Section 9

1. (Pairwise Independence) (MU Exercise 15.2)

(a) Let X, Y be numbers chosen independently and uniformly at random from $\{0, \ldots, n\}$. Let Z be their sum modulo $n+1$. Show that X, Y, Z are pairwise independent but not independent.
(b) Extend this example to give a collection of random variables that are k-wise independent but not $(k+1)$-wise independent.
2. (Hashing) (MU Exercise 15.3) For any family of hash functions from a finite set U to a finite set V, show that, when h is chosen at random from that family of hash functions, there exists a pair of elements x and y such that:

$$
\begin{equation*}
\operatorname{Pr}(h(x)=h(y)) \geq \frac{1}{|V|}-\frac{1}{|U|} \tag{1}
\end{equation*}
$$

This result should not depend on how the function h is chosen from the family.
3. (Pairwise Independence) (MU Exercise 15.6) Our analysis of Bucket sort in Section 5.2.2 assumed that n elements were chosen independently and uniformly at random from the range $\left[0,2^{k}\right)$. Suppose instead that n elements are chosen uniformly from the range $\left[0,2^{k}\right)$ in such a way that they are only pairwise independent. Show that, under these conditions, Bucket sort still requires linear expected time.

