
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 9 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 34.

1. (a) To see that the chain is irreducible, we need to show that, given any two spanning trees T1, T2, there 4pts
exists a path of transitions that takes the chain from T1 to T2. To see this we use induction on the size
of the symmetric difference T1 ⊕ T2. The base case is when |T1 ⊕ T2| = 2, i.e., each tree contains
exactly one edge not in the other. Call these edges e1 ∈ T1 \ T2 and e2 ∈ T2 \ T1, respectively. To get
from T1 to T2, we add e2 to T1, thus creating a cycle; we claim that e1 must lie on this cycle, since T2

can’t contain the whole cycle (it’s a tree) and so the only edge not in T2 must lie on it. Therefore we
can remove e1 to arrive at T2, as required. For the inductive step, suppose |T1 ⊕ T2| = 2s with s > 1,
so that each tree contains exactly s edges not in the other. Pick an arbitrary edge e ∈ T2 \T1 and add e
to T1; then by the same argument as above, the resulting cycle must contain an edge, say f , that is in
T1 \ T2. So we can remove f to get a new tree T ′

1. But notice that |T ′
1 ⊕ T2| = 2(s − 1), so by the

induction hypothesis there is a path from T ′
1 to T2, thus completing the proof.

To see that the chain is aperiodic, it is enough to observe that it has self-loops: namely, whenever we
add an edge e to T , we can always remove e again to get back to the same tree T .
Finally, we need to check that the stationary distribution is uniform. But this follows since the chain
is symmetric: if a move switches edges e, f to take us from T to T ′, then switching f, e takes us
back from T ′ to T . And the transition probabilities are the same, since both are equal to 1

mc , where
m = |E| − (n − 1) is the size of the edge set E \ T and c is the number of edges in the cycle C in
T + e. (Note that the cycle in T ′ + f is also C.)

(b) We use the same transitions as in part (a), but we modify the transition probabilities as follows. We 4pts
still pick the edge e ∈ V \T u.a.r., but now for each possible edge f on the resulting cycle we move to
the tree Tf := T + e− f with probability min{1, λe

λf
}; else we do nothing. (This is the same idea as in

the Metropolis process that we discussed in class; see also MU Section 11.4.1. Note that λe
λf

is exactly
π(T ′)
π(T ) .) The resulting chain is obviously still ergodic (for the same reasons as in part (a)). To check that
the new stationary distribution is indeed π, we check that the chain is reversible w.r.t. π, i.e., we check
that the transition probabilities P (·, ·) satisfy the detailed balance conditions

π(T )P (T, T ′) = π(T ′)P (T ′, T ) ∀T, T ′. (1)

To see this, consider the transition T → T ′ = Tf = T +e−f , and assume w.l.o.g. that λe ≤ λf . Then
by definition P (T, T ′) = 1

mc ×
λe
λf

and P (T ′, T ) = 1
mc × 1, where m = |E| − (n − 1) and c is the

length of the common cycle in T + e and T ′ + f . Hence P (T,T ′)
P (T ′,T ) = λe

λf
= π(T ′)

π(T ) for all adjacent trees
T, T ′, as required in equation (1). (For all non-adjacent T, T ′, both sides of (1) are zero.) Since the
chain is ergodic and reversible w.r.t. π, as we saw in class π must be the unique stationary distribution.

2. Suppose we have an algorithm A satisfying the simpler condition, and suppose we are given inputs (x, ε, δ) 5pts
for the fpras. Following the hint, we run A with inputs (x, ε) independently some number t times (to be
determined) and let Z denote the median of the outputs of A. We claim that taking t = O(log δ−1) suffices



to ensure that Z satisfies the requirements of an fpras. To see this, call an output ofA “good” if it falls in the
range [(1 − ε)f(x), (1 + ε)f(x)]. Note that each output of A is good with probability at least 3

4 , and these
events are mutually independent. The key observation is that the final output Z must be good unless at least
t
2 of the trials are not good. (Equivalently, if more than half the trials are good, then the median must be
good.) Thus the probability that Z is not good is bounded by the probability that, in t tosses of a biased coin
with Heads probability 3

4 , at least half the tosses come up Tails. Let X be a binomial r.v. with parameters
(t, 3

4) and mean µ = 3t
4 . We can bound the required probability using a Chernoff bound as follows:

Pr[X ≤ t

2
] = Pr[X ≤ (1− 1

3
)µ] ≤ exp{−(

(1/3)2µ
2

} = exp{− t

18
}.

Hence taking t = 18 ln δ−1 = O(log δ−1) makes this probability at most δ. The overall algorithm requires
t = O(log δ−1) trials of A, each of which runs in time poly(|x|, ε−1), so the overall running time is
polynomial in |x|, ε−1 and log δ−1, as required for an fpras.

3. (a) Clearly T is a stopping time, and the Optional Stopping Theorem (OST) holds because |Xt| is bounded 4pts
for all t. We may therefore conclude that E[XT ] = X0 = 0 for the stopping time T . Thus we have

p× E[XT | R] + (1− p)× E[XT | L] = 0,

where R,L are the events that the process exits the interval at the right- and left-hand ends, respectively.
Thus we can conclude that

p =
−E[XT | L]

E[XT | R]− E[XT | L]
. (2)

(Note that this expression is positive because E[XT | L] < 0 and E[XT | R] > 0.)
Note that we don’t know E[XT | R] exactly because when the process exits at the right-hand end it
may end up at any integer point in the range [m + 1,m + c]. (It can’t travel beyond m + c because the
jumps are bounded by c.) Hence all we can say is that m + 1 ≤ E[XT | R] ≤ m + c. And similarly,
at the left-hand end, we have −(m + c) ≤ E[XT | L] ≤ −(m + 1). Using these extremal values
in (2) to maximize (respectively, to minimize) p, it is easy to check that we get the desired bounds

m+1
2m+c+1 ≤ p ≤ m+c

2m+c+1 . (Note that these bounds are smaller and larger than 1
2 , respectively, since

c ≥ 1.)

(b) We compute 3pts

E[Zt+1 | D1, . . . , Dt] = E[(Xt + Dt+1)2 − α(t + 1) | Xt]
= X2

t − α(t + 1) + E[D2
t+1 | Xt]

≥ Zt − α + α

≥ Zt.

[In the second line here we used the fact that E[Dt+1 | Xt] = 0, and in the third line the fact that
E[D2

t+1 | Xt] ≥ α. Notice how the lower bound on the variance of the jumps E[D2
t+1 | Xt] is crucial

to ensuring the submartingale property!] Thus we have proved that (Zt) is a submartingale w.r.t. (Dt),
as required.

(c) We apply the OST to the submartingale (Zt), with the same stopping time T as before. The OST 3pts
condition E[T ] < ∞ and E[|Zt+1 − Zt| | D1, . . . , Dt] ≤ c′ for some constant c′ (depending on m) is
satisfied. (The fact that E[T ] < ∞ follows from the fact that we can write a system of linear equations
for the quantities Ej := expected time to exit the interval starting from position j. This system clearly



has a finite solution, so all Ej are finite.) The OST implies that E[ZT ] = Z0 = 0, which from the

definition of Zt immediately gives E[T ] = E[X2
T ]

α . Finally, by similar reasoning to part (a) we know

that E[X2
T ] ≤ (m + c)2, which in turn implies E[T ] ≤ (m+c)2

α , as required. [Notice again how the
lower bound α on the variance of the jumps comes into the expected time: the smaller the jumps, the
longer the process takes to exit.]

4. (a) Fix the configuration on the graph after t steps, and assume Xt /∈ {0, 2m}; let Wt, Bt denote the sets 4pts
of white and black vertices respectively. Then we may write the difference Dt+1 = Xt+1 −Xt as

Dt+1 =
∑
u∈Bt

duCu −
∑

u∈Wt

duCu, (3)

where du is the degree of vertex u, and Cu is the indicator r.v. of the event that u changes color. Note
that E[Cu] = disc(u)

2du
, where disc(u) is the number of neighbors of u with the opposite color to u. Thus

E[Dt+1|Yt] =
∑
u∈Bt

du ×
disc(u)

2du
−

∑
u∈Wt

du ×
disc(u)

2du

=
1
2

( ∑
u∈Bt

disc(u)−
∑

u∈Wt

disc(u)
)
.

But plainly the values of the two sums are equal, so E[Dt+1|Yt] = 0. Thus (Xt) is a martingale.

(b) Let T be the termination time, which is clearly a stopping time. We apply the Optional Stopping 3pts
Theorem to the martingale in part (a) with this stopping time. To check the conditions for the OST,
note that the martingale itself is bounded as |Xt| ≤ 2m. The OST now gives E[XT ] = E[X0] = X0.
So, letting p be the probability of termination in the all-white configuration, we have

p× 2m + (1− p)× 0 = X0,

and hence p = X0
2m .

(c) Since (Xt) is a martingale on the integer interval [0, 2m], we can use the same trick as in part (c) 4pts
of Q3 above (and in class) to define a submartingale Zt := X2

t − βt, where β is a lower bound on
E[D2

t+1|Yt] = Var[Dt+1|Yt]. Applying the OST to (Zt) (using the stopping time T above and the
same conditions as in Q3(c)), we get the usual conclusion that E[ZT ] ≥ Z0. This in turn implies that
E[X2

T ]− βE[T ] ≥ X2
0 , and therefore

E[T ] ≤
E[X2

T ]−X2
0

β
=

2mX0 −X2
0

β
=

X0(2m−X0)
β

≤ m2

β
, (4)

where we used part (b) to compute E[X2
T ] = p× 4m2 + (1− p)× 0 = 2mX0.

Thus to prove that E[T ] = O(m2) it’s enough to show that β is bounded below by some constant. We
actually give a precise lower bound on β. From (3) and the fact that the Cu are independent given Yt,
we have Var[Dt+1|Yt] =

∑
u Var[duCu]. And for each u we may compute

Var[duCu] =
disc(u)

2du
× d2

u −
(

disc(u)
2du

× du

)2

=
disc(u)

4
(2du − disc(u)) ≥ disc(u)du

4
.

But clearly at any time before termination we must have disc(u) ≥ 1 for at least two vertices u, so
Var[Dt+1|Yt] ≥ 1

4

∑
u disc(u)du ≥ 1

2 .
Finally, plugging β = 1

2 into (4) gives E[T ] ≤ 2X0(2m−X0) ≤ 2m2, as required.


