Much more can be said about the complexity of exactly computing partition functions: in particular, for a
systematic classification of the complexity of partition functions of spin systems, see [BG05]. The overall
message, however, is simple: these problems are #P-hard in all but a very small number of special cases (two
of which we’ll see in the next lecture). Hence for the rest of the course we will be focusing almost entirely
on approximate computation.

2.4 #P and Computational Complexity

How does #P relate to more familiar classes such as NP and PSPACE? It should be clear that, if #P ⊆ P
(or more correctly, #P ⊆ FP, the class of functions computable in polynomial time), then P = NP [why?];
however, the converse implication is not true. Equally it should be clear that #P is contained in PSPACE
[why?]. A famous theorem due to Toda [Tod91] shows that the polynomial hierarchy is contained in P#P,

2-6 Lecture 2: Alistair Sinclair

implying that #P is “more powerful than” any finite level of quantifier alternation. We won’t dwell on these
topics here as they are not the main concern of this class; we refer the interested reader to the Complexity
Theory class, CS278, or the textbook [AB09].

References

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[BG05] A. Bulatov and M. Grohe. The complexity of partition functions. Theoretical Computer Science,
348:148–186, 2005.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20:865–877,
1991.

[Val79a] L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–
201, 1979.

[Val79b] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Comput-
ing, 8:410–421, 1979.

