
CS271 Randomness & Computation Fall 2022

Lecture 22: November 8
Instructor: Alistair Sinclair

Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They
may be distributed outside this class only with the permission of the Instructor.

In this lecture we return to the discussion of the probabilistic method and introduce a powerful tool known
as the Lovász Local Lemma (first published by Erdös and Lovász [EL75]). To demonstrate the usefulness of
the lemma, we explore its application to random k-SAT, packet routing in networks, and graph coloring.

22.1 The Lovász Local Lemma

Recall from earlier lectures that the probabilistic method provides a useful non-constructive strategy for
proving the existence (or non-existence) of an object that satisfies some prescribed property. Generally, the
argument involves selecting an object randomly from a specific set and demonstrating that it has the desired
property with strictly positive probability. This in turn proves the existence of at least one such object. In
most of the examples we have seen, the desired property holds not just with positive probability but actually
with quite large probability, even with probability approaching 1 as n →∞. This in turn often leads to an
efficient randomized algorithm for constructing such an object: we just select an object at random and with
high probability it has the desired property.

For some problems, it is natural to describe the selected object in terms of a set of “bad” events {A1, A2, ..., An},
whose occurrences render the object undesirable, while the desired property is simply the avoidance of all
events in the set. In such scenarios, the existence of a non-trivial lower bound on Pr[

∧n
i=1 ¬Ai] is of par-

ticular interest. Clearly, if all “bad” events are independent, and if the probability of each of them satisfies
Pr [Ai] ≤ p, then the probability that none of the events {Ai} occur is simply the product

Pr

[
n∧

i=1

¬Ai

]
=

n∏
i=1

Pr[¬Ai] ≥ (1− p)n, (22.1)

which is strictly positive (provided only that the trivial condition p < 1 holds).

Informally, the Lovász Local Lemma can be viewed as extending the above result to a more general setting,
in which we allow limited dependencies among the events in question. In light of (22.1), the resulting
probability that no bad event occurs will typically be exponentially small. Thus the Local Lemma tends to
apply in situations where we are looking for a “needle in a haystack,” so does not immediately lead to an
efficient randomized algorithm. (However, see below and the next lecture for more recent developments on
constructive versions of the Lemma.)

Definition 22.1 An event A is said to be mutually independent of a set of events {Bi} if for any subset β
of events or their complements contained in {Bi}, we have Pr[A | β] = Pr[A].

Lemma 22.2 [Lovász Local Lemma]. Let A1, . . . , An be a set of “bad” events with Pr [Ai] ≤ p < 1 such
that each event Ai is mutually independent of all but at most d of the other Aj. If e · p(d + 1) ≤ 1 then

Pr

[
n∧

i=1

¬Ai

]
> 0.
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Note: Often the Lovász Local Lemma is stated with the condition e · p(d + 1) ≤ 1 replaced by 4pd ≤ 1,
which is slightly weaker for d ≤ 2 but asymptotically stronger. In fact, the constant e above is asymptotically
optimal.

We will provide a formal proof of this important lemma shortly, but first we will examine one simple
application to the satisfiability properties of Boolean formulas.

22.1.1 Existence of a satisfying k-SAT assignment

Claim 22.3 Any instance ϕ of k-SAT in which no variable appears in more than 2k−2

k clauses is satisfiable.

As a quick example, the above claim implies that for k = 10, any formula in which no variable appears in
more than 25 clauses is satisfiable. Note that there is no restriction at all on the total number of clauses!

Proof: Suppose we have an arbitrary instance ϕ of k-SAT consisting of n clauses. Let’s pick a truth
assignment to the variables of ϕ uniformly at random and let Ai denote the event “clause i is not satisfied”.

Noting that exactly one of the 2k possible assignments fails to satisfy any particular clause, we have

∀i ∈ {1, 2, ..., n} : Pr[Ai] = 2−k ≡ p.

Furthermore, we observe that each event Ai is independent of all other events Aj except those corresponding
to clauses j that share at least one variable with clause i. Let d denote the largest possible number of such
clauses. Clearly, since each variable is assumed to appear in at most 2k−2

k clauses, we have

d = k
2k−2

k
= 2k−2.

The condition p ≤ 1
4d in the Local Lemma now becomes 1

2k = p ≤ 1
4d = 1

4·2k−2 , which clearly holds. Hence
the Lemma implies that

Pr

[
n∧

i=1

¬Ai

]
> 0.

Since the probability of picking an assignment that satisfies every clause in ϕ is non-zero, we can invoke the
standard argument of the probabilistic method and infer the existence of a satisfying truth assignment.

In the above proof, we claimed that each Ai is independent of all Aj for which clauses i and j do not share
any variables. This is an instance of the following general principle that is frequently useful in applications
of the Local Lemma:

Proposition 22.4 [Mutual Independence Principle]: Suppose that Z1, . . . , Zm is an underlying se-
quence of independent events, and suppose that each event Ai is completely determined by some subset
Si ⊂ {Z1, . . . , Zm}. If Si ∩ Sj = ∅ for j = j1, . . . , jk, then Ai is mutually independent of {Aj1 , . . . , Ajk

}.

In our above application, the underlying independent events Z` are the assignments to the variables.

22.1.2 Proof of the Lovász Local Lemma

The main ingredient in the proof is the following claim.
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Claim 22.5 For any subset S ( {1, . . . , n}, and any i ∈ {1, . . . , n}, Pr
[
Ai

∣∣∣ ∧j∈S Aj

]
≤ 1

d+1 .

Proof: We proceed by induction on m = |S|. The base case, m = 0, holds since Pr [Ai] ≤ p ≤ 1
e(d+1) < 1

d+1 .
For the inductive step (m > 0) we first partition S into the two sets S1 = S ∩ Di and S2 = S\S1, where
Di is the “dependency set” of Ai, i.e., the set of at most d indices j such that Ai is independent of all Aj

except for those in this set. Then we may write

Pr

Ai

∣∣∣∣∣∣
∧
j∈S

Aj

 =
Pr
[
Ai ∧

∧
j∈S1

Aj

∣∣ ∧
k∈S2

Ak

]
Pr
[∧

j∈S1
Aj

∣∣ ∧
k∈S2

Ak

] (22.2)

We can upper bound the numerator of (22.2) by Pr
[
Ai

∣∣ ∧
k∈S2

Ak

]
, which by mutual independence equals

Pr [Ai].

Denoting S1 = {j1, . . . , jr} (and assuming w.l.o.g. that r > 0, since otherwise S1 = ∅ and the denominator
is 1), we can expand the denominator of (22.2) by the chain rule as follows:

Pr

 ∧
j∈S1

Aj

∣∣∣∣∣ ∧
k∈S2

Ak

 =
r∏

l=1

(
1− Pr

[
Ajl

∣∣∣∣∣
(∧

l′<l

Ajl′

)
∧

( ∧
k∈S2

Ak

)])

≥
(

1− 1
d + 1

)d

>
1
e
.

The first inequality here follows by applying the induction hypothesis to each of the factors, noting that the
number of events in the conjunction in the conditioning is always less than m.

Finally, combining the bounds on the numerator and denominator of (22.2), we get

Pr

Ai

∣∣∣∣∣∣
∧
j∈S

Aj

 ≤ Pr [Ai]
1/e

≤ e · p ≤ 1
d + 1

.

This completes the induction proof.

We now apply the claim to prove the Lovász Local Lemma.

Proof of Lemma 22.2: Expand Pr
[∧n

i=1 Ai

]
by the chain rule and then apply Claim 22.5 to each factor

of the resulting product:

Pr

[
n∧

i=1

Ai

]
=

n∏
i=1

1− Pr

Ai

∣∣∣∣∣∣
∧
j<i

Aj


≥

(
1− 1

d + 1

)n

> 0.

Note: As noted earlier, the Lovász Local Lemma (as evidenced by the above proof) is in general non-
constructive. However, important work initiated by Beck [B91], and leading up to a dramatic breakthrough
by Moser and Tardos [Mos09, MT10] provides algorithmic versions of the Local Lemma in quite general
circumstances. Indeed, there are now randomized search algorithms inspired by the Lemma that require
even weaker conditions than the Lemma itself! We will discuss some of these developments in the next
lecture.
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22.2 Packet Routing in Networks

As a rather sophisticated application of the Lovász Local Lemma, we look at packet routing in networks.

Consider an undirected graph G and a set of packets i, each of which is given a path Pi from some source si

to some destination ti. Our goal is to establish a schedule that minimizes the time for all packets to travel
along their paths from their sources to their destinations. We assume a synchronous model, in which each
edge can carry at most one packet (in each direction) in one time step. We will also assume that the paths
are edge-simple, i.e., no path repeats the same edge.

Since the paths are already specified, the only freedom we have in the schedule is the queueing mechanism:
i.e., when multiple packets wish to move along an edge, we can choose which one goes first. Contrast the
problem we studied earlier (Lecture 13), where we needed to choose the paths themselves. In the present
scenario, we assume nothing about the structure of the network.

It is natural to measure the quality of the schedule in terms of two key parameters. Define the congestion c
to be the maximum number of paths Pi that go through any one (directed) edge, and the dilation d to be
the maximum length of any path Pi. It is obvious that we can route all the packets in c · d time because
each packet traverses at most d edges and can be held up for at most c− 1 time steps at each edge. Also, a
trivial lower bound on the time required is max{c, d}.

The following remarkable theorem says that this lower bound is achievable (up to constant factors).

Theorem 22.6 [LMR94] Assuming that all paths are edge-simple, there is a schedule that achieves time
O(c + d) with constant size queues.

Note: We will actually prove the slightly weaker time bound of O
(
(c + d)2O(log?(c+d))

)
, with queue sizes

(log d)2O(log?(c+d)). This brings out all the main ideas and avoids some technical complications. Also, log? n
is essentially a constant for all practical purposes (e.g., log? n ≤ 5 for all n ≤ 265536).

Proof: We assume w.l.o.g. that c = d. Consider first a (presumably infeasible) schedule in which each
packet i waits time Zi at its source, and then proceeds directly along Pi without ever waiting. Here the
initial delays Zi are chosen independently and uniformly in {1, 2, . . . , αd}, where α > 1 is a constant to be
chosen later. Clearly, the total length of this (infeasible) schedule is at most (1 + α)d.

Claim 22.7 If we divide this schedule into “frames” of length ln d, we get a decomposition into subproblems
whose objectives are to get each packet from its initial position in that frame to its final position in that
frame. With positive probability, every edge in every subproblem has congestion at most ln c.

We will prove the Claim shortly using the Local Lemma. For now, assuming the Claim we can divide the
problem into (1+α)d/ ln d subproblems, each with congestion and dilation ln c and ln d respectively, and solve
them recursively. We can then stitch the subschedules together to get an overall schedule. Eventually, we
will reach subproblems with constant congestion and dilation, for which we can clearly construct a feasible
schedule. Since this base schedule is feasible, the final schedule we end up with after stitching back up
through the levels of the recursion will also be feasible.

The number of levels of recursion is at most O(log?(c+ d)) and at each level the schedule length is increased
by a constant factor 1 + α. Thus the total length of the schedule is d2O(log?(c+d)), as claimed. By combining
the facts:

• if a packet is queued in the beginning of a frame, it has to move before that frame ends;
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• it takes at most (log d)2O(log?(c+d)) time to clear a frame; and

• for any k, if every packet in a queue moves in k time steps, then the queue cannot contain more than
k packets,

we see that the queue size is at most (log d)2O(log?(c+d)).

It remains to go back and prove the key Claim above.

Proof of Claim 22.7: For each edge e define the “bad” event Ae = “e has congestion greater than ln c
in some frame”. Notice that Ae can depend only on those Ae′ for which edges e, e′ have a common packet
passing through them, and since at most c packets pass through e, and each of these packets passes through
at most d edges in total, the dependency set of Ae has size at most cd = d2.

Computing an upper bound on the probabilities Pr [Ae] is a little trickier. Each edge e is visited by at most
c packets. However, the length of a frame is ln d, so since each packet suffers a random delay in the range
[1, . . . , αd], the probability of any given packet visiting e during a specific frame is only ln d

αd . Since the delays
on different packets are independent, the congestion of an edge is distributed as Bin(c, ln d

αd ). Thus taking a
union bound over frames (of which there are less than (1 + α)d), we get

Pr [Ae] ≤ (1 + α)d× Pr [edge e has congestion greater than ln c in a fixed frame]

≤ (1 + α)d× Pr
[
Bin

(
c,

ln d

αd

)
> ln c

]
.

Applying the Chernoff bound in the form Pr [X ≥ (1 + β)µ] ≤ exp(−µ((1+β) ln(1+β)−β)) with µ = (ln d)/α
and 1 + β = (ln c)/µ = α, and recalling that c = d, we get

Pr [Ae] ≤ (1 + α)d× exp
(
− ln d

α
(α lnα− (α− 1))

)
≤ (1 + α)d2−ln α.

The condition of the Lovász Local Lemma (Lemma 22.2) requires that this probability be less than 1/e(d2+1)
(recall from above that the size of the dependency sets here is at most d2). But we can ensure this (for large
enough d) by taking α large enough.

This completes the proof of the Claim.

Note: As is typical in applications of the Local Lemma, the probability of producing a good schedule via
the above randomized construction is tiny. However, a (not necessarily practical) algorithmic version of the
above result was proved subsequently by Leighton, Maggs and Richá [LMR99].

22.3 The General Lovász Local Lemma

In some settings it is useful to have a more flexible version of the Local Lemma, which allows large differences
in the probabilities of the “bad” events. We state this next.

Lemma 22.8 [General Lovász Local Lemma]. Let Ai, . . . , An be a set of “bad” events, and let Di ⊆
{A1, . . . , An} denote the “dependency set” of Ai (i.e., Ai is mutually independent of all events not in Di).
If there exists a set of real numbers x1, . . . , xn ∈ [0, 1) such that Pr [Ai] ≤ xi

∏
j∈Di

(1 − xj) for all i, then
Pr
[∧n

i=1 Ai

]
≥
∏n

i=1(1− xi) > 0.

Exercise: It is left as a straightforward (and strongly recommended) exercise to prove this general version
by mimicking the proof of Lemma 22.2. Also, you should check that applying Lemma 22.8 with xi = 1/(d+1)
yields Lemma 22.2 as a special case.
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Corollary 22.9 [Asymmetric Lovász Local Lemma]. In the same scenario as in Lemma 22.8, if∑
j∈Di

Pr [Aj ] ≤ 1/4 for all i then Pr
[∧n

i=1 Ai

]
≥
∏n

i=1 (1− 2Pr [Ai]) > 0.

Proof: The result follows easily by applying Lemma 22.8 with xi = 2Pr [Ai]. Exercise: check this!

22.3.1 An Application: Frugal Graph Coloring

We give an application in which the extra flexibility of the Asymmetric Local Lemma, in which the event
probabilities Pr [Ai] can differ a lot, is crucial

Definition 22.10 A proper coloring of a graph G is called β-frugal if no color appears more than β times
in the neighborhood of any vertex of G.

Theorem 22.11 [HMR97] If graph G has maximum degree ∆ ≥ ββ then G has a β-frugal coloring with
16∆1+1/β colors.

Proof: A 1-frugal coloring of G is equivalent to a proper coloring of G2, which has maximum degree ∆2.
By Brooks’ Theorem [B41], G2 can be colored with ∆2 + 1 colors and so the theorem holds for β = 1.

For β ≥ 2, pick a random (not necessarily proper) coloring of G with q = 16∆1+1/β colors. We will use the
Local Lemma to show that this coloring is proper and β-frugal with positive probability.

We distinguish events which could prevent our coloring from being proper (Type-1 events) and β-frugal
(Type-2 events):

Type-1 events: for each {u, v} in the edge-set of G, Auv = “u, v have the same color”.

Type-2 events: for each set of β + 1 neighbors u1, . . . , uβ+1 of some vertex, Bu1,...,uβ+1 = “u1, . . . , uβ+1 have
the same color.”

For any k, the probability of k vertices having the same color is clearly 1/qk−1. Thus

Pr [Auv] = 1/q;
Pr
[
Bu1,...,uβ+1

]
= 1/qβ .

Using the Mutual Independence Principle, we can see that each Type-1 event depends on at most 2∆ Type-1
events and 2∆

(
∆
β

)
Type-2 events, while each Type-2 event depends on at most (β + 1)∆ Type-1 events and

(β + 1)∆
(
∆
β

)
Type-2 events (see Figure 22.1). Note that, since β ≥ 2, the size of the dependency set of a

Type-2 event (dependencies of both Type-1 and Type-2) dominates that of a Type-1 event, so it will suffice
to sum the probabilities over the dependency set of a Type-2 event.

We now appeal to the Asymmetric Local Lemma (Corollary 22.9). With slight abuse of notation we con-
catenate all of the events Auv and Bu1,...,uβ+1 into a sequence of events {Ai}. Then we have, for any i,∑

j∈Di

Pr [Aj ] ≤
[
(β + 1)∆× 1

q

]
+
[
(β + 1)∆

(
∆
β

)
× 1

qβ

]

≤ (β + 1)∆
q

+
(β + 1)∆β+1

β!qβ
bounding

(
∆
β

)
by

∆β+1

β!

=
(β + 1)
16∆1/β

+
β + 1
β!16β

expanding q

≤ 1/4 provided ∆ > ββ and β > 2
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Figure 22.1: Dependency sets of Type-2 events in the proof of Theorem 22.11: the Type-2 event
Bu1,...,uβ+1 can depend on another Type-2 event Bv1,...,vβ+1 or a Type-1 event Auv only if {u1, . . . , uβ+1} ∩
{v1, . . . , vβ+1} 6= ∅ or {u1, . . . , uβ+1} ∩ {u, v} 6= ∅, respectively. The dashed curves define the the sets of
vertices {u1, . . . , uβ+1}, {v1, . . . , vβ+1} and {u, v}.

Thus Pr [the random q-coloring is β-frugal] = Pr
[∧

Ai

]
> 0 and so there exists a β-frugal q-coloring of G.

Note: It is instructive to attempt to prove the above result using the basic form of the Local Lemma
(Lemma 22.2). In that case we would have to use the uniform bound Pr [Ai] ≤ p = 1/q, together with the
dependency set size of at least d ≥ (β+1)∆β+1

β! . But now for ∆ = ββ we get that pd � 1, so there is no hope
of applying the lemma. The reason the asymmetric version works is that, although some of the events in the
dependency sets have large probability, most have small probability.
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