
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 4 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 33.

1. (a) By linearity of expectation, E[X] =
∑n

i=1 E[Xi] =
∑n

i=1
1
i = Hn. Since the Xi are independent, 3pts

Var[X] =
∑n

i=1 Var[Xi] =
∑n

i=1
1
i (1−

1
i ).

(b) We are interested in upper bounds for p = Pr[X ≥ 4 ln n]. Note that E[X] = Hn = lnn + Θ(1) and
Var[X] ≤ Hn. Since we are asked only for asymptotic bounds, we will omit lower order terms from
our final answers. For functions f(n), g(n), the notation f(n) ∼ g(n) means that f(n)/g(n) → 1 as
n →∞.
— Applying Markov’s inequality, we have 3pts

p ≤ E[X]
4 ln n

=
Hn

4 ln n
∼ lnn

4 ln n
=

1
4
.

— Applying Chebyshev’s inequality, we have 3pts

p ≤ Pr[|X − E[X]| ≥ 4 ln n−Hn] ≤ Var[X]
(4 ln n−Hn)2

≤ Hn

(4 ln n−Hn)2
∼ lnn

(3 ln n)2
=

1
9 ln n

.

— Applying the Chernoff bound, we note that 4pts

p = Pr[X ≥ 4 ln n] = Pr[X ≥ (1 + δ)µ] ≤ exp(− δ2

2 + δ
µ),

where µ = E[X] = Hn and δ = 4 ln n−Hn
Hn

. We have to be a little more careful with the asymp-
totics here because the expressions are in the exponent. Note that δµ = 4 lnn−Hn ∼ 3 ln n, and

δ
2+δ = 4 ln n−Hn

4 ln n+Hn
∼ 3

5 . Plugging these asymptotic expressions into the above bound gives

p ≤ exp(− δ2

2 + δ
µ) ∼ exp(−9

5
lnn) = n−9/5.

Observe how the first bound is constant, the second is inverse logarithmic, and the third is inverse
polynomial (which is exponentially better than the second bound).

2. (a) Let Xi, i = 1, 2, . . . , 106 denote the casino’s net loss in the i’th game. We have 4pts

Xi =


2 w.p. 4

25

99 w.p. 1
200

−1 w.p. 167
200

⇒ etXi =


e2t w.p. 4

25

e99t w.p. 1
200

e−t w.p. 167
200

Therefore,

E[etXi ] =
4
25

e2t +
1

200
e99t +

167
200

e−t.

Now, X = X1 + X2 + · · · + X106 is the casino’s net loss in the first million games, and we may
compute E[etX ] as follows:

E[etX ] = E[et(X1+X2+···X106 )]
= E[etX1 ] · E[etX2 ] · · · · · E[etX106 ] since the Xi are independent

=
(

4
25

e2t +
1

200
e99t +

167
200

e−t

)106

.



(b) We are interested in the quantity 4pts

Pr[X ≥ 104] = Pr[etX ≥ e104t]

≤ E[etX ]
e104t

by Markov’s inequality

=
(

4
25

e2t +
1

200
e99t +

167
200

e−t

)106

e−104t.

This bound is valid for any t > 0, so we are free to choose a value of t that gives the best bound (i.e.,
the smallest value for the expression on the right). Plugging in t = 0.0006 as suggested in the hint, we
get the bound 0.0002. This is very small, suggesting that the casino has a problem with its machines.

Aside: It is interesting to compare the above with a direct application of Markov’s inequality. To do
this, we need to redefine X to be the amount of money the casino pays out, so that X is now a non-
negative r.v. An easy calculation gives E[X] = 0.98 · 106, and applying Markov’s inequality we get
the upper bound Pr[X ≥ 106 + 104] ≤ 98

101 ≈ 0.97, which is disastrously weaker than the bound we
obtained from Chernoff.

3. (a) First, we process φ so that every variable appears at most once in each clause (eliminate repeated 3pts
occurences of a literal, and delete a clause if both a literal and its negation occur). Let n denote the
number of variables, and ci the number of variables in clause i.

• size(Si): return 2n−ci . The variables in clause i must be fixed to values that satisfy the clause, and
the remaining variables may be assigned any value. This takes time O(n) (to count the variables
in clause i).

• select(Si): fix the variables in clause i to values that satisfy the clause; choose the values of the
remaining variables independently and u.a.r. Again, this takes time O(n).

• lowest(x): for i = 1, 2, . . ., test if x satisfies clause i (this test is easy); return the index of the first
clause that x satisfies (or ”undefined” if it satisfies no clauses). This takes time at most O(mn)
(i.e., O(n) time per clause).

(b) The problem is that S may occupy only a tiny fraction of all possible assignments U . Thus the number 3pts
of samples t would need to be huge in order to get a good estimate of q. We give a (rather extreme)
concrete example to make this precise. Consider the very simple formula φ = x1 ∧ x2 ∧ · · · ∧ xn.
Clearly |S| = 1 (the only satisfying assignment is when all n variables are TRUE). The given algorithm
will output zero unless it happens to choose this assignment in one of its t samples, i.e., it outputs zero
with probability (1− 2−n)t ≥ 1− t2−n ∼ 1 for any t that is only polynomial in n. Thus the relative
error of the algorithm will be arbitrarily large with probability arbitrarily close to 1. For a less extreme
example, one could consider the formula consisting of a single clause φ = x1 ∧ x2 ∧ · · · ∧ xn/2; this
has 2n/2 satisfying assignments, which is still an exponentially small fraction of the universe U so the
algorithm will output zero with probability (1 − 2−n/2)t ≥ 1 − t2−n/2, which is again ∼ 1 for any t
that is polynomial in n.

Note: It is not enough here to quote the bound from class t = O(q/ε2 ln(1/δ)), which tells us how large
a sample size is sufficient to estimate the proportion q. The reason is that this is an upper bound on t,
whereas here we need a lower bound. The lower bound can be derived by the very simple argument
given above.

(c) Note that the first two lines of the algorithm select each pair (x, Si), x ∈ Si with probability |Si|P
j |Sj | · 3pts

1
|Si| = 1P

j |Sj | . In other words, the first two lines pick an element u.a.r. from the disjoint union of the

sets Si. (Note that the goal is really to pick an element u.a.r. from the union ∪iSi.) Let Γ = {(x, Si) |
lowest(x) = i}. Clearly, the algorithm outputs 1 with probability

∑
(x,Si)∈Γ

1P
j |Sj | = |Γ|P

j |Sj | . To

see that |Γ| = |S|, simply observe that every element x ∈ S corresponds to exactly one lowest Si, or



equivalently Γ = {(x, Slowest(x)) | x ∈ S}. It follows that the algorithm outputs 1 with probability

p = |S|P
j |Sj | .

(d) Clearly, for i = 1, 2, . . . ,m we have |Si| ≤ |S|. Hence,
∑

j |Sj | ≤ m|S|, and thus p = |S|P
j |Sj | ≥

1
m . 2pts

(e) Note that X1, . . . , Xt are independent 0-1 r.v.’s with mean p, so E[X] = pt and the Chernoff bound 3pts
yields

Pr[|X − pt| ≥ εpt] ≤ 2e−ε2pt/3.

The quantity on the right is bounded above by δ provided we take t = d 3
ε2p

ln 2
δ e. Since p ≥ 1

m from
part (d), it suffices to take t = d3m

ε2
ln 2

δ e = O(m
ε2

log 1
δ ).

(f) Each iteration of the algorithm in (c) requires O(1) operations, so the final algorithm takes O(t) = 2pts

O(m
ε2

log 1
δ ) time. By definition, we have |S| =

P
j |Sj |
t · tp and Y =

P
j |Sj |
t ·X . This implies

Y ∈ [(1− ε)|S|, (1 + ε)|S|] ⇐⇒ X ∈ [(1− ε)tp, (1 + ε)tp]

and thus
Pr

[
Y ∈ [(1− ε)|S|, (1 + ε)|S|]

]
= Pr

[
X ∈ [(1− ε)tp, (1 + ε)tp]

]
It follows by part (e) that Pr

[
Y ∈ [(1− ε)|S|, (1 + ε)|S|]

]
≥ 1− δ, as required.


