
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 8 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 44.

1. (a) Successively multiplying the row vector (1, 0, 0, 0) by P three times, we get the sequence of vectors 2pts
1
10(0, 3, 1, 6), 1

100(58, 16, 22, 4) and 1
1000(74, 348, 192, 386). Thus the probability of being in state 4

after 3 steps starting in state 1 is 0.386. [Note that there is no need to compute the matrix product P 3.]

A surprising number of people wrote out all paths of length 3 leading from state 1 to state 4 and
summed their probabilities. While this is correct, it shows a lack of understanding of linear algebra
and its connection with Markov chains. You should be sure that you understand how to solve this
problem using matrix-vector mulitiplication.

(b) Multiplying the row vector 1
4(1, 1, 1, 1) by P three times as in part (a), we end up with the vector 2pts

1
4000(1003, 1210, 1009, 778). Thus the probability of being in state 4 after 3 steps starting in the
uniform distribution is 778

4000 = 0.1945.

The same comment as in part (a) applies to this part.

(c) The stationary distribution is π = (0.2346, 0.3048, 0.2631, 0.1975) (to 4 decimal places), by solving 2pts
for πP = π using a linear algebra package. [Note that π is a left (row) eigenvector, not the more
commonly used right (column) eigenvector. The corresponding right eigenvector with eigenvalue 1 of
any stochastic matrix is always the uniform distribution!]

Quite a lot of students just took a large enough power of P so that it “looked as if it had converged”.
As in parts (a) and (b), this indicates a lack of understanding: the point here is that π is the unique
(right) eigenvector of P with eigenvalue 1, and you can find this eigenvector using any linear algebra
package.

(d) By numerical computation, we see that the variation distance ‖pt
1 − π‖ := 1

2

∑
y |P1,y − πy| has the 2pts

value 0.00135 at t = 20 and the value 0.000989 at t = 21. Therefore the desired solution for a
threshold of 0.001 is t = 21.

A surprising number of students got the wrong answer here—for reasons that were not entirely clear.
Note that this just involves taking large enough powers of P until the above distance drops below 0.001.
This is a simple computation using any linear algebra package that supports matrix multiplication.

2. (a) It follows from the coupon collecting problem that for all v, Cv(G) = Θ(n log n). (We are trying to 2pts
hit all the vertices, and at each step, we hit each vertex with equal probability, except for the minor
detail that we never hit the same vertex twice in succession. It is easy to check that this small change
makes no difference to the asymptotics of coupon collecting.)

(b) The lollipop graph has n vertices and O(n2) edges, so by the general bound in MU, Lemma 7.15, the 2pts
cover time is bounded above by O(|V | · |E|) = O(n3).

(c) We know from the analysis of random walk on the line graph (MU, pp. 173–174) that Hb,a = Θ(n2), so 4pts
we have the lower bound Cb(G) = Ω(n2). (Note that the existence of the clique is irrelevant until the
walk reaches a for the first time.) For the upper bound, the same observation tells us that the expected
number of steps to reach a from b (and thus along the way to visit all the vertices on the “tail”) is
O(n2); to complete the upper bound, we need to show that the walk, starting at a, will visit all vertices
of the clique in expected time at most O(n2). Starting at a, with probability 1

n/2 the walk moves right
onto the tail, in which case the time is still bounded by the overall cover time C(G) = O(n3). With



probability n/2−1
n/2 the walk moves left onto the clique. At this point, we could essentially use the

Θ(n log n) cover time for Kn/2 from part (a), with the following caveat: every time the walk hits a,
there is a small chance that it will make an excursion onto the tail. However, in O(n log n) steps on
the clique the expected number of times the walk hits a is only O(log n), and whenever this happens,
with probability 1

n/2 it makes an expected O(n) steps on the tail before returning to a. Putting all this
together, we get

Cb(G) ≤ Hb,a +
1

n/2
C(G) +

n/2 − 1
n/2

(Θ(n log n) + O(log n) · 1
n/2

·O(n2)) = O(n).

Hence Cb(G) = Θ(n2), as required.

Note: Technically, we should use Wald’s Equation to justify the above argument. Wald’s Equation
(MU Section 13.3) says that E[

∑T
i=1 Xi] = E[T ]µ, where the Xi are iid r.v.’s with mean µ and T is a

(random) stopping time. We are implicitly using this fact above when we bound the total time spent on
excursions from a into the tail. The same applies to our analysis in part (d) below. We did not require
you to explicitly appeal to Wald’s Equation for this problem.
A lot of students did not consider that when the walk reaches vertex a, there is only a 2/n chance that
it then goes into the tail. (They were able to compensate for this error by arguing that the expected
time spent on the tail starting from the vertex to the right of a is only O(n).)

(d) As in part (c), we consider the two cases for the first step of the walk starting at a: 4pts
• Conditioned on the walk moving right at a (which occurs with probability 1

n/2 ), then with proba-
bility at least 1− 2

n the walk will reach a again before reaching b. This follows from the Gambler’s
Ruin Problem (as discussed in lecture and section; see also MU, Section 7.2.1): this is the prob-
ability that the first player wins in a fair gambling situation between two players whose initial
capitals are n

2 − 1 dollars and 1 dollar respectively. The walk will then take another Ha,b steps to
get to b. Hence, conditioned on moving right at a, the expected number of steps to reach b is at
least (1− 2

n)Ha,b.

• Conditioned on the walk moving left at a (which occurs with probability n/2−1
n/2 ), then it will take

an expected Ω(n) steps within the clique before returning to a. This follows from looking at a
geometric distribution with mean 1

n/2−1 , which is the probability of reaching a from any vertex
on the clique in one step. Hence, conditioned on moving left at a, the expected number of steps
to reach b is at least Ha,b + Ω(n).

Combing the two cases, we obtain

Ha,b ≥
1

n/2

(
1− 2

n

)
Ha,b +

n/2 − 1
n/2

(
Ha,b + Ω(n)

)
= Ha,b −

4
n2

Ha,b +
n/2 − 1

n/2
Ω(n),

as required. Rearranging the terms yields: 4
n2 Ha,b ≥ Ω(n) and thus Ha,b = Ω(n3).

(e) Clearly, C(Ln) ≥ Ha,b = Ω(n3) (using part (d)). Combined with the upper bound from part (b), this 1pt
gives C(Ln) = Θ(n3).

(f) False. For a counterexample, take G to be the lollipop graph, and G′ to be the complete graph on n 1pt
vertices. Then Θ(n log n) = C(G′) < C(G) = Θ(n3).

(g) False. Take G to be the line graph on n vertices, and G′ to be the lollipop graph. Then Θ(n3) = 1pt
C(G′) > C(G) = Θ(n2).

3. (a) To see that the process is irreducible, note that from any configuration we can reach a configuration 3pts
in which all the k particles sit consecutively on the cycle (by successively moving particles clockwise
until they hit the next particle around the cycle). By a symmetrical argument, we can then reach any
other configuration from this configuration.

Quite a lot of students failed to specify how to move from any configuration to any other. Just saying
“the process is irreducible” is not sufficient here (since it’s definitely not obvious!).



(b) The process is aperiodic because some of the configurations have self-loops (i.e., have a non-zero 2pts
probability of not changing in one step). These are any configurations in which two or more particles
sit consecutively on the cycle.

(c) We claim that the stationary distribution (which by parts (a) and (b) and the Fundamental Theorem 4pts
(MU, Theorem 7.7) must be unique) is the uniform distribution over all

(
n
k

)
configurations. To verify

this, fix any configuration σ. Let g be the number of (maximal) consecutive groups of particles in σ.
Then the number of (non-self-loop) transitions out of σ is exactly g (one for each group, corresponding
to the “head” particle of the group moving clockwise one step). Similarly, the number of (non-self-
loop) transitions into σ is also g (corresponding to the “tail” particle of each group having moved
clockwise one step to its present position). Since all these transitions have the same probability 1

k
(and since self-loops contribute the same transition probability into and out of σ), it follows that the
sum of transition probabilities into σ is equal to the sum of transition probabilities out of σ, which is
exactly 1. This means that the Markov chain is “doubly stochastic”, so as we saw in class its stationary
distribution must be uniform.

4. (a) Fix Xt, Yt. Suppose the positions of card c in Xt and Yt are j and j′ respectively. Then only the cards 3pts
in positions i, j, j′ may be affected by the move. If j = j′, then clearly dt remains unchanged. If
j 6= j′, then the move creates a new matched card (namely, card c at position i). At the same time, we
may lose at most one existing match (from the cards that are at position i before the move). Hence, dt

never increases with t.

(b) dt decreases (by at least 1) precisely when there is no match at position i and the card c is not already 3pts
matched up. The probability that we pick a position i whose cards differ in Xt and Yt is dt

n . Similarly,
this is also the probability that we pick a card c that is unmatched. Since these events are independent,
the probability that dt decreases is (dt

n )2.

(c) If the distance is dt, then by part (b) the time until dt decreases is a geometric r.v. with parameter 3pts
(dt

n )2, so its expectation is ( n
dt

)2. Hence, the expected number of steps T until XT = YT is at most∑n
dt=1(

n
dt

)2 ≤ n2
∑∞

i=1
1
i2

= π2

6 n2.

(d) Applying Markov’s inequality to the statement from part (c), we deduce that for any choice of initial 3pts
states X0, Y0, the probability that starting from X0, Y0 we take more than cn2

ε steps until XT = YT is
at most ε; i.e., for T = cn2

ε we have Pr[XT 6= YT |X0, Y0] ≤ ε. Hence, by the Coupling Lemma (MU,
Lemma 12.2), the mixing time is bounded by τ(ε) ≤ cn2

ε .

5. [Optional: not graded] My strategy is simply to perform exactly the same procedure as you, except that I 0pts
start with some arbitrary card (say, the first card). The key observation is that if our two cards should ever
coincide, then our two processes will remain identical at all future times, and thus I will identify your card
correctly. Now each time I finish a count and look at the next (random) card, there is a positive probability
that its value will be d, the remainder of your current count. Thus if we were to continue this process
indefinitely (with an infinite deck), coupling would occur in finite time with probability 1. In the finite
setting, with 52 cards and ten choices for the first card, it turns out that there is a pretty good chance (around
70%) that coupling will have occurred before the end of the deck is reached. This can be a fun trick to try on
friends; the fact that you sometimes lose gives them an incentive to keep trying to win. The precise success
probability for this trick is still an open problem; those interested in reading the state of the art on it may refer
to “The Kruskal Count,” by J. Lagarias, E. Rains and R.J. Vanderbei, http://arxiv.org/abs/math/0110143.


