CS 174: Combinatorics and Discrete Probability (Spring 2023), UC Berkeley

Section 8

- 1. (Probabilistic Method) (MU Exercise 6.3) Given an *n*-vertex undirected graph G = (V, E), consider the following method of generating an independent set. Given a permutaton σ of the vertices, define a subset $S(\sigma)$ of the vertices as follows: for each vertex $i, i \in S(\sigma)$ iff no neighbor j of i precedes i in the permutation σ .
 - (a) Show that each $S(\sigma)$ is an independent set in G.
 - (b) Suggest a natural randomized algorithm to produce σ for which you can show that the expected cardinality of $S(\sigma)$ is

$$\sum_{i=1}^{n} \frac{1}{d_i + 1} \tag{1}$$

where d_i denotes the degree of vertex i

- (c) Prove that G has an independent set of size at least $\sum_{i=1}^{n} 1/(d_i + 1)$
- 2. (Probabilistic Method) (MU Exercise 6.10) A family of subsets \mathcal{F} of $\{1, ..., n\}$ is called an *antichain* if there is no pair of sets $A, B \in \mathcal{F}$ satisfying $A \subset B$.
 - (a) Give an example of \mathcal{F} where $|\mathcal{F}| = \binom{n}{\lfloor n/2 \rfloor}$.
 - (b) Let f_k be the number of sets in \mathcal{F} with size k. Show that

$$\sum_{k=0}^{n} \frac{f_k}{\binom{n}{k}} \le 1 \tag{2}$$

(Hint: Choose a random permutation of the numbers from 1 to n, and let $X_k = 1$ if the first k numbers in your permutation yield a set in \mathcal{F} . If $X = \sum_{k=0}^{n} X_k$, what can you say about X?)

- (c) Argue that $|\mathcal{F}| \leq {n \choose |n/2|}$ for any antichain \mathcal{F} .
- 3. (Random Graphs) (MU Exercise 5.19) An undirected graph on n vertices is disconnected if there exists a set of k < n vertices such that there is no edge between this set and the rest of the graph. Otherwise, the graph is said to be connected. Show that there exists a constant c such that if $N \ge cn \log n$ then, with probability 1 - o(1), a graph randomly chosen from $G_{n,N}$ is connected.