
CS294 Partition Functions Fall 2023

Lecture Note 14
Instructor: Alistair Sinclair

Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They
may be distributed outside this class only with the permission of the Instructor.

14.1 Entropy and the log-Sobolev constant

So far we’ve focused on variance reduction, as embodied in the Poincaré constant (Theorem 10.4), to bound
the mixing time. Potentially sharper results can be obtained by considering instead the rate of decrease of
relative entropy (or Kullback-Leibler divergence), though the resulting technology is usually more difficult
(if not impossible) to apply. In this lecture we will examine entropy-based estimates of the mixing time.

To develop the necessary technology, it is convenient to work with a continuous-time version of the Markov
chain. In this model, rather than making one transition per time step, the chain is equipped with a mean-1
Poisson clock; each time the clock rings, a transition is made according to the usual transition matrix P .
More precisely, the times between successive transitions are iid exponential with mean 1, so that the number
of transitions per unit time follows a Poisson Po(1) distribution.

We will use Ht (for “heat kernel”) to denote the probability distribution of the continuous time Markov chain
after t steps. Thus Ht(x, y) := Pr[Xt = y|X0 = x]. From the above description, we have

Ht(x, y) =
∞∑

k=0

e−ttk

k!
P k(x, y), (14.1)

which has the more compact matrix representation

Ht = exp(t(P − I)) = exp(−tL), (14.2)

where L = I − P is the Laplacian of P . (The notation exp(A) for a matrix A should be interpreted as the
convergent sum I +A+ 1

2!A
2 + · · · .) Exercise: Check that the matrix power series in (14.1) and (14.2) are

equal.

Switching between discrete and continuous time is largely a bookkeeping exercise, but continuous time chains
have two advantages: first, periodicity is not an issue for convergence; and second, difference equations are
replaced by derivatives, which are sometimes simpler (though less intuitive). If we wish to simulate a
continuous time chain, we specify the transition times by sampling a sequence of independent exponential
random variables and make each transition as usual according to P .

The following proposition confirms that the mixing times of the discrete and continuous time versions of the
Markov chain are essentially equivalent.

Proposition 14.1. Let P be an irreducible (not necessarily aperiodic) Markov chain matrix with stationary
distribution π, and let P̃ = 1

2 (I + P ) be the lazy version of P . For a given initial state x, write p̃(k)
x for the

k-step distribution of P̃ and h(t)
x for the time-t distribution of the heat kernel of P . Then for any fixed ε > 0

we have:
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(i) For sufficiently large k, if ‖p̃(k)
x − π‖TV ≤ ε then ‖h(k)

x − π‖TV ≤ 2ε.

(ii) For sufficiently large t, if ‖h(t)
x − π‖TV ≤ ε then ‖p̃(d4te)

x − π‖TV ≤ 2ε.

Proof (rough sketch). We briefly sketch the ideas; you should be able to fill in the details if you are interested,
else see [LPW09, Chapter 20] for a full proof. To see (i), note that if P̃ is ε-close to stationarity after k
steps then the corresponding heat kernel (of the lazy chain) H̃ will be 2ε-close to stationarity after 2k steps
since the probability that H̃ performs less than k transitions is Pr[Po(2k) < k] → 0 as k → ∞. Then (i)
follows from the easy fact that Ht = H̃2t. To see (ii), suppose H is ε-close to stationarity after t steps; then
the same is true if we add on a further t steps of P . The number of transitions performed is then Po(t) + t.
On the other hand, the number of transitions (of P ) performed in 4t steps of the lazy chain P̃ is Bin(4t, 1

2 ).
Now one can check that ‖Po(t) + t−Bin(4t, 1

2 )‖TV → 0 as t→∞, so by the coupling lemma we can couple
these two processes to achieve an overall variation distance from π of at most 2ε.

Note that continuous time dispenses with the need for an aperiodicity (or laziness) assumption on P .

To get a feel for continous time, let’s first prove a continuous time version of our variance reduction estimate,
Lemma 10.5 from Lecture 10, which says that Varπ[Pϕ]−Varπ[ϕ] ≤ −EP (ϕ,ϕ) for any function ϕ : Ω → R.

Lemma 14.2. Let P be an irreducible Markov chain with stationary distribution π, and let Ht be the
corresponding heat kernel. For any function ϕ : Ω → R, we have d

dtVarπ[Htϕ] = −2EP (Htϕ,Htϕ).

Proof. Write ϕt := Htϕ. Note first that, from the definition Ht = exp(−tL), we have d
dtϕt = −Lϕt. Hence

d

dt
Varπ[ϕt] =

d

dt

(
Eπ[ϕ2

t ]− Eπ[ϕt]2
)

=
d

dt

(∑
x

π(x)ϕt(x)2
)

= 2
∑

x

π(x)ϕt(x)
d

dt
ϕt(x)

= −2
∑

x

π(x)ϕt(x)[Lϕt](x)

= −2EP (ϕt, ϕt),

where in the last step we used the definition of the Dirichlet form. In the second line, we used the fact that
the expectation Eπ[ϕt] = Eπ[ϕ] is constant.

From the definition of the Poincaré constant, this immediately gives us the following analog of Corollary 10.6:

Corollary 14.3. For any non-constant ϕ : Ω → R, we have d
dtVarπ[Htϕ] ≤ −2αVarπ[Htϕ]. Hence

Varπ[Htϕ] ≤ exp(−2αt)Varπ[ϕ].

By exactly the same argument as earlier, we therefore get a continuous time version of Theorem 10.4 (with
an improvement of a factor of 2):

Theorem 14.4. For any irreducible P and any initial state x ∈ Ω, the mixing time of the associated
continuous time Markov chain satisfies

τx(ε) ≤ 1
2α

(
2 ln ε−1 + ln(4π(x))−1

)
.
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In place of variance, let’s now investigate the rate of convergence under a different notion of distance. We’ll
use the following entropy-like quantity:

Entπ(ϕ) :=
∑

x

π(x)ϕ(x) logϕ(x)− Eπ[ϕ] log Eπ[ϕ] =
∑

x

π(x)ϕ(x) log
(
ϕ(x)
Eπ[ϕ]

)
. (14.3)

If we set ϕ = µ
π , where µ is a probability distribution over Ω, then Eπ[ϕ] = 1 and

Entπ(ϕ) =
∑

x

µ(x) log
µ(x)
π(x)

= D(µ‖π),

where D(µ‖π) is the Kullback-Leibler divergence or relative entropy, a widely used notion of distance between
probability distributions. (Note, however, that D(µ‖π) is not a metric; e.g., it is not symmetric.)

Our goal is to bound the rate of convergence of D(p(t)
x ‖π) = Entπ[p(t)

x

π ] to zero, just as we earlier bounded

the rate of convergence of Varπ[p(t)
x

π ]. It turns out that this rate is also bounded by a Dirichlet form, namely
the asymmetric form EP (ϕ, logϕ). Accordingly, following [BT06], we make the following definition.

Definition 14.5. The (modified) log-Sobolev constant of P is defined by

ρ := inf
ϕ≥0, Entπ [ϕ] 6=0

EP (ϕ, logϕ)
Entπ[ϕ]

.

The analog of Theorem 14.4 is the following:

Theorem 14.6. For any irreducible P and any initial state x ∈ Ω, the mixing time of the associated
continuous time Markov chain satisfies

τx(ε) ≤ 1
ρ

(
2 ln ε−1 + ln lnπ(x)−1

)
.

This theorem looks very similar to Theorem 14.4, with the Poincaré constant α replaced by ρ/2. However,
there is a crucial difference: here we have replaced lnπ(x)−1 by ln lnπ(x)−1. Recall that in typical applica-
tions π(x) is of the order exp(−cn), where n is the natural measure of input size and c is a constant. Thus the
dependence of the mixing time on the initial state in Theorem 14.4 is typically O(n), while in Theorem 14.6
it is O(log n), a substantial reduction. In cases where ρ and α are of similar order, this elimination of a factor
of O(n) sometimes allows one to obtain an optimal bound on the mixing time. (The overhead lnπ(x)−1

in the Poincaré bound is almost always pessimistic.) However, it is often very difficult to obtain a good
estimate of ρ.

In parallel with Lemma 14.2, the key to the proof of Theorem 14.6 is the following.

Lemma 14.7. For any positive function ϕ : Ω → R+, define ϕt := ϕHt

π . Then d
dtEntπ[ϕt] = −EP (ϕt, logϕt).

Proof. To undo the normalization by π, note that ϕt = H∗
t (ϕ

π ), where H∗
t is the heat kernel of the re-

versibilization of P . [Exercise: check this, as in the proof of Theorem 10.4. Recall that P ∗ is defined by
π(x)P (x, y) = π(y)P ∗(y, x)∀x, y.] So, as in the proof of Lemma 14.2, we have d

dtϕt = d
dtH

∗
t (ϕ

π ) = −L∗ϕt.
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Hence

d

dt
Entπ[ϕt] =

d

dt

(
Eπ[ϕt logϕt − Eπ[ϕt] log Eπ[ϕt]]

)
=

d

dt

(∑
x

π(x)ϕt(x) logϕt(x)− Eπ[ϕt] log Eπ[ϕt]]
)

=
∑

x

π(x)(1 + logϕt(x))
d

dt
ϕt(x)

= −
∑

x

π(x) logϕt(x)(L∗ϕt)(x)

= −
∑

x

π(x)[L logϕt](x)ϕt(x)

= −EP (ϕt, logϕt).

In the third line here we used the fact that Eπ[ϕt] is constant; in the fourth line the fact that Eπ[ d
dtϕt(x)] = 0

(essentially conservation of mass); and in the fifth line the fact that 〈ψ,L∗η〉π = 〈η, Lψ〉π for all ψ, η (i.e.,
L∗ is the adjoint of L w.r.t. the inner product 〈·, ·〉π). [Exercise: Check these facts!]

Corollary 14.8. For any positive ϕ : Ω → R+ with Entπ[ϕ] 6= 0, we have Entπ[ϕHt

π ] ≤ exp(−ρt)Entπ[ϕ
π ].

Now it is just a short step to the proof of Theorem 14.6.

Proof of Theorem 14.6. Setting ϕ = p
(0)
x (the initial distribution concentrated at state x), and using our

earlier observation that Entπ[p(t)
x

π ] = D(p(t)
x ‖π), Corollary 14.8 tells us that1

D(p(t)
x ‖π) ≤ exp(−ρt)D(p(0)

x ‖π) = exp(−ρt) log π(x)−1. (14.4)

Note the initial value log π(x)−1 for relative entropy here, in contrast to the initial value π(x)−1 for variance;
this is the source of the improved dependence on the initial distribution.

To finish, we may appeal to Pinsker’s inequality, which says that for any distribution p, 2‖p−π‖2
TV ≤ D(p‖π).

Combining this with (14.4) ensures that ‖p(t)
x −π‖TV ≤ ε for all t ≥ 1

ρ (ln 1
2ε2 + ln lnπ(x)−1), as claimed.

Notes:

1. By definition, the modified log-Sobolev constant ρ is the largest quantity that satisfies the inequality

EP (ϕ, lnϕ) ≥ ρEntπ(ϕ)

for all non-negative functions ϕ : Ω → R+. By contrast, the traditional log-Sobolev inequality takes
the form

EP (
√
ϕ,
√
ϕ) ≥ ρ0 Entπ(ϕ) (14.5)

over the same class of functions; ρ0 is then just called the log-Sobolev constant. This latter inequality
was largely pioneered by Gross [Gro76], in the context of the theory of hypercontractivity, which deals
with inequalities of the form ‖f(x)‖p ≤ β‖x‖q for some constant β, for all functions f . When suitably
formulated, the logarithmic Sobolev inequality (14.5) turns out to be equivalent to hypercontractivity,
which explains its importance. The theory of log-Sobolev inequalities in the context of finite Markov

1Strictly speaking this step needs further justification because p
(t)
x is not strictly positive at t = 0. However, p

(t)
x is strictly

positive for all t > 0, and the step can be justified by continuity. We omit the details.
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chains was worked out by Diaconis and Saloff-Coste [DSC96], including in particular the mixing time
bound of Theorem 14.6 with ρ replaced by ρ0. The modified log-Sobolev constant we are using here
was implicit in [DSC96] and was explicitly studied by Bobkov and Tetali [BT06]. For the purposes
of mixing time, a bound on ρ is essentially equivalent to a bound on ρ0, so it is usually preferable
to work with the simpler modified log-Sobolev constant in this context. More significantly, there are
several applications where ρ can be effectively bounded while the log-Sobolev constant ρ0 itself can be
arbitrarily small. On the other hand, it should be noted that hypercontractivity (guaranteed by ρ0) is
a stronger property than convergence in variation distance (or KL divergence).

2. It can be shown that ρ0 ≤ 4ρ ≤ 2α [BT06] (and for our purposes the constants don’t matter). Note
that relative entropy is bounded above by relative variance, so the generic bounds in Corollaries 14.8
and 14.3 are incomparable: the former controls a smaller distance (relative entropy) via an exponential
decay at possibly lower rate. When we translate both to mixing time, as we’ve seen, in cases where
ρ ≈ α (and we can approximate ρ well), we do better with log-Sobolev due to the improved dependence
on the initial distribution. However, in general α can be much larger than either ρ or ρ0. Moreover,
bounds on log-Sobolev constants are typically much harder to obtain than those on the Poincaré
constant, and usually require some symmetry or recursive structure we can exploit. We will see some
examples in the next lecture.
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