Homework 4 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature, and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may be more than one correct solution. The maximum total number of points available is 33 .

1. (a) By linearity of expectation, $\mathrm{E}[X]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{i}=H_{n}$. Since the X_{i} are independent, 3pts $\operatorname{Var}[X]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{i}\left(1-\frac{1}{i}\right)$.
(b) We are interested in upper bounds for $p=\operatorname{Pr}[X \geq 4 \ln n]$. Note that $\mathrm{E}[X]=H_{n}=\ln n+\Theta(1)$ and $\operatorname{Var}[X] \leq H_{n}$. Since we are asked only for asymptotic bounds, we will omit lower order terms from our final answers. For functions $f(n), g(n)$, the notation $f(n) \sim g(n)$ means that $f(n) / g(n) \rightarrow 1$ as $n \rightarrow \infty$.

- Applying Markov's inequality, we have

$$
p \leq \frac{\mathrm{E}[X]}{4 \ln n}=\frac{H_{n}}{4 \ln n} \sim \frac{\ln n}{4 \ln n}=\frac{1}{4} .
$$

- Applying Chebyshev's inequality, we have

$$
p \leq \operatorname{Pr}\left[|X-\mathrm{E}[X]| \geq 4 \ln n-H_{n}\right] \leq \frac{\operatorname{Var}[X]}{\left(4 \ln n-H_{n}\right)^{2}} \leq \frac{H_{n}}{\left(4 \ln n-H_{n}\right)^{2}} \sim \frac{\ln n}{(3 \ln n)^{2}}=\frac{1}{9 \ln n} .
$$

- Applying the Chernoff bound, we note that

$$
p=\operatorname{Pr}[X \geq 4 \ln n]=\operatorname{Pr}[X \geq(1+\delta) \mu] \leq \exp \left(-\frac{\delta^{2}}{2+\delta} \mu\right),
$$

where $\mu=\mathrm{E}[X]=H_{n}$ and $\delta=\frac{4 \ln n-H_{n}}{H_{n}}$. We have to be a little more careful with the asymptotics here because the expressions are in the exponent. Note that $\delta \mu=4 \ln n-H_{n} \sim 3 \ln n$, and $\frac{\delta}{2+\delta}=\frac{4 \ln n-H_{n}}{4 \ln n+H_{n}} \sim \frac{3}{5}$. Plugging these asymptotic expressions into the above bound gives

$$
p \leq \exp \left(-\frac{\delta^{2}}{2+\delta} \mu\right) \sim \exp \left(-\frac{9}{5} \ln n\right)=n^{-9 / 5} .
$$

Observe how the first bound is constant, the second is inverse logarithmic, and the third is inverse polynomial (which is exponentially better than the second bound).
2. (a) Let $X_{i}, i=1,2, \ldots, 10^{6}$ denote the casino's net loss in the i 'th game. We have

$$
X_{i}=\left\{\begin{array}{ll}
2 & \text { w.p. } \frac{4}{25} \\
99 & \text { w.p. } \frac{1}{200} \\
-1 & \text { w.p. } \frac{167}{200}
\end{array} \quad \Rightarrow \quad e^{t X_{i}}= \begin{cases}e^{2 t} & \text { w.p. } \frac{4}{25} \\
e^{99 t} & \text { w.p. } \frac{1}{200} \\
e^{-t} & \text { w.p. } \frac{167}{200}\end{cases}\right.
$$

Therefore,

$$
\mathrm{E}\left[e^{t X_{i}}\right]=\frac{4}{25} e^{2 t}+\frac{1}{200} e^{99 t}+\frac{167}{200} e^{-t} .
$$

Now, $X=X_{1}+X_{2}+\cdots+X_{10^{6}}$ is the casino's net loss in the first million games, and we may compute $\mathrm{E}\left[e^{t X}\right]$ as follows:

$$
\begin{aligned}
\mathrm{E}\left[e^{t X}\right] & =\mathrm{E}\left[e^{t\left(X_{1}+X_{2}+\cdots X_{10^{6}}\right)}\right] \\
& =\mathrm{E}\left[e^{t X_{1}}\right] \cdot \mathrm{E}\left[e^{t X_{2}}\right] \cdots \cdot \mathrm{E}\left[e^{t X_{10} 6}\right] \quad \text { since the } X_{i} \text { are independent } \\
& =\left(\frac{4}{25} e^{2 t}+\frac{1}{200} e^{99 t}+\frac{167}{200} e^{-t}\right)^{10^{6}} .
\end{aligned}
$$

(b) We are interested in the quantity

$$
\begin{aligned}
\operatorname{Pr}\left[X \geq 10^{4}\right] & =\operatorname{Pr}\left[e^{t X} \geq e^{10^{4} t}\right] \\
& \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{10^{4} t}} \quad \text { by Markov's inequality } \\
& =\left(\frac{4}{25} e^{2 t}+\frac{1}{200} e^{99 t}+\frac{167}{200} e^{-t}\right)^{10^{6}} e^{-10^{4} t}
\end{aligned}
$$

This bound is valid for any $t>0$, so we are free to choose a value of t that gives the best bound (i.e., the smallest value for the expression on the right). Plugging in $t=0.0006$ as suggested in the hint, we get the bound 0.0002 . This is very small, suggesting that the casino has a problem with its machines.
Aside: It is interesting to compare the above with a direct application of Markov's inequality. To do this, we need to redefine X to be the amount of money the casino pays out, so that X is now a nonnegative r.v. An easy calculation gives $\mathrm{E}[X]=0.98 \cdot 10^{6}$, and applying Markov's inequality we get the upper bound $\operatorname{Pr}\left[X \geq 10^{6}+10^{4}\right] \leq \frac{98}{101} \approx 0.97$, which is disastrously weaker than the bound we obtained from Chernoff.
3. (a) First, we process ϕ so that every variable appears at most once in each clause (eliminate repeated occurences of a literal, and delete a clause if both a literal and its negation occur). Let n denote the number of variables, and c_{i} the number of variables in clause i.

- $\operatorname{size}\left(S_{i}\right)$: return $2^{n-c_{i}}$. The variables in clause i must be fixed to values that satisfy the clause, and the remaining variables may be assigned any value. This takes time $O(n)$ (to count the variables in clause i).
- select $\left(S_{i}\right)$: fix the variables in clause i to values that satisfy the clause; choose the values of the remaining variables independently and u.a.r. Again, this takes time $O(n)$.
- lowest (x) : for $i=1,2, \ldots$, test if x satisfies clause i (this test is easy); return the index of the first clause that x satisfies (or "undefined" if it satisfies no clauses). This takes time at most $O(m n)$ (i.e., $O(n)$ time per clause).
(b) The problem is that S may occupy only a tiny fraction of all possible assignments U. Thus the number of samples t would need to be huge in order to get a good estimate of q. We give a (rather extreme) concrete example to make this precise. Consider the very simple formula $\phi=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}$. Clearly $|S|=1$ (the only satisfying assignment is when all n variables are TRUE). The given algorithm will output zero unless it happens to choose this assignment in one of its t samples, i.e., it outputs zero with probability $\left(1-2^{-n}\right)^{t} \geq 1-t 2^{-n} \sim 1$ for any t that is only polynomial in n. Thus the relative error of the algorithm will be arbitrarily large with probability arbitrarily close to 1 . For a less extreme example, one could consider the formula consisting of a single clause $\phi=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n / 2}$; this has $2^{n / 2}$ satisfying assignments, which is still an exponentially small fraction of the universe U so the algorithm will output zero with probability $\left(1-2^{-n / 2}\right)^{t} \geq 1-t 2^{-n / 2}$, which is again ~ 1 for any t that is polynomial in n.
Note: It is not enough here to quote the bound from class $t=O\left(q / \epsilon^{2} \ln (1 / \delta)\right)$, which tells us how large a sample size is sufficient to estimate the proportion q. The reason is that this is an upper bound on t, whereas here we need a lower bound. The lower bound can be derived by the very simple argument given above.
(c) Note that the first two lines of the algorithm select each pair $\left(x, S_{i}\right), x \in S_{i}$ with probability $\frac{\left|S_{i}\right|}{\sum_{j}\left|S_{j}\right|}$. $\frac{1}{\left|S_{i}\right|}=\frac{1}{\sum_{j}\left|S_{j}\right|}$. In other words, the first two lines pick an element u.a.r. from the disjoint union of the sets S_{i}. (Note that the goal is really to pick an element u.a.r. from the union $\cup_{i} S_{i}$.) Let $\Gamma=\left\{\left(x, S_{i}\right) \mid\right.$ $\operatorname{lowest}(x)=i\}$. Clearly, the algorithm outputs 1 with probability $\sum_{\left(x, S_{i}\right) \in \Gamma} \frac{1}{\sum_{j}\left|S_{j}\right|}=\frac{|\Gamma|}{\sum_{j}\left|S_{j}\right|}$. To see that $|\Gamma|=|S|$, simply observe that every element $x \in S$ corresponds to exactly one lowest S_{i}, or
equivalently $\Gamma=\left\{\left(x, S_{\text {lowest }(x)}\right) \mid x \in S\right\}$. It follows that the algorithm outputs 1 with probability $p=\frac{|S|}{\sum_{j}\left|S_{j}\right|}$.
(d) Clearly, for $i=1,2, \ldots, m$ we have $\left|S_{i}\right| \leq|S|$. Hence, $\sum_{j}\left|S_{j}\right| \leq m|S|$, and thus $p=\frac{|S|}{\sum_{j}\left|S_{j}\right|} \geq \frac{1}{m}$. $\quad 2 p t s$
(e) Note that X_{1}, \ldots, X_{t} are independent $0-1$ r.v.'s with mean p, so $\mathrm{E}[X]=p t$ and the Chernoff bound $3 p t s$ yields

$$
\operatorname{Pr}[|X-p t| \geq \epsilon p t] \leq 2 e^{-\epsilon^{2} p t / 3}
$$

The quantity on the right is bounded above by δ provided we take $t=\left\lceil\frac{3}{\epsilon^{2} p} \ln \frac{2}{\delta}\right\rceil$. Since $p \geq \frac{1}{m}$ from part (d), it suffices to take $t=\left\lceil\frac{3 m}{\epsilon^{2}} \ln \frac{2}{\delta}\right\rceil=O\left(\frac{m}{\epsilon^{2}} \log \frac{1}{\delta}\right)$.
(f) Each iteration of the algorithm in (c) requires $O(1)$ operations, so the final algorithm takes $O(t)=2 p t s$ $O\left(\frac{m}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ time. By definition, we have $|S|=\frac{\sum_{j}\left|S_{j}\right|}{t} \cdot t p$ and $Y=\frac{\sum_{j}\left|S_{j}\right|}{t} \cdot X$. This implies

$$
Y \in[(1-\epsilon)|S|,(1+\epsilon)|S|] \Longleftrightarrow X \in[(1-\epsilon) t p,(1+\epsilon) t p]
$$

and thus

$$
\operatorname{Pr}[Y \in[(1-\epsilon)|S|,(1+\epsilon)|S|]]=\operatorname{Pr}[X \in[(1-\epsilon) t p,(1+\epsilon) t p]]
$$

It follows by part (e) that $\operatorname{Pr}[Y \in[(1-\epsilon)|S|,(1+\epsilon)|S|]] \geq 1-\delta$, as required.

