1. Show that if a graph G has n vertices and m edges, then there exists a cut of size at least $m/n + \frac{(n+1)}{2n}$.

[HINT: The uniform distribution over all partitions implies the existence of a cut of size at least $m/2$. Try a different distribution over partitions.]

2. In this problem, a 2-coloring of a graph G is an assignment of colors red or green to the edges of G. Consider a random 2-coloring of K_n (the complete graph on n vertices), namely each edge is assigned a random color.

(a) Compute the expected number of monochromatic subgraphs K_k in K_n (for a fixed k and n).

(b) Compute n as a function of k such that the expected number of monochromatic K_k is 1 (the asymptotic value suffices). How about k as a function of n?

We have seen in lecture that if $\binom{n}{k} \cdot 2^{1-(\frac{k}{2})} < 1$, then there exists a 2-coloring of K_n so that it has no monochromatic K_k. Here, we generalize the result to handle the case $\binom{n}{k} \cdot 2^{1-(\frac{k}{2})} \geq 1$ (where we color a smaller graph K_x, $x \leq n$).

(c) Show that there exists a 2-coloring of K_n such that the number of monochromatic K_k is at most $\left\lfloor \binom{n}{k} \cdot 2^{1-(\frac{k}{2})} \right\rfloor$.

(d) Deduce that there exists a 2-coloring of K_x so that it contains no monochromatic K_k, where

$$x = n - \left\lfloor \binom{n}{k} \cdot 2^{1-(\frac{k}{2})} \right\rfloor.$$

[NOTE: Note that $x = n$ whenever $\binom{n}{k} \cdot 2^{1-(\frac{k}{2})} < 1$.]