11.1 Network Reliability

Consider a connected undirected graph G with n vertices and m edges, where each edge has some probability p of failing. What is the probability that G becomes disconnected under random, independent edge failures? This can also be viewed as a counting problem, except that each item now has an associated weight: in particular, we want to compute the sum of the weights of all disconnected subgraphs of G, where the weight of a subgraph with t fewer edges than G is $p^t(1-p)^{m-t}$. We can also generalize the problem to allow a different failure probability for each edge.

Input: A connected graph $G=(V,E)$, and edge failure probabilities p_e for each edge $e \in E$.

Goal: Compute $p_{\text{fail}} = \Pr[\text{G becomes disconnected when each edge } e \text{ fails independently with probability } p_e]$.

This problem is $\#P$-hard, even in the special case $p_e = p = 1/2 \quad \forall e \in E$ [PB83].

Definition 11.1 A fully polynomial randomized approximation scheme (FPRAS) on input $(G, \{p_e\}, \varepsilon)$ outputs a value Z such that $\Pr[(1-\varepsilon)p_{\text{fail}} \leq Z \leq (1+\varepsilon)p_{\text{fail}}] \geq \frac{3}{4}$, and runs in time polynomial in $(n, \frac{1}{\varepsilon})$.

Theorem 11.2 (Karger [Kar95]) There exists a FPRAS for network reliability (for any set of edge-dependent failure probabilities $\{p_e\}_{e \in E}$).

We begin with a high-level sketch of the algorithm. For simplicity, we will restrict attention to the case that all edge probabilities are equal, i.e., $p_e = p \quad \forall e \in E$. Let c be the size of a minimum cut in G. Then clearly we have $p_{\text{fail}} \geq p^c$, since if all of the edges of any cut fail, G becomes disconnected. Then, we can make the following observations:

1. If $p^c \geq \frac{1}{n^2}$, then a naive Monte Carlo approach works. Namely, suppose we simply pick a random subgraph of G by removing each edge independently with probability p, and set $X_i = 1$ if the subgraph is disconnected, and $X_i = 0$ otherwise. Then X_i is an unbiased estimator of $\mu = p_{\text{fail}}$, and by the Unbiased Estimator theorem, we only need $O\left(\frac{1}{\varepsilon^2}\right) = O(n^4\varepsilon^{-2})$ trials to achieve the desired error bound.

2. Otherwise, if $p^c < \frac{1}{n^2}$, then, for $\alpha = 2 + \frac{1}{2}\log_2(2/\varepsilon)$, we will prove that

$$\Pr[\text{some cut of size } \geq \alpha c \text{ fails}] \leq \varepsilon p^c \leq \varepsilon p_{\text{fail}}.$$

Therefore, we can effectively ignore cuts of size $\geq \alpha c$, by absorbing the resulting error into ε. (More precisely, we will get an estimate within $(1 \pm \varepsilon)^2$, which is no worse than $(1 \pm 3\varepsilon)$; so we just replace ε by 3ε.)
3. We say a cut is an α-minimum cut if it has size $\leq \alpha c$. Then we have the following claim and corollary:

Claim 11.3 There are at most $n^{2\alpha} = \frac{2n^4}{\varepsilon}$ α-minimum cuts, and these cuts can be enumerated in time polynomial in $(n, \frac{1}{\varepsilon})$.

Corollary 11.4 The probability that an α-minimum cut fails can be expressed as the solution to a probabilistic DNF problem as follows:

$$
\Pr[\text{some α-minimum cut fails}] = \Pr\left[\bigvee_{i=1}^{t} (x_{e_{i1}} \land x_{e_{i2}} \land \ldots \land x_{e_{ir}})\right],
$$

where the OR is over all $t \leq \frac{2n^4}{\varepsilon}$ α-minimum cuts, $\{e_{i1}, \ldots, e_{ir}\}$ are the edges of the ith cut and

$$
x_{e_j} = \begin{cases}
T & \text{with probability } p; \\
F & \text{otherwise.}
\end{cases}
$$

Moreover, this formula can be constructed in time polynomial in $(n, \frac{1}{\varepsilon})$.

With the above corollary, we can apply the Karp/Luby algorithm for probabilistic DNF from the previous lecture to get a FPRAS for computing the probability that an α-minimum cut fails. In light of items 1 and 2, this gives us an FPRAS for Network Reliability.

It remains to prove the key Claim 11.3, and also the statement made in item 2 above (which in fact also follows from Claim 11.3). We prove the claim in the next subsection.

11.2 Proof of Claim 11.3

We first describe a randomized algorithm (also due to Karger [Kar93]) for finding a minimum cut in a connected graph $G = (V, E)$. (Note that this algorithm can be used to find the value of c that is required in step 1 of the above algorithm.) We’ll call this algorithm $RMinCut$. From it, we will easily obtain an upper bound on the number of minimum cuts in any graph.

```plaintext
while |V| > 2 do
  Choose an edge $\{u, v\} \in E$ uniformly at random.
  Merge $u$ and $v$, maintaining all edges from either of them to other vertices.
Return the remaining cut.
```

Note that the algorithm actually maintains a multigraph, since during a merge operation multiple edges may be created. When a random edge is picked, we view multiple edges as distinct.

Theorem 11.5 Let $C \subset E$ be any minimum cut. Then $\Pr[RMinCut \text{ returns } C] \geq \binom{n}{2}^{-1}$.

Proof: Say that C is hit at stage i if one of its edges $\{u, v\}$ is selected and collapsed at stage i in $RMinCut$. Observe that no vertex of G can have fewer than c neighbors; otherwise the cut disconnecting just that vertex would have size less than c. Hence, $|E(G)| \geq \frac{nc}{2}$ and

$$
\Pr[C \text{ is hit in round 1}] \leq \frac{c}{nc/2} = \frac{2}{n}.
$$
Similarly,
\[
\Pr[C \text{ is hit in round } i + 1 \mid C \text{ survives rounds } 1, \ldots, i] \leq \frac{c}{(n - i)c/2} = \frac{2}{n - i}.
\]

Therefore,
\[
\Pr[C \text{ survives all rounds}] \geq (1 - \frac{2}{n}) \times (1 - \frac{2}{n - 1}) \times \ldots \times (1 - \frac{2}{3})
\]
\[
= \frac{n - 2}{n} \times \frac{n - 3}{n - 1} \times \frac{n - 4}{n - 2} \times \ldots \times \frac{1}{3}
\]
\[
= \frac{2}{n(n - 1)} = \left(\frac{n}{2}\right)^{-1}.
\]

Note that \(O(n^2)\) trials of \(RMinCut\) are required to be confident that we have found a minimum cut. An obvious implementation takes time \(O(n^2)\) per trial, for an overall running time of \(O(n^4)\).

Exercise: Devise a cleverer, recursive implementation of \(RMinCut\) which achieves \(O(n^2 \log n)\) overall running time.

One may compare this with the approach of finding an \(s\)-\(t\) minimum cut for any fixed \(s\) and all \(t\) using a network flow algorithm, which naively would take overall time about \(O(n^4 \log n)\) (for \(O(n)\) flow computations each of cost \(O(n^3 \log n)\)).

For our purposes, a more important consequence of the above is the following

Corollary 11.6 For any graph \(G\), the number of minimum cuts is at most \(\left(\frac{n}{2}\right)\).

This follows immediately from the fact that each distinct minimum cut is output with probability at least \((\frac{n}{2})^{-1}\), and these are disjoint events.

Now let us focus on \(\alpha\)-minimum cuts.

Corollary 11.7 The number of \(\alpha\)-minimum cuts is at most \(n^{2\alpha}\) in any graph \(G\).

Proof: We know that by definition, an \(\alpha\)-minimum cut \(C\) has size at most \(\alpha c\). As in the proof of Theorem 11.5, we have
\[
\Pr[C \text{ is hit in round 1}] \leq \frac{\alpha c}{nc/2} = \frac{2\alpha}{n}
\]
and
\[
\Pr[C \text{ is hit in round } i + 1 \mid C \text{ survives rounds } 1, \ldots, i] \leq \frac{\alpha c}{(n - i)c/2} = \frac{2\alpha}{n - i},
\]
so that
\[
\Pr[C \text{ survives until } 2\alpha \text{ vertices remain}] \geq \left(\frac{n}{2\alpha}\right)^{-1}.
\]
(It is necessary to employ \(\Gamma\) functions to make sense of \(\left(\frac{n}{2\alpha}\right)\) if \(2\alpha\) is not an integer, but we won’t dwell on this detail here.)

Now define a process \(K\) as follows:

- apply the \(RMinCut\) routine until \(2\alpha\) vertices remain
- pick a random cut in the remaining multigraph
Then we have
\[
\Pr[C \text{ survives } K] = \Pr[C \text{ survives until } 2\alpha \text{ vertices remain}] \times \Pr[C \text{ survives random cut}]
\geq \frac{1}{\binom{n}{2\alpha}} \times \frac{1}{2^{2\alpha - 1}}
\geq \frac{(2\alpha)!}{2^{2\alpha}} \cdot \frac{1}{n^{2\alpha}} \geq \frac{1}{n^{2\alpha}},
\]
which proves the corollary.

This is the first part of the Claim 11.3 of the algorithm. It remains only to enumerate the \(\alpha\)-minimum cuts of \(G\). This is achieved via the coupon-collector paradigm: if there are \(n\) bins and balls are thrown independently and uniformly, how many balls must be thrown to have every bin contain at least one ball? We have
\[
\Pr[\text{at least } (n \log n + an) \text{ balls must be thrown}] \to 1 - e^{-e^{-a}}
\]
as \(n \to \infty\) for any fixed \(a\), so with very high probability \(O(n \log n)\) balls suffice. Thus, if we repeatedly run process \(K\) above, after \(O(n^{2\alpha} \log(2\alpha)) = O(n^{4}(\log n + \log \varepsilon^{-1})/\varepsilon)\) attempts we will have enumerated all \(\alpha\)-minimum cuts with high probability. (The small probability of failure can be absorbed into the error probability of our FPRAS.)

11.3 Proof of item 2

To complete the analysis of Karger’s algorithm, we need to prove item 2 in the high-level sketch given earlier. For convenience, let \(\delta > 0\) be such that \(p_c = n^{-((4+\delta)\alpha)}\). Let \(C_1, C_2, \ldots\) be an enumeration of the cuts of size at least \(\alpha c\), and for each \(i\), let \(c_i = |C_i|\). We will assume that \(c_1 \leq c_2 \leq c_3 \leq \ldots\). Let us divide the analysis into two parts.

(i) We’ll consider the first \(n^{2\alpha}\) cuts, then the remainder in sequence. We can also assume, without loss of generality, that there are at least \(n^{2\alpha}\) cuts; otherwise, the argument below gives an even better bound.

Note that for each \(i \leq n^{2\alpha}\), \(\Pr[\text{all edges in } C_i \text{ fail}] \leq p^c_c\). Hence,
\[
\Pr[\bigvee_{i=1}^{n^{2\alpha}} C_i \text{ fails}] \leq n^{2\alpha} p^c_c = n^{2\alpha} n^{-(4+\delta)\alpha} = n^{-(2+\delta)\alpha}.
\]
This takes care of the initial sequence of cuts.

(ii) For any \(\beta > 0\), we know that there are no more than \(n^{2\beta}\) cuts of size at most \(\beta c\), by Corollary 11.7; that is, \(c_{n^{2\beta}} \geq \beta c\). Writing \(k = n^{2\beta}\), this translates to \(c_k \geq \frac{\delta}{2} \log_n k\), so
\[
p^c_c \leq p^{\frac{\delta}{2} \log_n k} = n^{-(4+\delta)(\log_n k)/2} = k^{-(2+\delta/2)}.
\]
Thus,
\[
\Pr[\bigvee_{i > n^{2\alpha}} C_i \text{ fails}] \leq \sum_{k > n^{2\alpha}} k^{-(2+\delta/2)} \leq \int_{n^{2\alpha}}^{\infty} x^{-(2+\delta/2)} dx = \frac{1}{1+\delta/2} n^{-2\alpha(1+\delta/2)} < n^{-(2+\delta)\alpha}.
\]
Putting (i) and (ii) together, we get
\[
\Pr[\text{some cut of size } \geq \alpha c \text{ fails}] \leq 2n^{-(2+\delta)\alpha}.
\]
Now plugging our choice of $\alpha = 2 + \frac{1}{2}\log_{n}(2/\varepsilon)$, this yields

$$\Pr[\text{some cut of size } \geq \alpha c \text{ fails}] \leq 2n^{-((2+\delta)(2+\frac{1}{2}\log_{n}(2/\varepsilon)))} \leq \varepsilon n^{-(4+\delta)} = \varepsilon p^c.$$

This concludes the argument for item 2 and the analysis of the algorithm claimed in Theorem 11.2.

Remarks:

1. A different, theoretically more efficient algorithm for the same problem, incorporating some of the same ideas but dispensing with the expensive step of cut enumeration, was recently obtained by Karger [Kar16].

2. This algorithm can be derandomized in every aspect except Part 1, the naive Monte Carlo routine. It is possible to derandomize both the enumeration of cuts and the Karp-Luby algorithm in polynomial time, but it is not known how or if the simple Monte Carlo method can be derandomized efficiently.

3. Note that this FPRAS does not provide a good estimate of $p_{success} = (1 - p_{fail})$, which is interesting when the probability p of edge failure is large (a less important scenario in the Network Reliability context, but mathematically interesting). Very recently, Guo and Jerrum have provided a FPRAS for $p_{success}$, using quite different methods [GJ19]. We may discuss this algorithm later in the course.

References

