1. **Constructing Random Permutations.** We show how to construct a random permutation \(\pi \) on \([n] = \{1, 2, \ldots, n\} \), given a black box that outputs numbers independently and uniformly at random from \([k] = \{1, 2, \ldots, k\} \), where \(k \geq n \). If we compute a function \(f : [n] \rightarrow [k] \) with \(f(1), f(2), \ldots, f(n) \) all distinct, this yields a permutation; simply output the numbers \(1, 2, \ldots, n \) in the order of the \(f(i) \) values. To construct such a function (using the black box), do the following for \(j = 1, 2, \ldots, n \):

Choose \(f(j) \) repeatedly obtaining numbers from the black box and set \(f(j) \) to be the first number found such that \(f(j) \) is different from \(f(1), \ldots, f(j-1) \).

(a) Prove that this approach gives a permutation chosen u.a.r. from all permutations.

(b) Find the expected number of calls to the black box that are needed when \(k = n \) and \(k = 2n \).

(c) For the case \(k = 2n \), argue that for each \(j \), the probability that a single call to the black box assigns a value of \(f(j) \) to \(j \) (that is, the call returns a value that is distinct from the previous assignments is \(f(1), \ldots, f(j-1) \)) is at least 1/2. Use a Chernoff bound to show that the probability that the number of calls to the black box is greater than \(4n \) is \(2^{-\Omega(n)} \).

[TIP: Recall the Chernoff bound: Let \(X_1, \ldots, X_n \) be independent 0-1 r.v.'s. Let \(X = X_1 + \ldots + X_n \) and \(E[X] = \mu \). Then, for \(0 < \delta < 1 \), \(\Pr[X \leq (1 - \delta)\mu] \leq e^{-\mu\delta^2/2} \).]

2. **Routing via Bit-Fixing Can Take Exponential Time.** Consider the bit-fixing routing algorithm for routing a permutation on the \(n \)-cube. (For \(n = 4 \) and to route a packet from 0000 to 1111, the bit-fixing routing algorithm uses the path

\[
0000 \rightarrow 1000 \rightarrow 1100 \rightarrow 1110 \rightarrow 1111
\]

Suppose \(n \) is even. Write each source \(s \) as the concatenation of two binary strings \(a_s \) and \(b_s \), each of length \(n/2 \). Let the destination of \(s \)'s packet be the concatenation of \(b_s \) and \(a_s \). Show that this permutation causes the bit-fixing routing algorithm to take \(\Omega(2^{n/2}) \) steps.