
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 2 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 35.

1. For i = 1, 2, . . . , 220 − 2, let Xi be an indicator random variable that assumes the value 1 if the 3 letters 5pts
beginning at the i’th letter in the text form the sequence “ape”, and 0 otherwise. Clearly, Pr[Xi = 1] = 26−3,
so E[Xi] = 26−3. Now, let the random variable X be the number of times the sequence “ape” appears in
the text. Then,

X = X1 + X2 + . . . + X220−2.

By linearity of expectation, the expected number of times the sequence “ape” appears in the text is

E[X] = E[X1] + E[X2] + . . . + E[X220−2] =
220 − 2

263
≈ 59.7.

2. (a) The distribution of X is given by 2pts

Pr[X = t] = Pr[exactly k − 1 of the first t− 1 tosses land heads] · Pr[the t’th toss lands heads]

=
(

t− 1
k − 1

)
pk−1(1− p)t−k · p

=
(

t− 1
k − 1

)
pk(1− p)t−k.

(b) Let Y1 be the number of tosses up to, and including, the first head. For i = 2, . . . , k, let Yi be the 3pts
number of tosses up to, and including, the i’th head, starting immediately after the i− 1’th head. Then
clearly X = Y1 + Y2 + . . . + Yk. Each of Y1, . . . , Yk is a geometric r.v. with mean p, so from class
E[Y1] = E[Y2] = · · · = E[Yk] = 1

p . Hence E[X] = k
p .

3. (a) Andrew’s scheme involves repeatedly flipping 1000 coins until exactly 500 heads and 500 tails are ob- 3pts
tained. The probability of this happening is p =

(
1000
500

)
1

21000 ∼ 1√
500π

, using Stirling’s approximation
as explained below. The number of trials until we succeed is a geometric r.v. with parameter p, so the
expected number of trials is 1

p ∼
√

500π, giving a total of 1000
√

500π ≈ 39600 coin flips.
It remains to explain the calculation with Stirling’s formula. Note that, for any n, we have(

2n

n

)
=

(2n)!
(n!)2

∼ (2n/e)2n
√

4πn

(n/e)2n2πn
=

22n

√
πn

.

Plugging in n = 500 we get
(
1000
500

)
≈ 21000

√
500π

, which is exactly what we used in the previous paragraph.
Note: Some students didn’t use Stirling’s formula to simplify the calculation here. You should get into
the habit of using it, since it gives you a much clearer idea of the magnitudes of various quantities than
the raw binomial coefficients do.

(b) Betty’s scheme involves tossing coins until either 500 heads or 500 tails have been obtained, and 3pts
then padding the sequence to get 1000 tosses with exactly 500 heads and 500 tails. This is a bad
scheme because it does not give a uniform distribution. To see this, consider for example the sequence
consisting of 500 heads followed by 500 tails. Since there are

(
1000
500

)
valid sequences, this particular

one should have probability 1/
(
1000
500

)
≈
√

500π2−1000 using Stirling’s approximation as in part (a).
But in Betty’s scheme, this sequence has probability 2−500 (i.e., the chance of getting 500 heads in a
row), which is clearly way too high since

√
500π � 2500.



(c) A better scheme involves randomly selecting the positions of the 500 heads in the sequence of 1000 4pts
tosses. One way to do this is to repeatedly choose random positions in the range 1 to 1000 until 500
distinct random positions have been obtained. A random number in the range 1 to 1024 can be picked
using 10 coin tosses (since 210 = 1024; if we pick a number larger than 1000 we just try again–we
ignore this detail). So say we’re picking our kth position, where 1 ≤ k ≤ 500. The probability
that a random number in the range 1 to 1024 has not been previously selected and is ≤ 1000 is
1001−k
1024 ≥ 501

1024 ≥
1

2.05 , so the expected number of trials (each involving 10 coin tosses) till such a value
is found is≤ 2.05. The expected total number of coin tosses is then at most

∑500
k=1 2.05×10 = 10250.

(Actually, we have been quite pessimistic here in taking the worst case over k. The exact expectation
is 10×

∑500
k=1

1024
1001−k = 10240( 1

501 + 1
502 + · · ·+ 1

1000) ≈ 10240 ln(1000
501 ) ≈ 7100.)

An even better method is the following (but we did not necessarily expect anybody to come up with
this!). Suppose our first random coin toss is H. Then for our next toss, we should use a biased coin with
heads probability 499/999. (Why? Think about the conditional probabilities.) By the same argument,
if the first i flips have hi heads (and i − hi tails), then at the next step we should flip a coin with the
probability of heads being (500 − hi)/(1000 − i), and so on. But how do we simulate these biased
coins with our fair coin? We claim that any bias p can be realized using an expected number of only
two fair coin flips!!! To see this, write p = 0.p1p2 . . . in binary. Now generate a random number
r = 0.r1r2 . . . between 0 and 1 by successively choosing each binary digit ri using an independent
fair coin flip. We can stop when we know that r > p or that r < p (corresponding to an outcome of H
or T respectively for our biased coin). And when do we know this? It is when we reach the first i for
which ri 6= pi. But the expected number of tosses for this event to happen is just 2. (Why?) Putting
all this together, the expected number of coin flips needed to generate the entire random sequence of
1000 flips is only 2000.

4. (a) Fix any r ∈ {1, 2 . . . , n}. The algorithm outputs r if and only if cn, . . . , cr+1 land tails, and cr lands 2pts
heads. This happens with probability

1
r
·

r+1∏
j=n

(
1− 1

j

)
=

1
r
· n− 1

n
· n− 2
n− 1

· · · · · r

r + 1
=

1
n

.

Hence, the scheme generates r ∈ {1, 2, . . . , n} u.a.r.

(b) Following the hint, suppose we pick each si using the method of part (a). (This thought experiment is 3pts
OK because we know from part (a) that this is a valid way of generating an integer u.a.r.) Following
through the whole process of generating the si, we see that it is equivalent to flipping each coin cj ,
j = n, n − 1, . . . , 1 until it lands tails, and then moving on to the next coin. The value mj is the
number of times cj lands heads before it lands tails. The probability that cj lands heads exactly mj

times before landing tails is
(

1
j

)mj
(
1− 1

j

)
. Hence, the probability we generate the sequence (si) is

n∏
j=2

(
1
j

)mj
(

1− 1
j

)
.

(Note that j = 1 is missed out because m1 = 1 always.)

(c) Write r ∈ {1, . . . , n} in factored form as
∏

p pβp . (Recall that this factorization is unique.) The 3pts
probability that the coin tosses of the algorithm produce the number r is exactly the probability that
mp = βp for all primes p ≤ n. The values of the other mj are irrelevant. Summing the probabilities
in part (b) over all sequences satisfying this condition, we get

Pr
[
mp = βp for all primes p ≤ n

]
=

∏
p

(
1
p

)βp
(

1− 1
p

)
=

αn

r
.



Note that, since all values of the other mj are allowed, their contributions sum to 1. Finally, taking
into account the last line of the algorithm, the probability that r is output is r

n ·
αn
r = αn

n .

(d) The probability that the algorithm does not fail is
∑n

r=1 Pr[algorithm outputs r] = n · αn
n = αn. 2pts

Hence, the expected number of trials is α−1
n ∼ 1.8 ln n.

(e) Let X denote the number of primality tests performed by one trial of the algorithm. We can write this 2pts
as X = X1 + . . . + Xn, where Xj is the indicator r.v. of the event that j is tested for primality. Note
that this happens iff mj ≥ 1, so by our analysis in part (b) we have E[Xj ] = Pr[j is tested] = 1

j .
Hence E[X] =

∑n
j=1 E[Xj ] = Hn, as required.

(f) The total number of primality tests performed is X1 +X2 + . . .+XT , where Xi is the number of tests 2pts
performed in the ith trial and T is the total number of trials needed until success is achieved. Since T
is a stopping time for the Xi (in the sense that the event T = t depends only on the outcomes of the
first t trials), and the Xi are iid, we have by Wald’s equation as given in the Note:

E(X1 + X2 + . . . + XT ) = E(X1)E(T ) = O((log n)2),

using parts (d) and (e).
The following alternative argument avoids appealing to Wald’s equation by using conditional expec-
tations in a careful way. (Actually, this argument amounts to a proof of Wald’s equation in this case.)
First note that we can write

∑T
i=1 Xi as

∑∞
i=1 XiI{T≥i}, where I{T≥i} is the indicator r.v. of the event

that T ≥ i. Taking expectations:

E
( ∞∑

i=1

XiI{T≥i}

)
=

∞∑
i=1

E(XiI{T≥i}) =
∞∑
i=1

E(Xi) Pr[T ≥ i] = E(X1)
∞∑
i=1

Pr[T ≥ i] = E(X1)E(T ).

The key step here is the second equality, which follows from the fact that Xi is independent of the
event T ≥ i (since this event depends only on the outcomes of the first i− 1 trials).
Note: We penalized students who simply multiplied E(X1) by E(T ) without justification, since this is
not always valid. You need to say that T is a stopping time and that the Xi are independent, as given
in the Hint.


