
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 10 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 30.

1. (a) Since both X and µ are non-negative, we can write |X − µ| ≤ X + µ and hence E[|X − µ|] ≤ 2pts
E[X + µ] = E[X] + µ = 2µ.

(b) Consider the r.v. X that takes on the value 0 with probability 1 − p and the value M > µ with
probability p (where p, M are to be determined). The constraint that E[X] = µ implies that pM = µ. 3pts
Now we can compute

E[|X − µ|] = (1− p)µ + p(M − µ) = 2(1− p)µ.

Thus by taking p = ε/2 (and M = µ/p = 2µ/ε), we get E[|X−µ|] = (2−ε)µ for any desired ε > 0,
as required.

(c) In this case we can set let X take values µ + M and µ−M each with probability 1
2 , for an arbitrarily 1pt

large M . Then E[|X − µ|] = M , which is unbounded.

2. (a) We let Zi = (ai, bi), and let L = L(Z1, . . . , Zn) denote the length of a lcs of a, b. Then Xi = 4pts
E[L|Z1, . . . , Zi] is a martingale (the Doob martingale of L w.r.t. (Zi)). It is easy to check that L
is 2-Lipschitz (if we remove ai, bi and their partners from any common subsequence of a, b, we get a
subsequence at most two shorter; and by reversing the argument we get a similar bound on the increase
caused by changing ai, bi). Since the Zi are also independent, we can apply Azuma’s inequality with
bounded differences of 2 to deduce that

Pr[|Xn − µn| ≥ λ] ≤ 2 exp(−λ2/8n).

NOTE: We can actually do slightly better by considering instead the filter Z2i−1 = ai, Z2i = bi, which
makes L 1-Lipschitz with a difference sequence of length 2n and hence replaces the above bound by
2 exp(−λ2/4n).

Note that independence of the Zi is crucial here, in addition to the Lipschitz property; see part (ii)
below for an illustration of what can go wrong in the absence of independence.

(b) Part (a) shows that deviations from the mean µn of order ω(
√

n) (i.e., asymptotically larger than
√

n) 1pt
are very unlikely. Since we are given that µn itself is linear in n, the concentration implied by part (a)
is indeed useful as

√
n is of lower order than n.

(c) (i) No difference; the argument above is oblivious to the alphabet size. 1pt
(ii) In the absence of independence, we can’t claim any non-trivial concentration. (For example, 2pts

suppose we have the following values for a, b, each with probability 1
4 : (a = b = 0n), (a =

b = 1n), (a = 0n, b = 1n) and (a = 1n, b = 0n). Then E[L] = n
2 , but |L − E[L]| = n

2 with
probability 1.)
Note that the arguments of part (a) do still work if ai and bi are dependent, provided that ai, aj

are independent, and bi, bj are independent, for i 6= j.



(iii) Here the argument above still holds, but the function L becomes 3-Lipschitz. Thus we get the 2pts
slightly weaker bound

Pr[|Xn − µn| ≥ λ] ≤ 2 exp(−λ2/18n).

NOTE: The alternative argument above also extends, making L 1-Lipschitz over a sequence of
length 3n and giving the better bound 2 exp(−λ2/6n).

3. We consider the Doob martingale Yi := E[Bn | X1, . . . , Xi]. Clearly the function Bn is 1-Lipschitz, since 4pts
changing the size of one item can change the number of required bins by at most 1. Since the variables Xi

are also independent, we may therefore use Azuma’s inequality with all ci = 1 to conclude that

Pr[|Bn − µn| ≥ λ] ≤ 2 exp(−λ2/2n).

Thus once again, deviations of size ω(
√

n) from the mean are very unlikely, so the distribution is concen-
trated as claimed. The concentration result is oblivious to the distribution of the Xi (assuming of course that
it is supported on the interval (0, 1). (However, the value of E[Bn] does depend on the distribution.)

4. Throughout, we will interpret an m × m binary matrix Z as an m2-bit binary number by writing out the 10pts
matrix in row-major order (i.e., writing out the first row, then the second row, and so on), and we use as a
fingerprint F (Z) := Z mod p, where p is a prime chosen at random from a suitable range. Writing X[i, j]
for the m × m submatrix of X with top left corner at position (i, j), we can apply the usual Karp-Rabin
scheme as follows:

for j = 1 to n−m + 1 do
for i = 1 to n−m + 1 do

if F (Y ) = F (X[i, j]) then return “match”
return “no match”

Given F (X[i, j]) the next fingerprint F (X[i + 1, j]) can be computed quickly using the rule

F (X[i + 1, j]) =
(
2m

(
F (X[i, j])− 2m(m−1)F (x[i, j])

)
+ F (x(i + m, j))

)
mod p,

where x[i, j] denotes the m-bit number obtained from the matrix elements xi,j through xi,j+m−1. If we
have precomputed F (x[i, j]) for all i, j, this update takes time only O(1), assuming that multiplication and
addition mod p can be done in constant time. Each time the column is shifted right, however, the initial
fingerprint F (X[1, j]) takes time O(m) to compute, since each of the m rows must be handled separately.
Therefore the total running time is O(n2 + nm) = O(n2), plus the time to precompute the F (x[i, j]). This
precomputation can also be handled column by column. The first column (j = 1) takes time O(mn) since
there are n rows to deal with, each one being an m-bit string. Subsequent columns can be handled more
efficiently as follows:

F (x[i, j + 1]) =
(
2F (x[i, j])− 2mxi,j + xi,j+m

)
mod p.

This computation takes only constant time, so that the remaining F (x[i, j]) (after the first column) can be
computed in O(n2) time, giving a total precomputation time of O(mn + n2) = O(n2) and a total running
time of O(n2). For comparison, note that the naive algorithm, which explicitly compares Y against all
submatrices X[i, j], takes time O(n2m2).

Just as in the one-dimensional case, if Y is contained in X then this algorithm is always correct. Otherwise,
an error can occur only when p divides

∏
i,j |Y −X[i, j]|, which is an (m2n2)-bit number. Thus choosing

p randomly from the primes in {2, . . . , T}, where T = cm2n2 for a suitable modest constant c, yields a
small probability of error. This means that p will have only O(log n) bits, so our assumption that arithmetic
mod p can be done in constant time is justified.


