
CS–174 Combinatorics & Discrete Probability, Spring 2023

Midterm Exam Solutions
7:00-9:00pm, 7 March

Read these instructions carefully

1. Write your name and SID number on the front page, and your SID number on every page!

2. This is a closed book exam, but you are allowed one single-sided cheat sheet and blank scratch paper.
No phones, calculators or other electronic equipment.

3. The exam consists of 11 questions. The first 7 questions are multiple choice; the remaining 4 require
written answers.

4. Approximate point totals for each question part are indicated in the margin. The maximum total
number of points is 83.

5. Multiple choice questions: Answer these by filling in the circle adjacent to the correct answer. You
should be able to answer all of these from memory, by inspection, or with a small calculation. There
is no penalty for incorrect answers. There is no partial credit for these questions.

6. Other questions: Write your answers to these in the spaces provided below them. None of these
questions requires a very long answer, so you should have enough space–if not you are writing too
much. Always show your working for these questions!

7. The questions vary in difficulty: if you get stuck on some part of a question, leave it and go on to the
next one. Point totals and space provided are not necessarily an indication of difficulty.

Your First Name: Your Last Name:

Your SID Number:

[exam starts on next page]
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1. Let u be an arbitrary 0-1 vector of length n, and v be a uniformly random 0-1 vector of length n.

(a) The probability that u + v = 0n (with all arithmetic performed mod 2) is 3pts

© 1
n

; y 1
2n

; © 1
2
; © n− 1

n
; © not determined by the given data

(b) Assuming that u 6= 0n, the probability that u · v = 0 (dot product, mod 2) is 3pts

© 1
n

; © 1
2n

; y 1
2
; © n− 1

n
; © not determined by the given data

2. The vertices of a graph G = (V,E) are colored independently and uniformly at random with one of five
colors. Let X denote the number of edges that have the same color on both endpoints.

(a) The expectation of X is 3pts

© |V |
5

; y |E|
5

; © |E|2

25
; © |E|

10
; © not determined by the given data

(b) The variance of X is 3pts

© |E|2

25
; ©

2
√
|E|
5

; © 4|E|2

25
; y 4|E|

25
; © not determined by the given data

3. You roll a fair, six-sided die until you roll six for the first time; let X denote the number of rolls (including 3pts
the roll that came up six). You then roll the same die X more times; let Y denote the sum of the numbers
obtained on these X rolls. The expectation of Y is

y 21; © 7
2
; © 42; © 49

4
; © none of the above

4. Let G be a random graph in the Gn,p model. An independent set in G is a set of vertices that have no edges 3pts
between them. The expected number of independent sets of size k in G is

© nk(1−p)k; ©
(

n

k

)
(1−p)k; y (

n

k

)
(1−p)(

k
2); ©

(
n

k

)
p(k

2); © none of the above

5. For α ≥ 1, an α-minimum cut in a graph G is a cut whose size is at most α times the size of a minimum cut. 3pts
A generalization of Karger’s min-cut algorithm discussed in class guarantees that, in any n-vertex graph G,
every α-minimum cut will be output with probability at least n−2α. This implies that the number of distinct
α-minimum cuts in G is

© at least n2α; © at least nα; © at most n−2α; © at most nα; y at most n2α
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Figure 1: Binary tree for problem 6.

6. Consider the following set of seven 0-1-valued random variables on a binary tree as shown in Figure 1. The
root variable X1 is uniform over {0, 1}. All other nodes have exactly one parent. Conditioned on the value
of the parent node, each other random variable has the same value as their parent with probability 1− p and
the flipped value with probability p. Both children of a single parent are sampled independently.

(a) The probability Pr[X4 = 1] is 3pts

© (1− p)2 + p2; © (1− p)2 + p2 + 2p(1− p); © (1− p)2 + p2

2
; y 1

2
; © 1

4

(b) The probability Pr[X2 = 1|X4 = 1 ∩X5 = 1] is 3pts

© p2

p2 + (1− p)2
; y (1− p)2

p2 + (1− p)2
; © p(1− p)

p2 + (1− p)2
; © 1

2
; © 1

4

(c) The probability Pr[X1 = 1|
⋂7

i=2 Xi = 1] is 3pts

y (1− p)2

p2 + (1− p)2
; © (1− p)6

p6 + (1− p)6
; © p6

p6 + (1− p)6
; © 1

2
; © 1

4

7. Suppose we have a bag of M&Ms, which has 6 different colors and 10 candies for each color (60 candies
total). Suppose we take 5 candies uniformly at random from the bag without replacement.

(a) The probability of getting exactly two different colors in the sample is 3pts

©
5∑

i=0

(
6
2

)(
10
i

)(
10
5−i

)(
60
5

) ; y 4∑
i=1

(
6
2

)(
10
i

)(
10
5−i

)(
60
5

) ; © 1
35

; ©
5∏

i=1

20− i + 1
60− i + 1

(b) The expected number of different colors in the sample is 3pts

© 6
(
1− (

5
6
)5

)
; © 5

(
1−

(
50
5

)(
60
5

))
; © 5

(
1− (

5
6
)5

)
; y 6

(
1−

(
50
5

)(
60
5

))

[continued overleaf]
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8. Biased Permutations

Suppose we want to generate a random permutation of the integers {1, . . . , n}, with a bias towards keeping
elements in sorted order. This may be relevant for modeling the results of a sporting event, for example. We
explore one scheme to achieve this.

(a) Argue that the following algorithm samples a uniformly random permutation of {1, . . . , n}: 1pt

• For each i ∈ {1, . . . , n} in parallel, flip a fair coin to generate a sequence of random bits until all
integers i have a unique bit string

• Output the integers from smallest bit string to largest

We claim that, conditioned on the multiset of bit strings obtained, the assignment of the strings to the integers
is uniformly random; this follows from the way the strings are generated. Thus, if all bit strings are distinct,
we are assigning a set of n distinct values to the integers u.a.r. Sorting those values gives a total order, which
must therefore be a random permutation. (This argument can be made more formal using the concept of
“exchangeability” of random variables, but we did not expect a detailed justification.)

(b) Show that, with high probability, the number of coins we need to toss for each i is at most c log n, for 3pts
some constant c. Also, provide a lower bound on c. [HINT: Recall that, in the birthday problem, if there
are m people and n � m possible birthdays, the probability that no two people have the same birthday is
approximately exp(−m2

2n ).]

Identifying bit strings of length t with possible birthdays and integers with people, the process is a birthday
problem with n people and 2t birthdays. From the hint, the probability that each person has a unique birthday
is ∼ exp(− n2

2t+1 ). Now if we take t = c log2 n, this becomes exp(−1
2n2−c), which tends to 1 as n → ∞ if

we take the constant c to be any value greater than 2. Thus with high probability c log2 n bits suffice for any
c > 2.

[continued overleaf]



Your SID Number: Page 5

(c) Now suppose that we bias the permutations by making the coin flips non-uniform, as follows: the 5pts
random bits for integer i are 1 with probability i

n+1 , and 0 with probability 1 − i
n+1 , for i ∈ {1, . . . , n}.

Show that the expected rank of the integer 1 in the resulting biased permutation is given by

E[rank(1)] = 1 +
n∑

j=2

n + 1− j

n + 1− j + jn
. (1)

(Here we use the convention that the rank of the first element in the permutation is 1.) [HINT: Introduce
indicator random variables Xj for the event that integer j comes before integer 1 in the permutation. You
may need the formula for the sum of a geometric series:

∑∞
k=0 rk = 1

1−r for |r| < 1.]

Following the hint, we may write the r.v. rank(1) = 1 +
∑n

j=2 Xj , where Xj is the indicator of the event
that integer j comes before 1 in the permutation. By linearity of expectation,

E[rank(1)] = 1 +
n∑

j=2
E[Xj ], (2)

so it suffices to compute E[Xj ] = Pr[Xj = 1] for each j. Now Xj = 1 if and only if the first non-equal bits
assigned to elements 1 and j are 1 and 0, respectively. Summing over the number k of equal bits assigned
before this happens, we see that

Pr[Xj = 1] =
∞∑

k=0

pkq = q
1−p , (3)

where p is the probability that 1 and j are assigned the same bit, and q is the probability that 1 is assigned 1
and j is assigned 0. Now by examining the probabilities in the process, we see that

p =
{(

1− 1
n + 1

)
×

(
1− j

n + 1
)}

+
{ 1

n + 1
× j

n + 1

}
=

n(n + 1− j) + j

(n + 1)2
=

n2 + n− jn + j

(n + 1)2
;

q =
1

n + 1
×

(
1− j

n + 1
)

=
n + 1− j

(n + 1)2
.

Noting that 1− p = n+1−j+jn
(n+1)2

, and plugging these values into (3), we get that E[Xj ] = n+1−j
n+1−j+jn . Finally,

plugging this into (2) gives the desired result.

(d) It turns out that the sum in equation (1) is O(log n). How does the expected rank of integer 1 in the 2pts
biased scheme compare to its expected rank under a uniform permutation?

Plugging in the given value O(log n) for the sum in (1), we get that E[rank(1)] = O(log n) for the biased
permutation. On the other hand, the expected rank of 1 in a uniform permutation is clearly n+1

2 , which is
Θ(n) and thus much larger.

(e) Show that the number of coin flips in the biased scheme until integers 1 and 2 have distinct bit strings is 3pts
at least c′n with high probability, for some constant c′ (which you do not need to specify).

Re-using our calculation of 1 − p from part (c), the probability that 1 and 2 are assigned different bits is
n+1−2+2n

(n+1)2
= 3n−1

(n+1)2
. Thus the number of flips until their bit strings differ is a geometric r.v. with parameter

3n−1
(n+1)2

< 3
n . The probability that such a r.v. is less than c′n is (by a simple union bound) at most c′n× 3

n =
3c′. Now by taking c′ > 0 a very small constant, we can make this as small as we like. [Note: Technically
we usually use the phrase “with high probability” to mean a probability that tends to 1 as n → ∞. Under
this definition, we would have to choose c′ so that 3c′ → 0, meaning that c′ itself has to tend to 0. Since our
wording here was a bit loose, we did not deduct points for alternative interpretations here.]

[continued overleaf]
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9. Data Privacy

A social club wants to accurately estimate the average income of its n members by asking them to complete
a one-question survey. However, they assume that members will be reluctant to share their exact incomes
with the club. An intern, who recently took CS174 at UC Berkeley,7uh suggests the following scheme:
each member independently picks an integer R uniformly at random from the range [−r, r] (i.e., the set
{−r, . . . , 0, . . . , r}) (for some r to be determined) and responds to the survey with the value I + R, where
I is their actual income (in whole thousands of dollars). Note that the value submitted could possibly be
negative. The club will then use the average of these submitted values as its estimate of the true average
income.

For 1 ≤ j ≤ n, define the random variable Xj = Ij + Rj , where Ij is the actual income of member j, and
Rj the random integer chosen by j. Also, denote the club’s estimate by X̂ = 1

n

∑n
j=1 Xj , and the actual

average income by µ = 1
n

∑n
j=1 Ij .

(a) Show that E[X̂] = µ. 1pt

By linearity of expectation we have E[X̂] = 1
n

∑
j E[Xj ] = 1

n

∑
j(E[Ij ] + E[Rj ]) = µ + 0 = µ, where we

have used the facts that Ij is a constant and that E[Rj ] = 0.

(b) Show that Var[Xj ] = r(r+1)
3 . [HINT: Recall that

∑k
i=1 i2 = k(k+1)(2k+1)

6 .] 3pts

Note first that Var[Xj ] = Var[Rj ] since Ij is a constant. Also, Var[Rj ] = E[R2
j ]− E[Rj ]2 = E[R2

j ]. Then

we have Var[Rj ] = E[R2
j ] = 1

2r+1

∑r
i=−r i2 = 2

2r+1

∑r
i=1 i2 = 2

2r+1
r(r+1)(2r+1)

6 = r(r+1)
3 .

(c) Calculate Var[X̂]. 2pts

Var[X̂] = Var[ 1
n

∑
j Xj ] = 1

n2

∑
j Var[Xj ], since the Xj are independent (because the Rj are). Plugging

in the value of Var[Xj ] from part (b), we get Var[X̂] = 1
n2 · n · r(r+1)

3 = r(r+1)
3n . [Note that the variance

decreases with n and increases with r, as we would intuitively expect. Also, the variance is zero if r = 0.

[continued overleaf]
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(d) Now suppose there are n = 1000 members and the club wants to ensure that its estimate satisfies 3pts
Pr[|X̂ − µ| ≥ 2] ≤ 0.001. (I.e., the estimate should be within ±2K of the actual average income with
probability at least 0.999.) Use Chebyshev’s inequality to show that taking r = 3 in the above scheme
satisfies this requirement.

By Chebyshev’s inequality and part (b), Pr[|X̂ − µ| ≥ 2] ≤ Var[X̂]
4 = r(r+1)

12n . We want this to be at most
1

1000 , which entails r(r + 1) ≤ 12. Clearly the value r = 3 satisfies this condition.

(e) The club feels that its members will not be willing to reveal their true incomes to within ±3K. Show 4pts
using a Hoeffding bound that the requirement in part (d) is in fact satisfied by taking r = 16, meaning
that members only need to reveal their salaries within ±16K. [HINTS: Recall that the Hoeffding bound for
independent r.v.’s Zi each in the range [ai, bi], takes the form Pr[|

∑
i Zi−M | ≥ λ] ≤ 2 exp{− 2λ2P

i(bi−ai)2
},

where M =
∑

i E[Zi]. You may use the fact that 2000/ ln(2000) > 256 = 162.]

Observe first that Pr[|X̂ − µ| ≥ 2] = Pr[|
∑

j Xj − nµ| ≥ 2n] = Pr[|
∑

j Rj − 0| ≥ 2n], where
0 =

∑
j E[Rj ]. Since the Rj are independent and take values in the range [−r, r], we can use the Hoeffding

bound to deduce that

Pr[|X̂ − µ| ≥ 2] = Pr[|
∑

j Rj − 0| ≥ 2n] ≤ 2 exp{− 8n2

4r2n
} = 2 exp{−2n

r2 }.

Now in order for this to be at most 1
1000 , we require that r2 ≤ 2000/ ln(2000). Since 2000/ ln(2000) > 162,

we conclude that taking r = 16 satisfies the condition.

[continued overleaf]
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10. Safety Monitoring

The number of radioactive emissions per second from a certain piece of material in equilibrium follows a
Poisson distribution with parameter λ0 = 10. The material becomes unstable if the emission rate per second
jumps to λ1 = 14. (You may assume that these are the only two possible emission rates.) You have a
monitoring device that measures the number of emissions each second. Your goal is to sound an alarm when
the material becomes unstable. To do this, you decide to sound the alarm when you observe at least 12t
emissions over a period of t seconds, where the value of t is to be computed below.

In this problem, you will use the following form of the Chernoff bound for a Poisson random variable Z
with parameter λ:

Pr[Z ≥ λ + x] ≤ exp
{
− x2

2(λ + x)

}
; Pr[Z ≤ λ− x] ≤ exp

{
− x2

2(λ + x)

}
.

(a) Let X denote the number of emissions observed in t seconds when the current Poisson parameter is λ. 1pt
What is the distribution of X?

Poisson with parameter λt (sum of t independent Poisson(λ) r.v.’s).

(b) Suppose that the material becomes unstable. Compute a value of t that ensures you will sound the alarm 3pts
after at most t seconds with probability at least 1 − ε. [HINT: Use the second (lower tail) Chernoff bound
above, with suitable values for λ and x (both of which will be multiples of t).]

Since the material is unstable, the number of emissions X in t seconds is a Poisson(14t) r.v. We want to
compute the tail probability

Pr[X < 12t] = Pr[X < (λ1 − 2)t] ≤ exp{− 4t2

2(16t)} = exp(−t/8),

where we have used the given Chernoff bound on the lower tail with λ = λ1t = 14t and x = 2t. In order to
make this at most the desired value ε, we require t ≥ 8 ln(ε−1).

[continued overleaf]
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(c) Suppose that the material does not become unstable. Compute a value of t that ensures you will not 3pts
sound the alarm after t seconds with probability at least 1 − ε. [HINT: Use the first (upper tail) Chernoff
bound, again with suitable (different) values for λ and x.]

Now let Y be the number of emissions in t seconds for the stable material, which is a Poisson r.v. with
parameter λ0t. In this scenario we use the Chernoff bound on the upper tail, with λ = λ0t = 10t and
x = 2t, to get

Pr[Y > 12t] = Pr[Y > (λ0 + 2)t] ≤ exp{− 4t2

2(12t)} = exp(−t/6).

In order to make this at most the desired value ε, we require t ≥ 6 ln(ε−1).

(d) Deduce from parts (b) and (c) a value of t to use in your test that ensures the probability of any kind of 1pt
error (i.e., failing to sound the alarm when you should, or sounding it when you should not) is at most 2ε.

By a union bound, it suffices to make both probabilities in parts (b) and (c) at most ε. This is ensured by
taking the larger of the two required values of t, namely t ≥ 8 ln(ε−1).

[continued overleaf]
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11. Poisson Approximation

Suppose 12 balls are thrown randomly into 3 bins. Let E be the event that the bin loads are (6, 4, 2) respec-
tively.

(a) Compute the probability of E under the Poisson approximation. State clearly the properties of the 4pts
approximation that you are using.

Under the Poisson approximation, the bin loads are each independent Poisson(4) r.v.’s, where 4 = 12
3 is the

average bin load. Thus we have

Prapprox[E ] = e−4 46

6!
× e−4 44

4!
× e−4 42

2!
= e−12 412

6!4!2!
.

(b) Compute the exact probability of E . You should leave your answer in terms of factorials and powers. 4pts

We can compute the exact probability of E by counting the number of outcomes of the ball tosses that result
in the given loads. This count is 12!

6!4!2! , since if we think of placing the balls by picking a random permutation
of all 12 balls and putting the first 6 in bin 1, the next 4 in bin 2 and the last 2 in bin 3, then we count each of
the given bin load vectors exactly 6!4!2! times (the order of balls in each bin is irrelevant). Since there are
312 total placements of the balls, we get

Prexact[E ] =
12!

3126!4!2!
.

(c) The ratio of your answer to part (a) to your answer to part (b) is equal to the probability that a Poisson 2pts
r.v. with some parameter λ takes on some value k. What are the values of λ and k? Explain your answer by
referring to properties of the Poisson approximation you learned in class. [NOTE: You do not have to do a
calculation to answer this part!]

According to the properties of the Poisson approximation learned in class, we have

Prexact[E ] = Prapprox[E | E0] =
Prapprox[E ]
Prapprox[E0]

, (4)

where E0 is the event (in the independent Poisson model) that the total number of balls in the bins is 12. (Note
that Prapprox[E | E0] = Prapprox[E ]/ Prapprox[E0] since E ⊂ E0.) Therefore the ratio of the probabilities
in parts (a) and (b) should be exactly Prapprox[E0], which in turn is the probability that a Poisson r.v. with
parameter 12 takes the value 12. [Note that when you divide the numerical values of the solutions to parts (a)
and (b) you do indeed get exactly e−12 1212

12! , as expected—but you were not supposed to do this.]

(d) Now let F be the event that the first bin receives exactly six balls. Would the ratio of the probability 2pts
ofF under the Poisson approximation to the exact probability ofF be the same as in part (c)? Briefly justify
your answer.

No. The reason is that equation (4) in part (c) still holds with E replaced by F (and E0 as before). However,
now it is not the case that Prapprox[F | E0] = Prapprox[F ]/ Prapprox[E0], because F 6⊆ E0. Rather, we have

Prexact[F ] = Prapprox[F | E0] =
Prapprox[F ∩ E0]

Prapprox[E0]
=

Prapprox[F ]× Prapprox[E0 | F ]
Prapprox[E0]

,

so the ratio is now Prapprox[E0]/ Prapprox[E0 | F ], which contains an extra factor of 1/ Prapprox[E0 | F ].
[The probability on the denominator is just the probability that bins 2 and 3 together receive 6 balls, given
that bin 1 has received 6 balls, which in turn is the probability that a Poisson(8) r.v. takes value 6.]

[The End]


