Homework 10 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature, and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may be more than one correct solution. The maximum total number of points available is 30 .

1. (a) Since both X and μ are non-negative, we can write $|X-\mu| \leq X+\mu$ and hence $\mathrm{E}[|X-\mu|] \leq 2 p$ ts $\mathrm{E}[X+\mu]=\mathrm{E}[X]+\mu=2 \mu$.
(b) Consider the r.v. X that takes on the value 0 with probability $1-p$ and the value $M>\mu$ with probability p (where p, M are to be determined). The constraint that $\mathrm{E}[X]=\mu$ implies that $p M=\mu$. 3pts Now we can compute

$$
\mathrm{E}[|X-\mu|]=(1-p) \mu+p(M-\mu)=2(1-p) \mu .
$$

Thus by taking $p=\varepsilon / 2($ and $M=\mu / p=2 \mu / \varepsilon)$, we get $\mathrm{E}[|X-\mu|]=(2-\varepsilon) \mu$ for any desired $\varepsilon>0$, as required.
(c) In this case we can set let X take values $\mu+M$ and $\mu-M$ each with probability $\frac{1}{2}$, for an arbitrarily lpt large M. Then $\mathrm{E}[|X-\mu|]=M$, which is unbounded.
2. (a) We let $Z_{i}=\left(a_{i}, b_{i}\right)$, and let $L=L\left(Z_{1}, \ldots, Z_{n}\right)$ denote the length of a lcs of a, b. Then $X_{i}=$ $\mathrm{E}\left[L \mid Z_{1}, \ldots, Z_{i}\right]$ is a martingale (the Doob martingale of L w.r.t. $\left(Z_{i}\right)$). It is easy to check that L is 2-Lipschitz (if we remove a_{i}, b_{i} and their partners from any common subsequence of a, b, we get a subsequence at most two shorter; and by reversing the argument we get a similar bound on the increase caused by changing a_{i}, b_{i}). Since the Z_{i} are also independent, we can apply Azuma's inequality with bounded differences of 2 to deduce that

$$
\operatorname{Pr}\left[\left|X_{n}-\mu_{n}\right| \geq \lambda\right] \leq 2 \exp \left(-\lambda^{2} / 8 n\right)
$$

NOTE: We can actually do slightly better by considering instead the filter $Z_{2 i-1}=a_{i}, Z_{2 i}=b_{i}$, which makes L 1-Lipschitz with a difference sequence of length $2 n$ and hence replaces the above bound by $2 \exp \left(-\lambda^{2} / 4 n\right)$.
Note that independence of the Z_{i} is crucial here, in addition to the Lipschitz property; see part (ii) below for an illustration of what can go wrong in the absence of independence.
(b) Part (a) shows that deviations from the mean μ_{n} of order $\omega(\sqrt{n})$ (i.e., asymptotically larger than \sqrt{n}) lpt are very unlikely. Since we are given that μ_{n} itself is linear in n, the concentration implied by part (a) is indeed useful as \sqrt{n} is of lower order than n.
(c) (i) No difference; the argument above is oblivious to the alphabet size.
(ii) In the absence of independence, we can't claim any non-trivial concentration. (For example, 2pts suppose we have the following values for a, b, each with probability $\frac{1}{4}:\left(a=b=0^{n}\right),(a=$ $\left.b=1^{n}\right),\left(a=0^{n}, b=1^{n}\right)$ and $\left(a=1^{n}, b=0^{n}\right)$. Then $\mathrm{E}[L]=\frac{n}{2}$, but $|L-\mathrm{E}[L]|=\frac{n}{2}$ with probability 1.)
Note that the arguments of part (a) do still work if a_{i} and b_{i} are dependent, provided that a_{i}, a_{j} are independent, and b_{i}, b_{j} are independent, for $i \neq j$.
(iii) Here the argument above still holds, but the function L becomes 3-Lipschitz. Thus we get the 2 pts slightly weaker bound

$$
\operatorname{Pr}\left[\left|X_{n}-\mu_{n}\right| \geq \lambda\right] \leq 2 \exp \left(-\lambda^{2} / 18 n\right)
$$

Note: The alternative argument above also extends, making L 1-Lipschitz over a sequence of length $3 n$ and giving the better bound $2 \exp \left(-\lambda^{2} / 6 n\right)$.
3. We consider the Doob martingale $Y_{i}:=\mathrm{E}\left[B_{n} \mid X_{1}, \ldots, X_{i}\right]$. Clearly the function B_{n} is 1-Lipschitz, since changing the size of one item can change the number of required bins by at most 1 . Since the variables X_{i} are also independent, we may therefore use Azuma's inequality with all $c_{i}=1$ to conclude that

$$
\operatorname{Pr}\left[\left|B_{n}-\mu_{n}\right| \geq \lambda\right] \leq 2 \exp \left(-\lambda^{2} / 2 n\right)
$$

Thus once again, deviations of size $\omega(\sqrt{n})$ from the mean are very unlikely, so the distribution is concentrated as claimed. The concentration result is oblivious to the distribution of the X_{i} (assuming of course that it is supported on the interval $(0,1)$. (However, the value of $\mathrm{E}\left[B_{n}\right]$ does depend on the distribution.)
4. Throughout, we will interpret an $m \times m$ binary matrix Z as an m^{2}-bit binary number by writing out the matrix in row-major order (i.e., writing out the first row, then the second row, and so on), and we use as a fingerprint $F(Z):=Z \bmod p$, where p is a prime chosen at random from a suitable range. Writing $X[i, j]$ for the $m \times m$ submatrix of X with top left corner at position (i, j), we can apply the usual Karp-Rabin scheme as follows:

$$
\begin{aligned}
& \text { for } j=1 \text { to } n-m+1 \text { do } \\
& \quad \text { for } i=1 \text { to } n-m+1 \text { do } \\
& \quad \text { if } F(Y)=F(X[i, j]) \text { then return "match" } \\
& \text { return "no match" }
\end{aligned}
$$

Given $F(X[i, j])$ the next fingerprint $F(X[i+1, j])$ can be computed quickly using the rule

$$
F(X[i+1, j])=\left(2^{m}\left(F(X[i, j])-2^{m(m-1)} F(x[i, j])\right)+F(x(i+m, j))\right) \bmod p,
$$

where $x[i, j]$ denotes the m-bit number obtained from the matrix elements $x_{i, j}$ through $x_{i, j+m-1}$. If we have precomputed $F(x[i, j])$ for all i, j, this update takes time only $O(1)$, assuming that multiplication and addition $\bmod p$ can be done in constant time. Each time the column is shifted right, however, the initial fingerprint $F(X[1, j])$ takes time $O(m)$ to compute, since each of the m rows must be handled separately. Therefore the total running time is $O\left(n^{2}+n m\right)=O\left(n^{2}\right)$, plus the time to precompute the $F(x[i, j])$. This precomputation can also be handled column by column. The first column $(j=1)$ takes time $O(m n)$ since there are n rows to deal with, each one being an m-bit string. Subsequent columns can be handled more efficiently as follows:

$$
F(x[i, j+1])=\left(2 F(x[i, j])-2^{m} x_{i, j}+x_{i, j+m}\right) \bmod p .
$$

This computation takes only constant time, so that the remaining $F(x[i, j])$ (after the first column) can be computed in $O\left(n^{2}\right)$ time, giving a total precomputation time of $O\left(m n+n^{2}\right)=O\left(n^{2}\right)$ and a total running time of $O\left(n^{2}\right)$. For comparison, note that the naive algorithm, which explicitly compares Y against all submatrices $X[i, j]$, takes time $O\left(n^{2} m^{2}\right)$.
Just as in the one-dimensional case, if Y is contained in X then this algorithm is always correct. Otherwise, an error can occur only when p divides $\prod_{i, j}|Y-X[i, j]|$, which is an $\left(m^{2} n^{2}\right)$-bit number. Thus choosing p randomly from the primes in $\{2, \ldots, T\}$, where $T=\mathrm{cm}^{2} n^{2}$ for a suitable modest constant c, yields a small probability of error. This means that p will have only $O(\log n)$ bits, so our assumption that arithmetic $\bmod p$ can be done in constant time is justified.

