
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 1 Solutions

Notes: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and often contain more explanation than an ideal solution. Also, bear in mind that there may be more than
one correct solution. The maximum total number of points available is 23.

1. (a) It is easier to calculate the probability of the complementary event, that the hand contains no ace. There 2pts
are

(
52
5

)
hands total, each having equal probability. The number of hands that contain no ace is

(
48
5

)
.

Hence the probability that the hand contains no ace is(
48
5

)(
52
5

) =
48 · 47 · 46 · 45 · 44
52 · 51 · 50 · 49 · 48

≈ 0.66.

The probability that the hand contains an ace is just 1 minus this (i.e., about 0.34).
An alternative way to do the above calculation is as follows. For i = 1, . . . , 5, let Ei denote the event
that the ith card dealt is not an ace. Then the event that the hand contains no ace is exactly

⋂5
i=1 Ei.

This can be evaluated as follows:

Pr[
5⋂

i=1

Ei] = Pr[E1] · Pr[E2|E1] · · ·Pr[E5|
4⋂

i=1

Ei] =
48
52

· 47
51

· 46
50

· 45
49

· 44
48

.

(b) Let E1 be the event that the hand contains no card higher than a 10, and E2 the event that the hand 2pts
contains no card higher than a 9. The event we are interested in is precisely E1 \ E2, which has
probability Pr[E1]−Pr[E2]. Each of these probabilities can be calculated in similar fashion to part (a).
Thus

Pr[E1]− Pr[E2] =
36
52

· 35
51

· 34
50

· 33
49

· 32
48

− 32
52

· 31
51

· 30
50

· 29
49

· 28
48

≈ 0.068.

An alternative approach is to compute pi = Pr[E2 and the hand contains exactly i tens] =
(
4
i

)(
32
5−i

)
/
(
52
5

)
,

and the probability we are interested in is given by p1 + p2 + p3 + p4 + p5.
A third way is to use conditional probabilities, namely multiply Pr[the hand contains at least one ten |
E1] by Pr[E1]. The former is given by 1− Pr[the hand contains no tens | E1] = 1−

(
32
5

)
/
(
36
5

)
.

A fourth way is to compute 1− Pr[highest card is at most 9]− Pr[highest card is at least jack] = 1−
Pr[E2]− (1− Pr[E1]).
[NOTE: A potential pitfall here is to compute the probability using the expression 4×

(
35
4

)
/
(
52
5

)
, based

on the reasoning that there are 4 ways to pick a 10, and
(
35
4

)
ways to pick 4 cards from the 36 cards

that are at most 10, minus 1 to account for the first 10. This argument double-counts those hands with
two or more 10s. A similar pitfall exists for part (a) as well.]

(c) The number of ways to pick a flush is 4
(
13
5

)
(four ways to choose the suit, then

(
13
5

)
ways to choose 2pts

five cards in that suit). The probability is thus 4
(
13
5

)
/
(
52
5

)
, which simplifies to 12

51 ·
11
50 ·

10
49 ·

9
48 ≈ 0.0020.

Equivalently, this same expression can be derived by observing that the first card can be anything, the
second card must match the suit of the first (which happens with probability 12

51 ), and so on.

(d) There are 13 ways to choose the first value and 12 ways to choose the second value. Once these are 2pts
chosen, there are

(
4
3

)
ways to choose the three cards of the first value and

(
4
2

)
ways to choose the two

cards of the second value. The overall probability is thus 13 · 12 ·
(
4
3

)
·
(
4
2

)
/
(
52
5

)
≈ 0.0014.



2. We use the principle of deferred decisions, imagining that the rolls on the first nine dice are fixed in advance 3pts
and only the tenth die remains to be rolled. Let Xi denote the number of pips on the ith die, i = 1, 2, . . . , 10,
and let Ek denote the event that X1 + X2 + . . . + X9 ≡ k (mod 3) for k = 0, 1, 2. Then, the probability
that the sum of the pips on all 10 dice is divisible by 3 is given by

Pr[X1 + X2 + . . . + X10 is divisible by 3]

=
2∑

k=0

Pr[X1 + X2 + . . . + X10 is divisible by 3 | Ek] · Pr[Ek]

=
2∑

k=0

Pr[X10 = 3− k or X10 = 6− k | Ek] · Pr[Ek]

=
2∑

k=0

1
3
· Pr[Ek]

=
1
3
(Pr[E0] + Pr[E1] + Pr[E2]) =

1
3
.

[NOTE: The above argument does not assume that Pr[E1] = Pr[E2] = Pr[E3] = 1/3. It uses only the fact
that these three probabilities sum to 1. It is in fact true that these three probabilities are all equal, but this
requires an additional inductive argument to prove it. Some students did provide an inductive proof of this,
which is fine (though rather more complicated than the above argument).]

3. Let E denote the event that we observe a consecutive sequence of at least n heads. Let E1 denote the event 3pts
that the first n coins land heads, so Pr[E1] = 2−n. For i = 2, .., n + 1, let Ei denote the event that the
(i − 1)th coin lands tails, and the next n coins land heads, so Pr[Ei] = 2−(n+1). Note that whenever the
event Ei takes place, there are at most i − 2 ≤ n − 1 heads amongst the first i − 2 coins, so the first
consecutive sequence of n heads must start from the ith coin. Hence, Ei is precisely the event that the first
consecutive sequence of n heads start from the ith coin. Therefore,

• E = E1 ∪ E2 ∪ · · · ∪ En+1; and

• the events E1, . . . , En+1 are mutually exclusive.

It follows that Pr[E] = Pr[E1] + . . . + Pr[En+1] = 2−n + n2−(n+1) = 2−n(1 + n/2).

[NOTE: A common mistake here was to forget to enforce a tail before the run of n heads: this leads to
double-counting. Also, in the above proof, it is important to explain why the events E1, E2, . . . , En+1 are
mutually exclusive. Indeed, the argument used for this problem does not extend readily to computing the
probability that we observe a consecutive sequence of at least n heads when we toss (say) 3n coins: make
sure you understand why!]

4. (a) Let E denote the event that a uniformly random ball is white, and W the event that all 10 balls are 2pts
white. Our goal is to compute Pr[W | E]. We do this using Bayes’ rule:

Pr[W | E] =
Pr[E | W ] · Pr[W ]

Pr[E]
.

Clearly Pr[E | W ] = 1 and Pr[W ] = 1
11 . To compute Pr[E] we write

Pr[E] =
10∑
i=0

Pr[there are exactly i white balls] · Pr[E | there are exactly i white balls]

=
10∑
i=0

1
11

· i

10
=

1
2
.



Plugging all this into Bayes’ rule, we get

Pr[W | E] =
1 · 1

11
1
2

=
2
11

.

(b) Use the same notation as in part (a), except that now E denotes the event that all k balls chosen are 2pts
white. The only probability that changes is Pr[E], which now becomes:

Pr[E] =
10∑
i=0

Pr[there are exactly i white balls] · Pr[E | there are exactly i white balls]

=
10∑
i=0

1
11

· ( i

10
)k.

Using Bayes’ rule as before, we get

Pr[W | E] =
10k

1k + 2k + · · ·+ 10k
.

(Note that this probability tends rather quickly to 1 as k increases, as we would expect.)

5. (a) Let C1, . . . , Ct denote all the distinct minimum cuts in the graph. From the analysis in class, the 1pt
probability that the randomized min-cut algorithm outputs Ci is at least 2

n(n−1) for all i = 1, 2, . . . , t,
and these are mutually exclusive events. Hence, the probability that the randomized min-cut algorithm
outputs some minimum cut is

t∑
i=1

Pr[the algorithm outputs Ci] ≥
t∑

i=1

2
n(n− 1)

≥ 2t

n(n− 1)
.

Since this probability can be at most 1, we see that t ≤ n(n−1)
2 , as required.

(b) Let Gn denote the graph comprising two (n/2)-cliques connected by a single edge if n is even, or a 3pts
bn/2c-clique and a (bn/2c+ 1)-clique connected by a single edge if n is odd. Note that the minimum
cut of Gn has size 1. However, the size of the minimum cut increases to 2 whenever we merge
two vertices from different cliques (to see why this is the case, observe that deleting any edge after
we merge two vertices from different cliques still leaves a single connected component). So, if the
modified algorithm terminates with a minimum cut, it must be the case that at every iteration (as long
as we have at least 4 remaining vertices), it merges two vertices from one of the two cliques. In
particular, this means that after each of the first n/4 iterations, the structure of the graph is still that of
two cliques connected by a single edge.
Letting Ei denote the event that in the ith iteration we choose two vertices from the same clique, we
thus see that the probability of outputting a minimum cut is at most

n/4∏
i=1

Pr[Ei |
i−1⋃
j=1

Ej ]. (1)

To complete the analysis, we just need to bound the probability that the algorithm picks two vertices
from the same clique, given that all previous picks have been of this form. Suppose that on some given
iteration the smaller clique contains a fraction p of the remaining vertices (so the larger clique contains
a fraction 1 − p). Then the probability of picking two vertices from the same clique is p2 + (1 − p)2.
This expression is maximized for p as close to 0 as possible. But since we are only considering the
first n/4 iterations, the smaller clique must always have at least n/2−n/4 = n/4 vertices, so p ≥ 1/3
and the above probability is at most (1/3)2 + (2/3)2 = 5/9.



Hence every conditional probability in the expression (1) above is at most 5/9, so the probability that
the modified algorithm finds a minimum cut is at most (5/9)n/4, which is ≤ c−n for c = (9/5)1/4.
[NOTES: Quite a lot of students used the same example for Gn but falsely claimed that the probability
that the cut survives each iteration is at most 1

2 . In fact it can get quite a bit larger than that (see
above)–and indeed very large in the last few iterations, which is why we only consider n/4 iterations
above.
Also, as a very optional aside, it is interesting to observe that we may compute explicitly the probability
the modified algorithm finds a minimum cut in Gn. For n even, say n = 2k, the probability is given
by: (

2k−2
k−1

)
·
(∏k

i=2

(
i
2

))2

∏2k
i=3

(
i
2

)
The expression in the denominator corresponds to the number of ways to go about contracting each
pair of vertices in Gn until we are left with 2 vertices. There is a

∏k
i=2

(
i
2

)
contribution to the numera-

tor from each of the two n-cliques, and the
(
2k−2
k−1

)
term comes from whether we’re contracting an edge

in the first clique or the second. We may rewrite this probability as

2
(
2k−2
k−1

)
· (k!(k − 1)!)2

(2k)!(2k − 1)!
=

2(k!)2

(2k)!(2k − 1)
= Θ(k−1/22−k)

using Stirling’s approximation. The argument works because Gn has a unique minimum cut (which
means the modified algorithm outputs a minimum cut if and only if it has contracted all the edges in
each of the two cliques). Indeed, the same exponential lower bound applies to two cycles of almost
equal size connected by a single edge. On the other hand, this argument does not apply to any pair of
graphs on n/2 vertices connected by a single edge: e.g., take the graph with vertex set {1, 2, . . . , n}
and edges (n−1, n); (i, n−1) for i = 1, 2, . . . , n/2 and (i, n) for i = n/2+1, . . . , n−2; this graph
has many distinct minimum cuts of size 1.
Another potential example that in fact does not work is a clique on n−1 vertices connected to the n’th
vertex by a single edge. As can be easily checked, the probability that the modified algorithm succeeds
for this graph is

∏n
k=3

(
k−1
2

)
/
(
k
2

)
= 2

n(n−1) .]

(c) Let Ai denote the event that the algorithm outputs a minimum cut on the ith trial. If we perform T 1pt
trials, then the probability that the algorithm outputs a minimum cut in some trial is given by

Pr[
T⋃

i=1

Ai] ≤
T∑

i=1

Pr[Ai] ≤ Tc−n.

Hence this probability certainly cannot be as large as 1/2 as long as T ≤ cn/2. Thus we see that
exponentially many trials are needed to reduce the probability of error to 1/2.


