
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 3 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 32.

1. Define the r.v. X = X1+X2+···+Xn
n . Then by linearity of expectation we have E[X] = 1

n

∑
i E[Xi] = µ. 4pts

Also, since the Xi’s are independent, we have Var[X] = 1
n2

∑n
i=1 Var[Xi] = σ2

n . Finally, by Chebyshev’s
inequality, for any ε > 0,

Pr[|X − µ| ≥ ε] ≤ σ2

nε2
→ 0

as n →∞. This completes the proof.

Some students forgot to show that E[X] = µ.

2. (a) For each e ∈ E, let Xe be the indicator random variable that assumes the value 1 if e is in the cut, and 0 2pts
otherwise. Then X =

∑
e∈E Xe. In addition, E[Xe] = Pr[endpoints of e have different colors] = 1

2 .
By linearity of expectation, we have E[X] = 1

2 |E| ≥
OPT

2 , since clearly OPT ≤ |E|.
Note: Throughout this problem, it’s important to remember the following points: (i) OPT ≤ |E|
(because clearly no cut can contain more edges than the total number of edges in the graph!); and
(ii) we do not know the value of OPT, so we cannot use it in our algorithm (though of course we
do know the value of |E|). Several students got confused about this, and especially point (ii), by
assuming that the algorithm knows the value of OPT. Note that it’s actually NP-hard to compute OPT,
so it’s really not OK to assume this! Points were deducted for the first offense of this kind (but not for
subsequent offenses).

(b) Let Y = |E| −X , which is a non-negative random variable. Note that E[Y ] = |E| − E[X] = 1
2 |E|. 3pts

Now, Pr[X < 0.49|E|] = Pr[Y > 0.51|E|], so we can apply Markov’s inequality to Y to see that this
probability is at most E[Y ]/0.51|E| = 1

2 |E|/0.51|E| = 50
51 . Hence, Pr[X ≥ 0.49|E|] ≥ 1

51 . Again,
since OPT ≤ |E|, we get that p = Pr[X ≥ 0.49OPT] ≥ 1

51 .
Some variations on the above argument are also valid. For example, we could instead use Markov’s
inequality to bound Pr[Y ≥ |E| − 0.49OPT], which is at most Pr[Y ≥ 0.51OPT]. (However, note
that we cannot use Markov to bound Pr[Y ≥ 0.51OPT] because 0.51OPT may be smaller than E[Y ] =
|E|/2). Another variation is to define Z = OPT − X , and note that Z is a non-negative r.v. and
E[Z] ≤ 0.5OPT. We may then apply Markov’s inequality to bound Pr[Z ≥ 0.51OPT]
A rather different argument does not use Markov’s inequality directly, but instead uses the same idea
as in the proof of Markov’s inequality. It goes as follows. Note that E[X] ≤ p ·OPT+(1−p) ·0.49OPT.
(This follows as in the proof of Markov’s inequality; the first term bounds the contribution to E[X]
from all values of X larger than 0.49OPT, and the second term bounds the contribution from the values
less than or equal to 0.49OPT.) Since E[X] ≥ OPT/2, we can cancel OPT through the inequality to get
p ≥ 1/51.

Some students incorrectly used OPT in place of |E| in Markov’s inequality.



(c) We expand the square and use linearity of expectation to write E[X2] =
∑

e E[X2]+
∑

e6=e′ E[XeXe′ ]. 3pts
For the diagonal terms, we have E[X2

e ] = E[Xe] = 1
2 . To handle the cross terms E[XeXe′ ] for

distinct edges e, e′, observe that E[XeXe′ ] = Pr[Xe = Xe′ = 1] = 1
4 . This is true both for the

case where e, e′ share an endpoint (fix the common endpoint, then the other two endpoints must both
have the opposite color, which occurs with probability 1

4 ), and for the case where e, e′ do not share an
endpoint (here, Xe, Xe′ are independent). It follows that E[X2] =

∑
e E[Xe] +

∑
e6=e′ E[XeXe′ ] =

1
2 |E|+

1
4 |E|(|E| − 1) = 1

4 |E|
2 + 1

4 |E|. Hence, using part (a), Var[X] = E[X2]− E[X]2 = 1
4 |E|.

Equivalently, we can generalize the formula Var[X +Y ] = Var[X]+Var[Y ]+Cov(X, Y ) from class
to write

Var[X] = Var[
∑

e

Xe] =
∑

e

Var[Xe] +
∑
e6=e′

Cov(Xe, Xe′).

Now observe that every pair of r.v.’s Xe, Xe′ are independent as argued above, so all the covariances
Cov(Xe, Xe′) are zero. And since Xe is a 0-1 r.v. with expectation 1

2 , Var[Xe] = 1
4 . Thus we get

Var[X] =
∑

e Var[Xe] = 1
4 |E|, as before.

Note: Some people failed to explain why Xe, Xe′ are independent. Also, note that although each pair
of r.v.’s Xe, Xe′ is independent, it is not true that the Xe are mutually independent. To see this, consider
three edges e, e′, e′′ that form a triangle. If Xe = Xe′ = 1 then it must be the case that Xe′′ = 0.
We say that the Xe are pairwise independent but not mutually independent. Since variance is only
a second-order quantity, pairwise independence is enough to conclude that variances sum. We’ll talk
more about pairwise independence later in the class.

(d) By Chebyshev’s inequality, 2pts

Pr[X < 0.49|E|] ≤ Pr
[
|X − 1

2 |E|| > 0.01|E|
]

≤ 1
4 |E|/(0.01|E|)2 = O(1/|E|)

Hence, p ≥ 1−O(1/|E|) as required.

Again, some students incorrectly used OPT in place of |E| in Chebyshev’s inequality.

(e) We keep running the above algorithm until the size of the cut is at least 0.49|E|. By the bound in 2pts
part (b) and the expectation of a geometric r.v., the expected number of repetitions we need is at most
51, so the expected running time is still linear. Correctness follows from the fact that 0.49|E| ≥
0.49OPT. We stress that the termination condition must compare the size of the cut with 0.49|E| and
not with 0.49OPT because we do not know the value of OPT!
The bound in part (d) yields a better upper bound on the expected running time; namely, it tells us
that the expected number of repetitions is in fact only 1/(1 − O(|E|−1)) = 1 + O(|E|−1), which
approaches 1 as |E| → ∞ (i.e., for large graphs).

Some students just said that expected running time is O(1), or just 1, ignoring the dependency on |E|.
While it is indeed O(1) (which just means it’s bounded above by some constant), you can state the
stronger fact that it’s 1 + O(1/|E|), which tends to 1 as |E| → ∞. And it’s not true that it’s 1, since
it’s in fact slightly larger than 1 (by an amount O(1/|E|)).

3. (a) As suggested in the Hint, write X =
∑

ij Xij , where for each pair (i, j) with i < j (which henceforth 2pts
we write ij for simplicity), Xij is the indicator r.v. of the event that ij is an inversion. Now clearly



E[Xij ] = 1
2 for all ij by symmetry (since the number of permutations π with π(i) < π(j) is equal to

the number with π(i) > π(j)). Hence by linearity of expectation we have

E[X] =
∑
ij

E[Xij ] =
(

n

2

)
1
2

=
n(n− 1)

4
.

(b) Generalizing the formula Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ) from class to a sum over 4pts
any finite number of r.v.’s, we can express Var[X] as

Var[X] =
∑
ij

Var[Xij ] + 2
∑
ij≺kl

Cov(Xij , Xkl). (1)

Note that in the second sum here we need to enumerate each pair of distinct pairs ij, kl exactly once.
To ensure this, we define a natural order ≺ on such pairs by ij ≺ kl iff either (i) i < k, or (ii) i = k
and j < l.
Since each Xij is a 0-1 r.v. with parameter p = 1

2 , we have that Var[Xij ] = p(1− p) = 1
4 , so the first

sum in (1) is
(
n
2

)
1
4 = n(n−1)

8 .
Now we turn to the covariances in (1). Observe that, for pairs ij and kl such that i, j, k, l are all
distinct, the r.v.’s Xij and Xkl are independent (since the relative order of i, j doesn’t affect the relative
order of k, l). Hence most of the covariances in (1) are in fact zero. We only need to handle the cases
where ij and kl overlap. Recall that we are assuming ij ≺ kl.
Case 1: i = k. In this case we must have j < l. There are

(
n
3

)
ways to choose i, j, k, l with i = k and

j < l: namely, pick three distinct values in {1, . . . , n}, set i = k to be the smallest one, l the largest,
and j the one in the middle. For each such pair of r.v.’s Xij , Xkl, we have

Cov(Xij , Xkl) = E[XijXkl]− E[Xij ]E[Xkl]. (2)

The first term in (2) is just Pr[(π(i) > π(j)) ∩ (π(i) > π(l))]: since exactly two of the six possible
relative orderings of π(i), π(j), π(k) satisfy this condition, we see that this probability is 1

3 . And the
second term in (2) is just 1

2 ×
1
2 = 1

4 . Hence Cov(Xij , Xkl) = 1
3 −

1
4 = 1

12 , and the total contribution
of this case is 1

12

(
n
3

)
.

Case 2: j = k. Again there are
(
n
3

)
ways to choose i, j, k, l in this case: pick three distinct values, set

j = k to be the middle one, i the smallest, and l the largest. Writing the covariance again as in (2), the
first term is Pr[(π(i) > π(j)) > π(l))], which is 1

6 since only one of the six possible orderings works.
Thus in this case Cov(Xij , Xkl) = 1

6 −
1
4 = − 1

12 , and the total contribution here is − 1
12

(
n
3

)
. [Note

that the covariances are negative in this case!]
Case 3: j = l. Again there are

(
n
3

)
ways to choose i, j, k, l: pick three values, set j = l to be the largest,

i the smallest, and k the middle one. This time the first term in (2) is Pr[(π(i) > π(j)) ∩ (π(k) >
π(j))]. This is symmetrical with Case 1, so we get an overall contribution of 1

12

(
n
3

)
to the sum of

covariances.
Plugging all of this into (1), we get

Var[X] =
n(n− 1)

8
+ 2

1
12

(
n

3

)
− 2

1
12

(
n

3

)
+ 2

1
12

(
n

3

)
=

n(n− 1)
8

+
1
6

(
n

3

)
.

Finally, we can simplify this to Var[X] = n3

36 + O(n2), as required.



(c) By Chebyshev’s inequality, and using the values of E[X] and Var[X] from parts (a) and (b), we have 2pts

Pr[X ≥ (
1
4

+ ε)n2] ≤ Pr[|X − E[X]| ≥ εn2] ≤ Var[X]
ε2n4

=
n3 + O(n2)

36ε2n4
,

which tends to 0 as n →∞ for any fixed ε > 0.

4. (a) We focus on the event Ed; the event Eu follows by a symmetric argument. Writing X for the r.v. 3pts
that denotes the number of elements of R that are less than or equal to the median m, we have that
Pr[Ed] = Pr[|{r ∈ R | r ≤ m}| < 1

2nα−nβ]. But the r.v. X is has distribution Bin(nα, 1/2) (actually
the 1/2 may be slightly larger due to rounding, which only makes our bounds better), so E[X] = 1

2nα

and Var[X] = 1
4nα. Thus by Chebyshev we get

Pr[Ed] ≤ Pr[|X − E[X]| ≥ nβ] ≤ Var[X]
n2β

=
nα

4n2β
= O(n−2β+α),

as required.

(b) As in class, we introduce two new events: 3pts

E ′C : at least 2n1−α+β elements of C are < m;
E ′′C : at least 2n1−α+β elements of C are > m.

Clearly if EC happens then at least one of E ′C , E ′′C must happen. By symmetry it suffices to bound
Pr[E ′C ], as the same bound will hold for Pr[E ′′C ].
Now note that, by analogy with what we did in class, in order for E ′C to happen, the rank of d in
(the sorted order of) S must be at most 1

2n − 2n1−α+β , which implies that our random sample R
must contain at least 1

2nα − nβ elements within the smallest 1
2n − 2n1−α+β elements of S. Let the

r.v. Y denote the number of elements of R that fall within this portion of S. Then Y is distributed
as Bin(nα, n/2−2n1−α+β

n ) = Bin(nα, 1
2 −

2
nα−β ), and hence E[Y ] = 1

2nα − 2nβ and Var[Y ] =
nα(1

2 −
2

nα−β )(1
2 + 2

nα−β ) = nα(1
4 − 4n2(α−β)) < 1

4nα. Finally, we use Chebyshev’s inequality to
deduce that

Pr[E ′C ] ≤ Pr[|Y − E[Y ]| > nβ ] ≤ Var[Y ]
n2β

≤ nα

4n2β
= O(n−2β+α).

(c) From parts (a) and (b), we deduce by a union bound that the probability that any of the four “bad” 2pts
events above occurs is at most Pr[Ed]+Pr[Eu]+Pr[E ′C ]+Pr[E ′′C ] = O(n−2β+α), which tends to zero
as n →∞ provided α < 2β. As in class, the absence of any of these events ensures that the algorithm
will not fail, and will output the median m of S. Moreover, the running time of the algorithm will be
bounded by O(n) plus the time to sort the sets R and C. By construction, |R| = nβ = o(n) since
β < 1, so R can be sorted in sublinear (in n) time. And because EC doesn’t hold, we also know that
|C| ≤ 4n1−α+β , which is o(n) provided 1 − α + β < 1, i.e., β < α. Thus the algorithm works as
claimed provided β < α < 2β.


