CS271 Randomness & Computation Fall 2022

Lecture 6: September 13

Instructor: Alistair Sinclair

Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They
may be distributed outside this class only with the permission of the Instructor.

The probabilistic method is non-constructive, in that it merely proves the existence of objects with certain
properties rather than explicitly constructing them. In some cases, there is an easy way to make the method
algorithmic, which we now illustrate with a simple example. (More sophisticated tools for making the method
constructive will be discussed later in the class.)

6.1 MAXS3SAT

The MAX3SAT problem is defined as follows. Given a boolean formula ¢ in 3CNF form on variables
{z1, -+ ,zn} and clauses {C1,- -+ ,Cp}, find the maximum number of clauses that can be satisfied by some
truth assignment to the variables. (For the purposes of this section, we assume that an instance of MAX3SAT
has exactly three literals per clause, all of whose variables are distinct.)

This is the optimization version of the 3SAT problem, which is NP-complete. Therefore, MAX3SAT is an
NP-hard optimization problem. However, a simple probabilistic argument yields a surprisingly good lower
bound on the optimum value for this problem.

Claim 6.1 For every such o, there exists an assignment satisfying at least %" clauses.

Proof: Pick a truth assignment to {z1,---,z,} uniformly at random. Let the random variable X denote
the number of clauses satisfied, and write X =) . X;, where each X is an indicator r.v. defined by

Y. 1 if C; is satisfied;
71 0 otherwise.

Notice now that
7
E[X;] = Pr[C; satisfied] = S

as there exist 8 equiprobable truth assignments to the variables of C; and for only one of these do all the
literals of C; have value false. By linearity of expectation,

- 7
E[X] = E[X;]| = -m.
X] = > EIXi] = gm
i=1
Finally, note that there must exist a point in the sample space at which X takes value at least E[X]. Hence

there exists an assignment satisfying at least %” clauses. |

Note that we can apply exactly the same argument to CNF formulas with clauses of varying lengths (and
indeed for general constraint satisfaction problems, defined by a conjunction of more general boolean con-
straints). In general, the number of clauses we can satisfy is at least ). p;, where p; is the probability that
the ith clause is satisfied by a random assignment. The values p; can easily be computed by inspection.
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6.1.1 Finding a good assignment

Having established that there exists an assignment that satisfies at least %m clauses, can we actually find
one?

An obvious approach is to directly apply the above randomized construction, i.e., simply pick a random
assignment and hope that it satisfies (close to) the expected number of clauses. This approach can be
analyzed by an easy application of Markov’s inequality, which says that, for a non-negative random variable Z
with expectation E[Z], and any « > 0,

Pr[Z > aE[Z]] <

QIr

Exercise: Let X be the random variable above, denoting the number of satisfied clauses in a random
assignment. For any 1 < a < 8, show that

Pelx < (1-§)m] <

[Hint: Apply Markov’s inequality to the random variable Z = m — X.] Hence deduce that a random

assignment satisfies at least a % fraction of the clauses with probability at least %

Exercise: Use Markov’s inequality and the fact that X is integer-valued to show that we actually get

7 1
Pr|X>-m|> .
r{ _Sm}_l—i—m

Deduce that we can actually achieve the expected value of %m in polynomial time with high probability.

6.1.2 Method of conditional probabilities

In many examples, it is possible to efficiently derandomize the randomized construction used in the probabilis-
tic method, and thus achieve the expected value (or better) deterministically. In its simplest incarnation, this
technique is usually called the “method of conditional probabilities.” We illustrate it using our MAX3SAT
example.

Consider a 3CNF formula ¢. We can think of the random construction of a truth assignment as sequentially
assigning truth values: first pick a T/F value for z, then for o, and so on. This process can be pictured as
a tree (see Figure 6.1).

We index each node of the tree with a formula W: the formula at the root is ¢, and to get the formula at a
node at level ¢ we simply replace the variables x1,...,z; in ¢ with their appropriate T/F values. Note that
the expression associated with each node is similar to the original expression ¢, except that some clauses
may have less than three literals in them.

Also, for each node ¥ in the tree, we define the random variable X¢ to be the number of clauses that are
satisfied in the tree below ¥ (i.e., when the assignments to the remaining variables are made randomly).
Now consider the expectation E[Xy], where ¥ is a node at level ¢ (so that the next variable to be assigned
is z;41). Using conditional expectation,

|+ Prfris = F1-BlXu, ] = 3 (B[Xu,] + E[Xa,]),

i+1=T it1=F

where ¥, and W, are the children of W. Thus at least one of the children must have an expectation at least
as large as that of W.
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n
constants
27l
Figure 6.1: The self-reducibility tree of a formula ¢ with variables x1, s, ..., z,.

Now, note that at the root, E[X¢] > %m, when ¥ = ¢. Hence, at each node we can choose a child such the
expectation remains greater than %”. Moreover, note that for any partially assigned formula, it is possible
to compute ezactly the probability that each of its clauses is satisfied, and hence the expectation E[Xy], in
linear time. So we can in linear time determine the child of ¥ with the larger expectation. We choose this
child and proceed down the tree, while maintaining the invariant that E[Xy] > %m. When we hit a leaf
of the tree (after n levels) we will have a complete assignment, and since the invariant still holds that this

assignment must in fact satisfy at least %” clauses. |

The above approach can be made to work in many of our examples. (Exercise: which ones?) The key
ingredient is the ability to compute the expectation when some of the random choices have already been made.
Even when this is not possible exactly, it is sometimes possible to compute the expectation approximately
and thus to deterministically achieve a final result that is close to the expectation.

6.2 Variance and the second moment method

Markov’s Inequality gives the best tail bound when the expectation is all we know about a non-negative
random variable. In this lecture we will explore how this can be improved if additional information is
available, such as higher moments. In particular we are interested in using the variance/second moment to
obtain a tighter bound.

Definition 6.2 The variance of a random variable X is defined as Var(X) = E[(X —EX)?] = EX?—(EX)2.

Intuitively variance measures how far the random variable is likely to be from its expectation. The following
standard inequality makes this intuition quantitative.

Lemma 6.3 (Chebyshev’s Inequality) Pr[|X — EX| > o] < Y2(X),

[0
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Proof: Let Y = (X — EX)? > 0. Applying Markov’s Inequality to Y gives

Pr[|X — EX| > a] = Pr[Y >a?| < % = VLEX)

~ - (6.1)

Corollary 6.4 Pr[|X —EX| > g4/ Var(X)] < % [Note that \/Var(X) is the standard deviation of X.]

< 1 Var(x)
7 EX)?

Corollary 6.5 Pr[|X —EX| > SEX]| <

Exercise: Show that Pr[|X —EX| > /Var(X)] < 1_%2
necessarily tight (i.e., it does not provide the tlghtebt bound possible given EX and Var(X)).

Hence deduce that Chebyshev’s inequality is not

Notwithstanding the previous exercise, we cannot do much better than Chebyshev’s inequality if all we know
are the mean and variance of a random variable. However, in many cases we have much more information,
which enables us to prove much tighter tail bounds. For example7 if the random variable X is normally
distributed with mean p and variance o2 , X ~ N(p,0?), then

B2

Pr|X — | > fo] ~ \/% g < g,

which is much sharper than Corollary 6.4. Similarly tight bounds hold when X is the sum of a large number
of independent random variables with bounded range. We shall discuss this at greater length in a later
lecture.

6.3 Thresholds in random graphs

As a first example, we will apply the variance/second moment method to find thresholds in random graphs.

In the G,, , model of random graphs, a graph G with n vertices is constructed by including each of the ( ) pos-
sible edges independently with probability p. Thus E[number of edges] = p(2) and E[degree of any vertex| =
p(n—1).

Typical Questions:

e Is G € G, , connected?

e Does G € G, ;, contain a 4-clique?

e Does G € G, , contain a Hamilton cycle?
We will now attack the second of these questions, i.e., we’ll look at the property that G contains a 4-clique.
This will serve as an illustration of some general ideas.

Let the random variable X denote the number of 4-cliques in G. We look first at the expectation EX (i.e.,
the first moment). As usual we write X = >, X¢, where C ranges over all subsets of four vertices and

X 1, if C is a 4-clique;
€71 0, otherwise.
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Now EX¢ is the probability that C is a clique, which is just p® (as there must be six edges within C). So
by linearity of expectation we have

n
EX =) EXc¢= (4>p6 = 0(n*p®).
C
Thus we see that:

e If p = o(n=?/?), then EX — 0;
o If p = w(n=2/3), then EX — oo.

(Recall that the notation f(n) = o(g(n)) means that f(n)/g(n) — 0 as n — oo, and f(n) = w(g(n)) means
that f(n)/g(n) — oo as n — 00.)

Can we translate this sharp jump in the expectation into a stronger statement about probabilities? It turns
out we can. We call p(n) a threshold for a property @ if

p=w(p(n)) = Pr[GegG,,has Q] —1asn— oo, and
p=o(p(n)) = Pr[GegG,,has Q] — 0asn— cc.

2/3

Theorem 6.6 The value p(n) = n=%/3 is a threshold for containing a 4-clique.

Proof: As above, let the random variable X denote the number of 4-cliques in G.

One direction is easy. Since X is an integer-valued random variable, Pr[X > 0] = Pr[X > 1] < EX, by
Markov’s inequality. Since EX — 0 for p = o(n™3), we deduce that Pr[G contains a 4-clique] — 0, as
desired.

The other direction is less trivial: notice that EX — oo does not immediately imply a useful lower bound
on Pr[X > 0], since X could be 0 most of the time and very large with small probability. We therefore need
to use the second moment of X. Specifically, we will show the following:

Claim 6.7 When p = w(n=2/3), we have Yggg? — 0 asn — 0.

Note that the claim is equivalent to saying that E(X?) = (1 + o(1))(EX)?, i.e., that the second moment is
asymptotically no larger than the square of the mean.

Before proving the claim, let us see how it implies the second direction of our theorem. By Chebyshev’s

Inequality, Pr[X = 0] < Pr[|X — EX] > EX] < \(Ig‘;(())? Therefore, by the claim, this latter ratio tends to

zero as desired.

Proof of Claim 6.7: Expanding the variance of X =) X¢ we have

Var(X) = EX? - (EX)? (6.2)
= Y EXZ-) (EXc)*+ > E(XcXp)- Y EXcEXp (6.3)
c c C+#D C#D
= ZVar(XC) + Z Cov(Xe, Xp), (6.4)
C C#D

where the covariance of two random variables Y, Z is defined as Cov(Y,Z) = E(YZ) — EYEZ. Note that
Cov(Y,Z) =0if Y, Z are independent, and otherwise can be positive, negative or zero.
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Since the X¢ are {0,1} random variables, we have Y . Var(X¢) = Yo (EXc — (EX¢)?) = () (° — p'?) =
O(n*p%). To analyze the covariance terms, we consider three cases:

e Case 1: |[C N D| < 1. In this case C, D share zero or one vertex, so X¢, Xp are independent and
COV(Xc,XD) =0.

e Case 2: |C'N D| = 2. Here C,D have two vertices in common, and Cov(X¢,Xp) < E(X¢Xp) =
Pr[C, D are both cliques|. For each choice of C, D, this latter event requires that 11 specific edges are
present, so the probability is p'*. Since there are (})(5) = ©(n°) such pairs C, D, the total contribution
of this covariance term is ©(n%p!!).

e Case 3: |C N D| = 3. By similar reasoning to Case 2, the contribution from the covariance of such
pairs C, D is ©(n°p?).
Plugging these into (6.4) gives
Var(X) = O(n*p®) + O(n®p') + O(n°p?).
Now using the fact that EX = O(n*p5) we get

Var(X) 1 1 1

and each of these terms tends to 0 as n — co assuming that p = w(n~2/3). This completes the proof of the
claim and of the theorem. [ |

We can generalize the above calculation to establish a threshold for containment of any fixed graph H (not
just 4-cliques). The expected number of copies of H in a random graph G € G, ,, is ©(n"p®), where v, e are
the numbers of vertices and edges respectively in H (Exercise: Why? Note that the constant in the ©-
notation conceals a factor that depends on the number of automorphisms of H.) Thus the natural candidate
for a threshold is p = n~"/¢. [Note that the ratio v/e is just 2/d, where d is the average degree of H.]

Call H balanced if the average degree of H is greater than or equal to the average degree of any induced
subgraph of H. [Thus the 4-clique H = K, is balanced; but if we add a fifth vertex connected to just one of
the original four vertices, then the resulting graph is not balanced.]

Theorem 6.8 If H is balanced, then p = n~"/¢ is a threshold for containment of H.

Exercise: Prove this theorem by mimicking the proof of Theorem 6.6.

For a general graph H, the theorem still holds but the ratio v/e now has to be minimized over all induced
subgraphs of H. (Proof: another exercise.)

Theorem 6.8 was one of several threshold results proved in the seminal paper of Erdés and Rényi [ER60],
which laid the foundations of the theory of random graphs. The more general version (for non-balanced H)
is due to Bollobés [B81].

6.4 Behavior at the threshold

What happens when p = ¢ - p(n) for some constant ¢ ? The definition of threshold doesn’t say anything
about this. We will now briefly discuss the behavior at the threshold for some particular properties.
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6.4.1 4-Cliques

Fact 6.9 Forp = cn~2/3, let X be the number of 4-cliques. Then X is asymptotically Poisson with parameter
8 /24.

(As a somewhat technically involved exercise, you are invited to prove this Fact. You need to show that,

for each fixed k, Pr[X = k| approaches e*A’,\TI;, where \ = %) This implies that Pr[X > 0] — 1 —e~</24,
Observe that as ¢ varies, the probability that G contains a 4-clique varies smoothly. This is therefore called

a “coarse threshold”.

6.4.2 Connected components

Fact 6.10 p(n) = n~! is a threshold for the property @ = “G has a connected component of size 6(n)”.
Moreover, for p(n) = ¢/n, the size of the largest component in G is almost surely

O(logn) ifec<1;
On?3) ifc=1;
O(n) if ¢ > 1.

(By “almost surely” we mean “with probability tending to 1 as n — o0”.) Since the behavior depends in
detail on the value of the constant ¢ there must be some activity in the lower order terms. It turns out that,
if we set p(n) =n~ + ¢ -n~*? then we get smooth behavior as ¢ varies. The “width of the transition” is
thus 6(n~*/3). This is an example of a “sharp threshold.”

6.4.3 Monotone properties

A graph property is said to be monotone increasing if adding edges to G cannot destroy the property (i.e.,
whenever G has the property, so does any graph obtained by adding edges to G). Monotone decreasing
properties are defined analogously. A host of natural graph properties (including all the ones discussed
above) are monotone. The following theorem of Bollobds and Thomason [BT86] confirms that the threshold
phenomenon is ubiquitous:

Theorem 6.11 Fuvery monotone increasing (or decreasing) graph property has a threshold.

6.5 Random graphs with constant edge probability

In our examples so far, the threshold values p(n) were pretty small (e.g., n=2/3, n=1). It is natural to look
at the case p = 1/2, i.e., the random graph model G, 1,3, in which every graph on n vertices has equal
probability. For example, we know that almost every graph in this model has a k-clique for any fixed k, since
the threshold is n=*/(5) = p=2/(k=1) < 1/2. This is a special case of the following more general theorem
(which we will not prove) about properties of almost every graph:

Theorem 6.12 (Fagin [F76]) For any first order property Q, and for any constant p € (0, 1), either almost
every G € Gy, has Q or almost every G € Gy, , does not have Q.
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(The term “almost every” here means “with probability tending to 1 as n — o0”.) Informally, we can define
a first order property as one expressible as a finite sentence, using V, 3, V, A, =, variables denoting vertices of
the graph, and the relation ~ denoting adjacency in the graph.

Example 6.13 “G has diameter 27 is a first order property as it can be expressed as
VavyIz((z =y) vV (z ~y) V(& ~ 2) A (2 ~y))).
Fact 6.14 The following properties hold for almost every G in G, 1/2:

o (G has diameter 2.
e (G does not have diameter 1.
e (G is Hamiltonian.

o (G is connected.

The first two of these follow from the above theorem about first-order properties. The last two are not
first-order properties and require separate proofs.

6.6 The clique number of a random graph

The clique number of a graph G is the size of a largest clique in G. Determining the clique number of a graph
is a famous NP-hard problem. However, the following theorem says that the clique number of a random
graph is known rather precisely:

Theorem 6.15 For G € G, , for any constant p € (0,1), the cliqgue number of G is almost surely ~
2logy /,(n).

In particular, when p = 1/2 the maximum clique size is almost surely ~ 2log, n. We will see how to prove
this theorem in the next lecture.

In fact, even more is known:

Theorem 6.16 (Bollobas and Erd8s [BE76], Matula [M76]) For p = 1/2, the maximum clique in
almost every graph G has size either k(n) or k(n) + 1, for some integer k(n).

In other words, the clique number of almost every graph is specified within two adjacent integers!
As an example, for n = 1000 and p = 1/2, the largest clique size is 15 or 16 with high probability.

Challenge: Find a polynomial-time algorithm that outputs a clique of size > (1 + €)log, n with high
probability in almost every graph G. This is a major open problem in average-case complexity. The folklore
says that all known algorithms find a clique of size no larger than (and usually as large as) (1 — €) log, n.
Even though we know that G almost certainly contains a clique of size 2log, n, we don’t know how to find
one more than half this size!
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