
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 5 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 42.
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(b) The probabilities for k = 0, 1, 2, 3 are respectively 0.3337, 0.3667, 0.2010, 0.0733 2pts

(c) We use a Poisson approximation with parameter λ = 400/365. The probabilities for k = 0, 1, 2, 3 are 3pts
respectively 0.3342, 0.3663, 0.2007, 0.0733. The approximation is accurate up to 3 decimal places.

2. (a) Using X
(k)
i to denote the distribution of balls in bins when k balls are thrown, as in MU (and omitting

the superscript when k = m), we have 5pts
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(b) First, we show that 4pts

Pr[Z = λ + i] ≥ Pr[Z = λ− i− 1], 0 ≤ i ≤ λ− 1 (∗∗)

This is equivalent to showing λλ+i

(λ+i)! ≥
λλ−i−1

(λ−i−1)! , or λ2i+1 ≥ (λ+i)!
(λ−i−1)! . Now observe that the right-

hand side can be written as (λ + i)(λ + i − 1) . . . (λ − i + 1)(λ − i) = λ ·
∏i

j=1 (λ + j)(λ− j) =
λ ·

∏i
j=1(λ

2 − j2). And this is less than or equal to λ2i+1, as required.
Next, summing (∗∗) over i = 0, . . . , λ− 1, we have

Pr[λ ≤ Z ≤ 2λ− 1] ≥ Pr[Z ≤ λ− 1].

The term on the left is bounded from above by Pr[Z ≥ λ], so Pr[Z ≥ λ] ≥ 1 − Pr[Z ≥ λ] and thus
Pr[Z ≥ λ] ≥ 1/2.

(c)
∑n

i=1 Yi has the Poisson distribution with parameter m. Hence, Pr[
∑n

i=1 Yi ≥ m] ≥ 1/2 by part (b), 1pt
and upon substitution into the result of part (a), we obtain the desired bound.

3. (a) Let Xi denote the r.v. for the number of balls in bin i and let Y1, . . . , Yn be independent Poisson 3pts
r.v.’s each with parameter m/n = lnn + c. Then, we may approximate the joint distribution of the
Xi by that of the Yi. In this Poisson approximation, we have PrPoisson[E ] = PrY [Yi > 0,∀i] =∏n

i=1(1− Pr[Yi = 0]) = (1− e−m/n)n = (1− e−c

n )n.



(b) Clearly, the probability of the event E (“no bin is empty”) is monotonically increasing with the number 4pts
of balls m. Hence, by inequality (∗) from the previous problem, Pr[E ] ≤ 2 PrPoisson[Yi > 0,∀i] =
2(1− e−c

n )n ≤ 2e−e−c
.

Similarly, the probability of the event E (“some bin is empty”) is monotonically decreasing, so by in-
equality (∗) from the previous problem (applied to decreasing events) we have Pr[E ] ≤ 2 PrPoisson[Yi =
0 for some i] = 2(1− PrPoisson[Yi > 0,∀i]) = 2(1− (1− e−c

n )n) ∼ 2(1− e−e−c
).

[NOTE: Both of the above statements hold for all c. However, the first one is useful only when c < 0
and the second one is useful only when c > 0 (because otherwise the probability bounds are greater
than 1 and thus vacuous). This follows from the fact that e−e−c

tends to 0 as c → −∞, and tends to 1
as c →∞.]

(c) Part (b) implies that the number of cereal boxes we need to purchase in order to get a copy of all n 3pts
coupons is tightly concentrated around the value n lnn. To see this, note first that coupon collecting is
equivalent to tossing balls into bins, where each bin corresponds to a coupon and each ball to a cereal
box. Suppose first that we purchase m = n lnn + cn boxes with c < 0, i.e., a small amount less than
n lnn (note that cn is a lower order term). Then the first part of part (b) says that the probability we
have all the coupons is asymptotically at most 2e−e−c

; and this value tends to zero as c → −∞. So
just a little bit less than n lnn boxes is not enough with high probability. On the other hand, suppose
that we purchase m = n lnn + cn boxes with c > 0, i.e., a small amount more than n lnn. Then the
second part of part (b) says that the probability we fail to get all the coupons is asymptotically at most
2(1 − e−e−c

); and this value tends to zero as c → ∞. So just a little bit more than n lnn boxes is
enough with high probability.
This is an example of a sharp threshold: the behavior of the process is determined by lower order
terms (on the order of n) around the threshold value n lnn. So, if we measure boxes purchased on the
n lnn scale, there is a sudden transition from all coupons collected with probability close to 0 to all
coupons collected with probability close to 1 at the point 1× n lnn.

A number of students had trouble making this connection: you are encouraged to carefully review the
above argument.

4. (a) Fix any schedule, and suppose the schedule has length T . By definition of dilation, there exists a 2pts
packet that travels a distance d, and it takes at least d time steps to travel a distance d, so T ≥ d.
Let e be the edge with congestion c. Since at each time step at most one packet can pass through
e, it must take c time steps for all c packets passing through e to go through, so T ≥ c. Therefore,
T ≥ max{c, d} = Ω(c + d) and this holds for every schedule.

(b) Fix a time step t and an edge e. At most c packets use the edge e at some time, and we may assume 5pts
WLOG that exactly c packages use the edge e at some time (since this is the worst case). Let X be
the r.v. for the number of packets traversing e at time t. We write X =

∑
i Xi, where the indicator

r.v. Xi is 1 if packet i passes through e at time t, and 0 otherwise. Clearly, E[Xi] = log(Nd)
αc , so

E[X] = log(Nd)
α . Also, the Xi are independent because the packet delays are independent. So we

may apply the Chernoff bound in the form Pr[X ≥ (1 + δ)µ] ≤ exp(− δ2

2+δµ), with µ = log(Nd)
α and

δ = bα− 1 to get
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]
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)
.

(Here b is a constant that we can choose.) Now if we set (for example) b = 5 and α = 2 the exponent
in the above bound becomes 81

22 log(Nd) ≥ 3 log(Nd). Thus we have

Pr
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X ≥ 5 log(Nd)

]
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(
−3 log(Nd)

)
=

1
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.

Hence, the probability that more than O(log(Nd)) packages use e at time step t is at most 1
(Nd)3

.

[Note: We chose 1
(Nd)3

here for use in the next part. More generally, we can achieve an upper bound

of any poly( 1
Nd) by replacing b and α with correspondingly larger constants.]



(c) We need to take a union bound over all edges e that are used and over all time steps t. To do this, we 5pts
need upper bounds on both the number of edges and the number of time steps:

– Each packet uses at most d distinct edges, so the total number of edges used is at most Nd.
– The total number of time steps is at most d + αc

log(Nd) . The congestion c is bounded by N , so this

total number of time steps is at most d+ αN
log(Nd) ≤ d+N ≤ Nd, for sufficiently large N . (Recall

that α = 2 is a constant.)

Now, we may apply a union bound to deduce that the probability that there exists some e, t such that
more than 5 log(Nd) packets use the edge e at time step t is at most Nd ·Nd · 1

(Nd)3
≤ 1

Nd . Therefore,
with probability 1 − 1/(Nd), we obtain a schedule in the unconstrained model with low congestion,
namely one wherein at every time step, at most 5 log(Nd) packets traverse any particular edge.

(d) Note that it suffices to handle the case where the schedule in the unconstrained model has low conges- 3pts
tion (i.e., .at every time step, at most 5 log(Nd) packets traverse any edge), since by part (c) this occurs
with probability 1−O(1/N). (With probability O(1/N), our schedule will do arbitrarily poorly, which
is OK.) We turn such an unconstrained schedule into a real schedule by replacing every time step in
the unconstrained schedule by s = 5 log(Nd) time steps in the real schedule; we want it to be the case
that for each i = 1, 2, . . ., the locations of the packets in the real schedule after the (is)th time step
will be the same as that in the unconstrained schedule after the ith time step. (This ensures that there
is no interference between steps in the unconstrained schedule, so the analysis of parts (b) and (c) still
holds.)
Since in the unconstrained schedule at most s packets traverse any particular edge in a single time
step, all of these packets can traverse this edge in s time steps in the real schedule without violating
the constraint that at most one packet crosses an edge per time step. Once a packet crosses an edge, it
waits at the other end of the edge until the next time step on the unconstrained schedule. Clearly, we
only need queues of size s = O(log(Nd)) to implement this scheme. The length of the unconstrained
schedule is d + αc

log(Nd) , so the length of the real schedule is s times that, which is O(c + d log(Nd))
(recall that α = 2 is a constant).


