Section 8

1. (Probabilistic Method) (MU Exercise 6.3) Given an n-vertex undirected graph $G=(V, E)$, consider the following method of generating an independent set. Given a permutaton σ of the vertices, define a subset $S(\sigma)$ of the vertices as follows: for each vertex $i, i \in S(\sigma)$ iff no neighbor j of i precedes i in the permutation σ.
(a) Show that each $S(\sigma)$ is an independent set in G.
(b) Suggest a natural randomized algorithm to produce σ for which you can show that the expected cardinality of $S(\sigma)$ is

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{d_{i}+1} \tag{1}
\end{equation*}
$$

where d_{i} denotes the degree of vertex i
(c) Prove that G has an independent set of size at least $\sum_{i=1}^{n} 1 /\left(d_{i}+1\right)$
2. (Probabilistic Method) (MU Exercise 6.10) A family of subsets \mathcal{F} of $\{1, \ldots, n\}$ is called an antichain if there is no pair of sets $A, B \in \mathcal{F}$ satisfying $A \subset B$.
(a) Give an example of \mathcal{F} where $|\mathcal{F}|=\binom{n}{\lfloor n / 2\rfloor}$.
(b) Let f_{k} be the number of sets in \mathcal{F} with size k. Show that

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{f_{k}}{\binom{n}{k}} \leq 1 \tag{2}
\end{equation*}
$$

(Hint: Choose a random permutation of the numbers from 1 to n, and let $X_{k}=1$ if the first k numbers in your permutation yield a set in \mathcal{F}. If $X=\sum_{k=0}^{n} X_{k}$, what can you say about X?)
(c) Argue that $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$ for any antichain \mathcal{F}.
3. (Random Graphs) (MU Exercise 5.19) An undirected graph on n vertices is disconnected if there exists a set of $k<n$ vertices such that there is no edge between this set and the rest of the graph. Otherwise, the graph is said to be connected. Show that there exists a constant c such that if $N \geq c n \log n$ then, with probability $1-o(1)$, a graph randomly chosen from $G_{n, N}$ is connected.

