
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 6 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 45.

1. (a) (i) Fix any subset S of 5 vertices. The probability S is a clique in G is p10 since S contains 10 3pts
edges. There are

(
n
5

)
possible choices for S, so by linearity of expectation, the expected number

of 5-cliques in G is
(
n
5

)
p10. Solving for

(
n
5

)
p10 = 1 yields p10 = Θ(1/n5), so p = Θ(1/

√
n).

(ii) Fix any unordered pair of disjoint subsets of 5 vertices; there are 1
2

(
n
5

)(
n−5

5

)
choices. The proba- 3pts

bility that this choice contains a K5,5 is p25. Hence, the expected number of K5,5 is 1
2

(
n
5

)(
n−5

5

)
p25.

Setting this quantity to 1 yields p25 = Θ(1/n10), which solves to p = Θ(1/n2/5).

(iii) Fix an ordered sequence of n vertices; there are 1
2(n − 1)! choices (because we may always 3pts

assume that the first vertex is fixed, and each order is equivalent to its reversal). The probability
this induces a Hamiltonian cycle is pn. Hence, the expected number of Hamiltonian cycles is
1
2(n− 1)! · pn. Setting this quantity to 1 yields p = Θ(1/n), using the bounds (n/e)n ≤ n! ≤ nn.

(b) The result of part (iii) implies that if p = o(1/n) then the expected number of Hamilton cycles tends 2pts
to zero, and if p = ω(n) then this expected number tends to ∞. The first of these facts implies, by
the usual argument based on Markov’s inequality, that Pr[G contains a Ham. cycle] → 0 when p =
o(1/n). So we might expect p = 1/n to be a threshold for this property. However, part (iii) doesn’t tell
us anything about the variance, so we have no way of concluding that Pr[G contains a Ham. cycle] →
1 when p = ω(1/n); and in fact that is not true! In reality we need p to be larger than ln n

n to conclude
this (by a more sophisticated argument that we won’t give here). And again, by a more sophisticated
argument, we can also conclude that Pr[G contains a Ham. cycle] → 0 for p all the way up to ln n

n
(which again doesn’t contradict the weaker fact in part (iii)).

2. (a) Let Xi be the r.v. indicating whether vertex i is isolated. Then E[Xi] = (1 − p)n−1, and by linearity 2pts
of expectation, E[X] = n(1− p)n−1.

(b) Write p = a · ln n
n . Note that E[X] ∼ ne−p(n−1) ∼ ne−a ln n = n1−a. The case p = o( ln n

n ) is 2pts
equivalent to a = o(1), and thus E[X] ∼ n1−o(1) → ∞. The second case, p = ω( ln n

n ), is equivalent
to a = ω(1) and thus E[X] ∼ n−(ω(1)−1) → 0.

(c) By Markov’s inequality we have Pr[X ≥ 1] ≤ E[X], which by part (b) goes to zero in the case 2pts
p = ω( ln n

n ). Hence Pr[X > 0] → 0, as required.

(d) For any i 6= j, E[XiXj ] = (1 − p)2n−3 (there are 2n − 3 possible edges adjacent to either i or j). 3pts
Hence, E[X2] = n(1 − p)n−1 + n(n − 1)(1 − p)2n−3. Therefore, Var[X] = E[X2] − E[X]2 =
n(1− p)n−1 + n(1− p)2n−3(np− 1).

(e) By Chebyshev’s inequality, Pr[X = 0] ≤ Pr[|X−E[X]| ≥ E[X]] ≤ Var[X]/E[X]2 = 1
E[X]+

np−1
n(1−p) . 2pts

Now for p = o( ln n
n ) we know from part (b) that E[X] → ∞, so the first term here goes to zero. And

the second term is np−1
n(1−p) ≤

p
1−p , which certainly goes to zero for p = o( ln n

n ). Hence we have
Pr[X = 0] → 0, i.e., Pr[X > 0] → 1, as required.

3. (a) Fix a tournament T , and pick a ranking R u.a.r., namely, a random ordering of the n vertices. For each 3pts
edge e in T , the probability that R disagrees with e is 1

2 . By linearity of expectation, the expected
number of edges (over random R) in which R and T disagree is 1

2

(
n
2

)
. Hence, there must exist a

ranking R such that R and T disagree on at most 50% of the edges.



(b) Fix n. Fix a ranking R on n vertices, and pick a tournament T u.a.r., i.e., assign a random direction 4pts
to each edge independently. Let X be the r.v. for the number of edges in which R and T disagree
(over random T ). Again, E[X] = 1

2

(
n
2

)
, by writing X as the sum of independent 0-1 r.v.’s, one for

each edge. Applying the Chernoff bound with δ = 0.02 and µ = 1
2

(
n
2

)
yields Pr[X < 0.49

(
n
2

)
] ≤

exp(−1
2(0.02)2 · 1

2

(
n
2

)
) = e−Ω(n2). Taking a union bound over all possible rankings R (there are n! of

them), we obtain,

PrT [∃ a ranking R s.t. R and T disagree on < 49% of the edges in T ] < n! · e−Ω(n2) < 1

for sufficiently large n. This implies there exists a tournament T such that every ranking disagrees
with at least 49% of the edges in T .

4. (a) The expected number of edges is 1
2pn(n− 1) = 8(n− 1). 1pt

(b) Clearly, we may write the r.v. X for the number of edges in G as the sum of 1
2n(n − 1) independent 2pts

0-1 r.v.’s (one for each edge). Applying the Chernoff bound with µ = 8(n− 1) and δ = 1
4 , we obtain

Pr[X > 10(n− 1)] < e−(1/4)28(n−1)/3 = 2−Ω(n). Hence, Pr[X ≤ 10(n− 1)] ≥ 1− 2−Ω(n) and the
required inequality follows.

(c) Let r be the number of red vertices in the coloring. Then the number of pairs of vertices of the 3pts
same color is

(
r
2

)
+

(
n−r

2

)
. Let Y be the r.v. for the number of violated edges in G. Then, E[Y ] =

p(
(
r
2

)
+

(
n−r

2

)
) ≥ 2p

(
n/2
2

)
= 4(n− 2) (assuming that n is even to avoid messy rounding details).

Again, Y can be written as a sum of of independent 0-1 r.v.’s Applying the Chernoff bound with
µ = 4(n− 2) and δ = 3

4 , we obtain Pr[Y ≤ n− 2] ≤ e−(3/4)2·4(n−2)·1/2 = e−9(n−2)/8. The required
result now follows.

(d) There are 2n different ways to color the graph. By part (c) and a union bound over colorings, we have 2pts

PrG[∃ an assignment of colors to G with ≤ n− 2 violated edges] ≤ 2n · e−
9
8
(n−2) ≤ 1

4

for n ≥ 9. When an assignment has n− 1 violated edges, then removing any n− 2 edges still leaves
at least one violated edge. Since with probability ≥ 3

4 every assignment has ≥ n − 1 violated edges,
we see that if we remove any n− 2 edges of G there is still no valid 2-coloring.

(e) Fix a sequence of k distinct vertices v1, . . . , vk in G. The probability (over G) that (v1, . . . , vk) is a 3pts
cycle in G is pk. There are at most nk sequences of k distinct vertices, and for each such sequence, we
may assign an indicator variable that tells us whether it corresponds to a k-cycle in G. By linearity of
expectation, the expected number of k-cycles in G is at most nk · pk = 16k.

The expected number of cycles of length at most 1
8 log n is bounded by

∑ 1
8

log n

k=3 16k ≤ 16
1
8

log n+1 =
16
√

n.

(f) By Markov’s inequality, with probability at least 3/4 (over G), G has at most 64
√

n cycles of length 2pts
at most 1

8 log n. We may delete an edge from each of these cycles, thereby removing at most 64
√

n
edges.

(g) Taking a union bound over the complements of the events in parts (b), (d), (f), we know that for all 3pts
sufficiently large n, with probability at least 1/2 − 2−Ω(n) > 0 over G from Gn,16/n, G satisfies the
properties in parts (b), (d) and (f) simultaneously. This means that by deleting at most 64

√
n edges

from G, we obtain a graph G′ with the following properties:

— the induced subgraph on any subset of 1
8 log n vertices of G′ is 2-colorable (by part (f));

— G′ has at most 10(n− 1) edges (by part (b));
— G′ is not 2-colorable even if we delete any n − 2 − 64

√
n edges (by part (d); note that we may

have already deleted 64
√

n edges from G itself in part (f)).



Finally, note that for sufficiently large n we have (very crudely) n − 2 − 64
√

n ≥ 1
2(n − 1) =

1
20 × 10(n− 1), so the number of edges we can delete is at least a 0.05 fraction of the edges of G (and
thus also of G′). Thus G′ is the required graph Gn, and we have verified the existence of G′ by the
probabilistic method.

Note: Many students did not use a union bound in this part, but instead multiplied the probabilities of
good/bad events happening. This is invalid because none of these events are independent!!!


