
CS271 Randomness & Computation Fall 2022

Lecture 12: October 4
Instructor: Alistair Sinclair

Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They
may be distributed outside this class only with the permission of the Instructor.

12.1 The Permanent

In this lecture we focus on a simple algorithm to approximate the permanent of a random matrix with 0, 1
entries. We start with the definition of the permanent of a matrix.

Definition 12.1 Let A be an n×n matrix such that each entry of A is either 0 or 1. The permanent of A,
denoted by per(A), is defined as

per(A) =
∑

σ

n∏
i=1

ai,σ(i),

where σ ranges over the permutations on {1, 2, . . . , n}.

Note the similarity between per(A) and det(A), which is defined as the same sum but with each term weighted
by sgn(σ). However, while we can compute the determinant easily in polynomial time (say, by Gaussian
elimination), computing the permanent is apparently very hard.

Computing the permanent of A is in fact equivalent to counting the number of perfect matchings in the
bipartite graph GA, which has n vertices on each side, and an edge connecting i to j iff aij = 1. It is an easy
exercise to check that perfect matchings of GA are in 1-1 correspondence with non-zero terms of per(A).

While the problem of checking the existence of a perfect matching in a bipartite graph is easily solved
in polynomial time by (e.g.) network flow techniques, counting the number of perfect matchings is #P -
complete [Val79]. Hence computing per(A) for a matrix A with 0, 1 entries is also #P -complete, which
means that (under standard complexity theoretic assumptions) it is not possible to obtain a polynomial time
algorithm to compute the permanent. The focus has therefore shifted to efficient approximation algorithms
with precise performance guarantees. In this lecture we will present a fully polynomial randomized approx-
imation scheme for the permanent of a randomly chosen matrix (i.e., the algorithm works well with high
probability over the choice of the input matrix, but may behave arbitrarily badly on a vanishing fraction of
inputs).

12.2 An FPRAS for the Permanent of Random 0-1 Matrices

The goal of the lecture is to design a fully polynomial randomized approximation scheme (fpras) for almost
all 0-1 matrices A. In other words, we will devise an algorithm that takes as input an n × n 0-1 matrix A
and an accuracy parameter ε and outputs a random variable XA such that

Pr[(1− ε)per(A) ≤ XA ≤ (1 + ε)per(A)] ≥ 3
4
,

12-1

12-2 Lecture 12: October 4

for almost all A (the meaning of “almost all” will be made precise later). Recall that “fully polynomial”
requires that the run-time of the algorithm is polynomial in both 1

ε and the size of the input, n. Note that
the constant 3

4 can be increased to 1− δ using only O(log δ−1) trials by the median technique.

We remark that there is an fpras for the permanent of an arbitrary 0-1 matrix [JSV04], which we may see
later in the course. Here, however, we focus on a much simpler algorithm, due to Rasmussen [R94], that
works for almost all random matrices.

The algorithm is as follows:

Input: An n× n matrix A with 0-1 entries.
Output: A random variable XA.

if n = 0, then XA = 1
else let WA = {j : a1j = 1} be the set of 1’s in the first row

Pick j from WA u.a.r.
output |WA| ×XA1,j

,
where A1,j is the (1, j)-minor of A (i.e., row 1 and column j removed from A)

The above algorithm is essentially an iterative averaging scheme. Since per(A) =
∑

j a1,j · per(A1,j), the
algorithm works by assuming that the sub-permanent per(A1,j) is the same for all j such that a1,j is 1.

We first argue that XA is an unbiased estimator of per(A) for any matrix A, i.e., that E[XA] = per(A). To
see this, we can view the algorithm as a computation tree, where the root of the tree is the matrix A, with
branches at the root to each minor A1,j with a1j = 1 (thus the root has degree |WA|); the computation tree
is continued recursively from each child of the root. Every path from the root to a leaf l (at depth n) of
the computation corresponds to a distinct (generalized) diagonal of A such that every entry of the diagonal
is 1. Hence the number of leaves of the tree is exactly per(A). Now observe that the algorithm reaches a
particular leaf l with probability Pr[l] =

∏n
k=1

1
|WAk

| , where the WAk
’s are the sets along the path from the

root to l; and, when it reaches l, it outputs precisely the reciprocal of this probability. Hence we have

E[XA] =
∑

leaves l

Pr[l]× 1
Pr[l]

= # of leaves = per(A).

Remark 12.2 The above argument is based on a technique of Knuth from the 1970’s. The idea is that,
given an arbitrary tree, to produce an unbiased estimator for the number of leaves of the tree it suffices to
navigate the tree top-down while keeping track of the probabilities along the path from the root to the leaf,
and output the reciprocal of the path probability.

Proving that the algorithm works for most matrices amounts to showing that the random variable XA is
sufficiently concentrated about its mean; this is done by bounding the second moment.

Variance estimate. We first present an example that shows that the variance of the random variable XA

can be very bad in the worst case. Consider an upper triangular matrix A with 1’s above the diagonal and
0’s below it, as shown below:

A =

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
0 0 0 1

Lecture 12: October 4 12-3

There is only one generalized diagonal (the principal diagonal) all of whose entries are 1. Hence per(A) = 1,
and there is only one leaf in the computation tree of the algorithm. The single computation path to this leaf
is chosen with probability 1

n! , which gives

XA =
{

n! with prob 1
n!

0 otherwise

Hence the estimator is almost surely zero, and we would need a huge number of trials (on the order of n!)
to get a decent estimate of per(A).

For the rest of this lecture we focus on random matrices, and show that the above algorithm works with
only polynomially many trials with high probability over the choice of matrix.

Definition 12.3 Let An denote the probability space of n× n matrices such that every entry of the matrix
is 0 or 1 with probability 1

2 independently.

We will prove the following result.

Theorem 12.4 Let A ∈ An and let ω(n) be any function such that ω(n) →∞. Then

PrAn

[
E[X2

A]
(E[XA])2

> n · ω(n)
]
→ 0, as n →∞.

Let us first interpret the result of Theorem 12.4. We can choose a function ω(n) that goes to infinity as slowly
as we want. Since XA is an unbiased estimator of per(A), the number of trials of the algorithm required
to ε-approximate per(A) is O(E[X2

A]
ε2·(E[XA])2), and the theorem says that with high probability this quantity is

bounded by O(n·ω(n)
ε2).

Corollary 12.5 Given A ∈ An, the above algorithm repeated O(n·ω(n)
ε2) times yields a fpras for per(A) with

probability tending to 1 over the choice of A.

Run-time analysis. The outer loop of the algorithm runs n times, and each iteration of the loop takes
O(n) time; hence each trial takes O(n2) time. Combining this with the bound on the number of trials gives
an fpras for per(A) that runs in time O(n3·ω(n)

ε2).

The proof of Theorem 12.4 will follow from a sequence of lemmas. We begin with the following claim:

Claim 12.6 The following assertions hold:

1. EAn [E[XA]] = EAn [per(A)] = n!
2n .

2. EAn [E[X2
A]] = 1

4n

∏n
i=1(i

2 + i).

Proof: An n× n matrix has n! diagonals, and for each diagonal the probability that all entries are 1 is 1
2n .

The first equation then follows by linearity of expectation.

We now present an alternative argument that proves both parts simultaneously. We may write

EAn
[per(A)] = E

[
n∏

i=1

Wi

]
,

12-4 Lecture 12: October 4

where the Wi’s are independent and each Wi ∼ Bin(i, 1
2), i.e. is distributed as the # of heads in i tosses of

a fair coin. Since

E(Wi) =
i

2
and E(W 2

i) =
i2 + i

4
,

we have

EAn
[E[XA]] =

n∏
i=1

E[Wi] (by independence)

=
n∏

i=1

i

2
=

n!
2n

.

For part 2, a straightforward induction (Exercise!) shows that EAn
[E[X2

A]] =
∏n

i=1 E[W 2
i], from which we

get

EAn [E[X2
A]] =

n∏
i=1

E[W 2
i]

=
n∏

i=1

i2 + i

4
=

1
4n

n∏
i=1

(i2 + i).

Corollary 12.7
EAn

[E[X2
A]]

(EAn
[E[XA]])2

=
1
4n

∏n
i=1(i

2 + i)
1
4n

∏n
i=1 i2

=
n∏

i=1

i + 1
i

= n + 1.

This Corollary shows that Theorem 12.4 holds “in expectation.” To turn this into a high-probability state-
ment, we need to appeal to first and second moments (the first moment for the numerator and the second
moment for the denominator). The second moment part is supplied by the following lemma. To simplify
notation we will write µ(n) = EAn

[per(A)].

Lemma 12.8 [Main Lemma] For any ω(n) →∞, we have PrAn
[per(A) < µ(n)

ω(n)] → 0 as n →∞.

We first prove Theorem 12.4 assuming Lemma 12.8.

Proof:(of Theorem 12.4). We handle the numerator and denominator of the expression in Theorem 12.4
as follows:

• Numerator. Markov’s inequality gives

PrAn

[
E[X2

A] ≥ ω(n) · EAn
[E[X2

A]]
]
≤ 1

ω(n)
→ 0, as n →∞.

• Denominator. Lemma 12.8 gives

PrAn

[
1

(E[XA])2
>

ω(n)2

(EAn
[E[XA]])2

]
→ 0.

The above line is a restatement of Lemma 12.8 with per(A) = E[XA] and taking reciprocals and
squaring.

Lecture 12: October 4 12-5

Putting these together we have

PrAn

[
E[X2

A]
(E[XA])2

> ω(n)3 · EAn [X2
A]

(EAn
[E[XA]])2

]
= PrAn

[
E[X2

A]
(E[XA])2

> ω(n)3 · (n + 1)
]
→ 0,

where for the equality we used Corollary 12.7. Note that since ω(n) is an arbitrary function that goes to
infinity, the same is true of ω(n)3. (Alternatively, we may replace ω(n) in the above argument by ω(n)1/3.)

Structure of proof of Main Lemma 12.8. We will consider generating a random matrix A ∈ An by first
picking a number m according to the binomial distribution Bin(n2, 1

2), then distributing m 1’s in the matrix
uniformly at random, setting all other entries to 0.

Definition 12.9 We denote by An,m the probability space of random n× n, 0-1 matrices where the number
of 1’s in the matrix is exactly m and the 1’s are distributed uniformly at random in the matrix.

The reason we do this is that, for typical values of m (note that m will be sharply concentrated about its
mean, n2

2), per(A) will be sharply concentrated about its mean in the model An,m. This fact is expressed in
the following lemma.

Lemma 12.10 Suppose m = m(n) satisfies m2

n3 →∞. Then for A ∈ An,m we have

1. EAn,m [per(A)] = n! · (m
n2)n · exp

{
− n2

2m + 1
2 + O(n3

m2)
}
.

2. EAn,m [per(A)2]

(EAn,m [per(A)])2 = 1 + O(n3

m2).

Observe that from part 2 of Lemma 12.10 it follows that given m2

n3 → ∞, we have VarAn,m [per(A)]

(EAn,m [per(A)])2 → 0, as
n →∞. Hence the permanent is tightly concentrated in An,m.

We now assume Lemma 12.10 and prove Lemma 12.8; to complete the entire analysis, we will then just need
to go back and prove Lemma 12.10.

Proof of Lemma 12.8: We consider the following procedure to generate A ∈ An:

• Pick M from Bin(n2, 1
2);

• pick A ∈ An,M u.a.r.

Let us denote by ω′ = ω′(n) an arbitrary function of n that goes to ∞ with n. We have the following
inequalities:

• Pr[M < n2

2 − ω′n] → 0; this follows by Chebyshev’s inequality or the Central Limit Theorem because
the standard deviation of M is Θ(n), so a deviation of ω′n is more than a constant times the s.d.

• For any m = m(n) such that m2

n3 →∞, we have

PrAn,m
[per(A) < 1

2EAn,m
[per(A)]] <

4VarAn,m [per(A)]

(EAn,m [per(A)])2 (by Chebyshev’s inequality)
→ 0 (by part 2 of Lemma 12.10).

12-6 Lecture 12: October 4

Since both of the above events happen with probability tending to 0, we will assume henceforth that neither
of them happens: i.e., we assume that M ≥ n2

2 − ω′ · n and per(A) ≥ 1
2EAn,M

[per(A)]. Recall that
µ(n) = EAn

[per(A)], and define µ(n, m) = EAn,m
[per(A)]. We then have from part 1 of Lemma 12.10

per(A)
µ(n)

≥
1
2 · µ(n, n2

2 − ω′ · n)
µ(n)

=
1
2
· 2n

n!
· n! ·

(
n2

2 − ω′ · n
n2

)n

· exp
{
− n2

n2 − 2ω′ · n
+

1
2

+ O(
1
n

)
}

≥ 1
2
·
(

1− 2ω′

n

)n

exp
{
−1 + O

(
1
n

)}
∼ 1

2
· exp{−2ω′ − 1}.

Finally, given an arbitrary function ω(n) such that ω(n) → ∞ as n → ∞, we choose ω′(n) = 1
2 · log ω(n)

2e .
Observe that ω′(n) →∞ as n →∞, and from the above analysis we have per(A)

µ(n) ≥ 1
2 ·exp{−2ω′−1} = 1/ω(n),

as required to prove Lemma 12.8.

Finally, we go back and prove Lemma 12.10.

Proof of Lemma 12.10: The argument to prove Lemma 12.10 is graph-theoretic. Namely, we work with
the interpretation of per(A) (for an n×n 0-1 matrix A) as the number of perfect matchings in the associated
graph GA, as explained earlier. Given A ∈ An,m, the graph GA is a bipartite graph with n vertices on each
side and exactly m edges distributed uniformly. Let H be a fixed labeled sub-graph of GA with t ≤ 2n edges.
Let q(t) = Pr[H is subgraph of GA]. Then

q(t) =

(
n2−t
m−t

)(
n2

m

) .

To see this, note that
(
n2−t
m−t

)
is the number of possible ways of choosing GA under the constraint that H is

a subgraph of GA (i.e., t edges are fixed), and
(
n2

m

)
is the number of possible ways of choosing m out of n2

edges (i.e., choosing GA). Hence we have

q(t) =
m · (m− 1) · . . . (m− t + 1)
n2 · (n2 − 1) · . . . (n2 − t + 1)

=
(m

n2

)t

exp
{
− t2

2
· (1

m
− 1

n2
) + O

(
n3

m2

)}
for t ≤ 2n. (12.1)

Exercise: Fill in the details of the above calculation. [Hint: Take logs, and use the approximation ln(1−x) =
−x + O(x2).]

Hence we have

EAn,m
[per(A)] =

∑
{H : H a perfect matching }

Pr[H is subgraph of GA]

= n! · q(n)

= n! ·
(m

n2

)n

· exp
{
− n2

2m
+

1
2

+ O

(
n3

m2

)}
. (12.2)

This completes part 1 of Lemma 12.10.

We now prove part 2 of the Lemma. We have

EAn,m
[per(A)2] =

∑
H,H′

Pr[H,H ′ are subgraphs of GA] ,

where H,H ′ range over all pairs of perfect matchings in GA. We first calculate the number of perfect
matchings H and H ′ that overlap in exactly k edges. The expression for this is derived as follows: there are

Lecture 12: October 4 12-7

n! perfect matchings H, and given a perfect matching H the number of perfect matchings H ′ that overlap
with H in exactly k edges is

(
n
k

)
×D(n− k), where D(n− k) denotes the number of derangements of (n− k)

items (i.e., the number of permutations σ such that σ(x) 6= x for all x). Hence the number of perfect
matching pairs H,H ′ that have exactly k overlapping edges is given by n! ·

(
n
k

)
·D(n− k).

It is well known that D(n) ∼ n!
e (and the very small error in this estimate can be absorbed into our other

error terms). Observe also that if H and H ′ overlap in exactly k edges, the union of H and H ′ has exactly
2n− k ≤ 2n edges. Hence we have

EAn,m
[per(A)2] =

n∑
k=0

n! ·
(

n

k

)
·D(n− k) · q(2n− k)

...

= n! ·
(m

n2

)2n

· exp
{
−αn + O

(
n3

m2

)}
·

n∑
k=0

(
n

k

)
·D(n− k) ·

(
eαn2

m

)k

,

where α = 2n(1
m− 1

n2). [Exercise: Perform the algebraic manipulations to fill in the dots above, by plugging
in the estimate (12.1) for q(2n− k).]

We now compute the sum in the above expression:

n∑
k=0

(
n

k

)
·D(n− k) ·

(
eαn2

m

)k

∼
n∑

k=0

(
n

k

)
· (n− k)!

e
·
(

eαn2

m

)k

=
n!
e
·

n∑
k=0

1
k!

(
eαn2

m

)k

≤ n!
e
·
∞∑

k=0

1
k!

(
eαn2

m

)k

= n! · exp
{

eαn2

m
− 1
}

.

Since eα = 1 + O(n
m), the above expression simplifies to n! · exp{n2

m − 1 + O(n3

m2)}. Plugging this into the
expression for EAn,m

[per(A)2] we get

EAn,m
[per(A)2] = (n!)2 ·

(m

n2

)2n

· exp
{
−n2

m
+ 1 + O

(
n3

m2

)}
. (12.3)

Finally, we divide expression (12.3) for EAn,m
[per(A)2] by the square of expression (12.2) for (EAn,m

[per(A)])
and obtain the result claimed in part 2 of Lemma 12.10. [Exercise: check this!]

Exercise: Here is a trivial approximation algorithm for the permanent of a random matrix. On input A ∈
An, let m be the number of 1’s in A and simply output the approximation to µ(n, m) (the expected value
of per(A)) given in part 1 of Lemma 12.10. Why is this significantly weaker than a fpras for per(A)?

References

[JSV04] M. Jerrum, A. Sinclair and E. Vigoda “A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries,” Journal of the ACM 51 (2004), pp. 671–
697.

12-8 Lecture 12: October 4

[R94] L. E. Rasmussen, “Approximating the Permanent: a Simple Approach,” Random Structures
& Algorithms 5 (1994), pp. 349–361.

[Val79] L.G. Valiant, “The complexity of computing the permanent,” Theoretical Computer Science 8
(1979), pp. 189–201.

