Homework 6 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature, and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may be more than one correct solution. The maximum total number of points available is 45 .

1. (a) (i) Fix any subset S of 5 vertices. The probability S is a clique in G is p^{10} since S contains 10 edges. There are $\binom{n}{5}$ possible choices for S, so by linearity of expectation, the expected number of 5 -cliques in G is $\binom{n}{5} p^{10}$. Solving for $\binom{n}{5} p^{10}=1$ yields $p^{10}=\Theta\left(1 / n^{5}\right)$, so $p=\Theta(1 / \sqrt{n})$.
(ii) Fix any unordered pair of disjoint subsets of 5 vertices; there are $\frac{1}{2}\binom{n}{5}\binom{n-5}{5}$ choices. The probability that this choice contains a $K_{5,5}$ is p^{25}. Hence, the expected number of $K_{5,5}$ is $\frac{1}{2}\binom{n}{5}\binom{n-5}{5} p^{25}$. Setting this quantity to 1 yields $p^{25}=\Theta\left(1 / n^{10}\right)$, which solves to $p=\Theta\left(1 / n^{2 / 5}\right)$.
(iii) Fix an ordered sequence of n vertices; there are $\frac{1}{2}(n-1)$! choices (because we may always assume that the first vertex is fixed, and each order is equivalent to its reversal). The probability this induces a Hamiltonian cycle is p^{n}. Hence, the expected number of Hamiltonian cycles is $\frac{1}{2}(n-1)!\cdot p^{n}$. Setting this quantity to 1 yields $p=\Theta(1 / n)$, using the bounds $(n / e)^{n} \leq n!\leq n^{n}$.
(b) The result of part (iii) implies that if $p=o(1 / n)$ then the expected number of Hamilton cycles tends to zero, and if $p=\omega(n)$ then this expected number tends to ∞. The first of these facts implies, by the usual argument based on Markov's inequality, that $\operatorname{Pr}[G$ contains a Ham. cycle $] \rightarrow 0$ when $p=$ $o(1 / n)$. So we might expect $p=1 / n$ to be a threshold for this property. However, part (iii) doesn't tell us anything about the variance, so we have no way of concluding that $\operatorname{Pr}[G$ contains a Ham. cycle $] \rightarrow$ 1 when $p=\omega(1 / n)$; and in fact that is not true! In reality we need p to be larger than $\frac{\ln n}{n}$ to conclude this (by a more sophisticated argument that we won't give here). And again, by a more sophisticated argument, we can also conclude that $\operatorname{Pr}[G$ contains a Ham. cycle $] \rightarrow 0$ for p all the way up to $\frac{\ln n}{n}$ (which again doesn't contradict the weaker fact in part (iii)).
2. (a) Let X_{i} be the r.v. indicating whether vertex i is isolated. Then $\mathrm{E}\left[X_{i}\right]=(1-p)^{n-1}$, and by linearity of expectation, $\mathrm{E}[X]=n(1-p)^{n-1}$.
(b) Write $p=a \cdot \frac{\ln n}{n}$. Note that $\mathrm{E}[X] \sim n e^{-p(n-1)} \sim n e^{-a \ln n}=n^{1-a}$. The case $p=o\left(\frac{\ln n}{n}\right)$ is equivalent to $a=o(1)$, and thus $\mathrm{E}[X] \sim n^{1-o(1)} \rightarrow \infty$. The second case, $p=\omega\left(\frac{\ln n}{n}\right)$, is equivalent to $a=\omega(1)$ and thus $\mathrm{E}[X] \sim n^{-(\omega(1)-1)} \rightarrow 0$.
(c) By Markov's inequality we have $\operatorname{Pr}[X \geq 1] \leq \mathrm{E}[X]$, which by part (b) goes to zero in the case $p=\omega\left(\frac{\ln n}{n}\right)$. Hence $\operatorname{Pr}[X>0] \rightarrow 0$, as required.
(d) For any $i \neq j, \mathrm{E}\left[X_{i} X_{j}\right]=(1-p)^{2 n-3}$ (there are $2 n-3$ possible edges adjacent to either i or j). Hence, $\mathrm{E}\left[X^{2}\right]=n(1-p)^{n-1}+n(n-1)(1-p)^{2 n-3}$. Therefore, $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}=$ $n(1-p)^{n-1}+n(1-p)^{2 n-3}(n p-1)$.
(e) By Chebyshev's inequality, $\operatorname{Pr}[X=0] \leq \operatorname{Pr}[|X-\mathrm{E}[X]| \geq \mathrm{E}[X]] \leq \operatorname{Var}[X] / \mathrm{E}[X]^{2}=\frac{1}{\mathrm{E}[X]}+\frac{n p-1}{n(1-p)}$. Now for $p=o\left(\frac{\ln n}{n}\right)$ we know from part (b) that $\mathrm{E}[X] \rightarrow \infty$, so the first term here goes to zero. And the second term is $\frac{n p-1}{n(1-p)} \leq \frac{p}{1-p}$, which certainly goes to zero for $p=o\left(\frac{\ln n}{n}\right)$. Hence we have $\operatorname{Pr}[X=0] \rightarrow 0$, i.e., $\operatorname{Pr}[X>0] \rightarrow 1$, as required.
3. (a) Fix a tournament T, and pick a ranking R u.a.r., namely, a random ordering of the n vertices. For each edge e in T, the probability that R disagrees with e is $\frac{1}{2}$. By linearity of expectation, the expected number of edges (over random R) in which R and T disagree is $\frac{1}{2}\binom{n}{2}$. Hence, there must exist a ranking R such that R and T disagree on at most 50% of the edges.
(b) Fix n. Fix a ranking R on n vertices, and pick a tournament T u.a.r., i.e., assign a random direction to each edge independently. Let X be the r.v. for the number of edges in which R and T disagree (over random T). Again, $\mathrm{E}[X]=\frac{1}{2}\binom{n}{2}$, by writing X as the sum of independent $0-1$ r.v.'s, one for each edge. Applying the Chernoff bound with $\delta=0.02$ and $\mu=\frac{1}{2}\binom{n}{2}$ yields $\operatorname{Pr}\left[X<0.49\binom{n}{2}\right] \leq$ $\exp \left(-\frac{1}{2}(0.02)^{2} \cdot \frac{1}{2}\binom{n}{2}\right)=e^{-\Omega\left(n^{2}\right)}$. Taking a union bound over all possible rankings R (there are $n!$ of them), we obtain,

$$
\operatorname{Pr}_{T}[\exists \text { a ranking } R \text { s.t. } R \text { and } T \text { disagree on }<49 \% \text { of the edges in } T]<n!\cdot e^{-\Omega\left(n^{2}\right)}<1
$$

for sufficiently large n. This implies there exists a tournament T such that every ranking disagrees with at least 49% of the edges in T.
4. (a) The expected number of edges is $\frac{1}{2} p n(n-1)=8(n-1)$.
(b) Clearly, we may write the r.v. X for the number of edges in G as the sum of $\frac{1}{2} n(n-1)$ independent $0-1$ r.v.'s (one for each edge). Applying the Chernoff bound with $\mu=8(n-1)$ and $\delta=\frac{1}{4}$, we obtain $\operatorname{Pr}[X>10(n-1)]<e^{-(1 / 4)^{2} 8(n-1) / 3}=2^{-\Omega(n)}$. Hence, $\operatorname{Pr}[X \leq 10(n-1)] \geq 1-2^{-\Omega(n)}$ and the required inequality follows.
(c) Let r be the number of red vertices in the coloring. Then the number of pairs of vertices of the same color is $\binom{r}{2}+\binom{n-r}{2}$. Let Y be the r.v. for the number of violated edges in G. Then, $\mathrm{E}[Y]=$ $p\left(\binom{r}{2}+\binom{n-r}{2}\right) \geq 2 p\binom{n / 2}{2}=4(n-2)$ (assuming that n is even to avoid messy rounding details).
Again, Y can be written as a sum of of independent $0-1$ r.v.'s Applying the Chernoff bound with $\mu=4(n-2)$ and $\delta=\frac{3}{4}$, we obtain $\operatorname{Pr}[Y \leq n-2] \leq e^{-(3 / 4)^{2} \cdot 4(n-2) \cdot 1 / 2}=e^{-9(n-2) / 8}$. The required result now follows.
(d) There are 2^{n} different ways to color the graph. By part (c) and a union bound over colorings, we have

$$
\operatorname{Pr}_{G}[\exists \text { an assignment of colors to } G \text { with } \leq n-2 \text { violated edges }] \leq 2^{n} \cdot e^{-\frac{9}{8}(n-2)} \leq \frac{1}{4}
$$

for $n \geq 9$. When an assignment has $n-1$ violated edges, then removing any $n-2$ edges still leaves at least one violated edge. Since with probability $\geq \frac{3}{4}$ every assignment has $\geq n-1$ violated edges, we see that if we remove any $n-2$ edges of G there is still no valid 2-coloring.
(e) Fix a sequence of k distinct vertices v_{1}, \ldots, v_{k} in G. The probability (over G) that $\left(v_{1}, \ldots, v_{k}\right)$ is a cycle in G is p^{k}. There are at most n^{k} sequences of k distinct vertices, and for each such sequence, we may assign an indicator variable that tells us whether it corresponds to a k-cycle in G. By linearity of expectation, the expected number of k-cycles in G is at most $n^{k} \cdot p^{k}=16^{k}$.
The expected number of cycles of length at most $\frac{1}{8} \log n$ is bounded by $\sum_{k=3}^{\frac{1}{8} \log n} 16^{k} \leq 16^{\frac{1}{8} \log n+1}=$ $16 \sqrt{n}$.
(f) By Markov's inequality, with probability at least $3 / 4$ (over G), G has at most $64 \sqrt{n}$ cycles of length at most $\frac{1}{8} \log n$. We may delete an edge from each of these cycles, thereby removing at most $64 \sqrt{n}$ edges.
(g) Taking a union bound over the complements of the events in parts (b), (d), (f), we know that for all sufficiently large n, with probability at least $1 / 2-2^{-\Omega(n)}>0$ over G from $\mathcal{G}_{n, 16 / n}, G$ satisfies the properties in parts (b), (d) and (f) simultaneously. This means that by deleting at most $64 \sqrt{n}$ edges from G, we obtain a graph G^{\prime} with the following properties:
— the induced subgraph on any subset of $\frac{1}{8} \log n$ vertices of G^{\prime} is 2-colorable (by part (f));

- G^{\prime} has at most $10(n-1)$ edges (by part (b));
- G^{\prime} is not 2-colorable even if we delete any $n-2-64 \sqrt{n}$ edges (by part (d); note that we may have already deleted $64 \sqrt{n}$ edges from G itself in part (f)).

Finally, note that for sufficiently large n we have (very crudely) $n-2-64 \sqrt{n} \geq \frac{1}{2}(n-1)=$ $\frac{1}{20} \times 10(n-1)$, so the number of edges we can delete is at least a 0.05 fraction of the edges of G (and thus also of G^{\prime}). Thus G^{\prime} is the required graph G_{n}, and we have verified the existence of G^{\prime} by the probabilistic method.

Note: Many students did not use a union bound in this part, but instead multiplied the probabilities of good/bad events happening. This is invalid because none of these events are independent!!!

