One way to abstract the median-finding algorithm is as follows:

— Pick \(d \) such that the rank of \(d \) in the original set \(S \) is between \(n/2 - 2n^{2/3} \) and \(n/2 \). Let \(\ell_d \) be the rank of \(d \) in \(S \).

— Pick \(u \) such that the rank of \(u \) in the original set \(S \) is between \(n/2 \) and \(n/2 + 2n^{2/3} \).

— Let \(C \) be the set of elements in \(S \) between \(d \) and \(u \) and sort \(C \). Output the \((n/2 - \ell_d + 1)\)th element in \(C \).

Note that given \(s \), we can compute the rank of \(s \) in \(S \) in linear time. Therefore, we can always test in linear time whenever the ranks of \(d \) and \(u \) lie in the given range. Moreover, whenever the ranks of \(d \) and \(u \) do lie in the given range, it is the case that:

- \(|C| \leq 4n^{2/3} \), and thus we can sort \(C \) in linear time;
- the median lies in \(C \), so the algorithm must output the median correctly.

It is then clear that there are four ways in which the algorithm could fail:

- rank \(d \) is greater than \(n/2 \), namely
 \[\mathcal{E}_1 : \quad |\{r \in R \mid r \leq m\}| < \frac{1}{2} n^{3/4} - \sqrt{n} \]

- rank \(d \) is less than \(n/2 - 2n^{2/3} \) (\(\mathcal{E}_{3,2} \) in the text)

- rank \(u \) is less than \(n/2 \) (\(\mathcal{E}_2 \) in the text)

- rank \(u \) is greater than \(n/2 + 2n^{2/3} \) (\(\mathcal{E}_{3,1} \) in the text)

where \(R \) is a set of \(n^{3/4} \) elements of \(S \) chosen u.a.r. with replacement. We can show that each of these events occurs with probability at most \(\frac{1}{4} n^{-1/4} \).
In section, we studied an algorithm related to picking \(d\) in the above exposition. Specifically, we are given an unsorted list \(S\), comprising distinct unknown numbers \(\alpha_1 < \alpha_2 < \cdots < \alpha_n\) in some unknown order. Our goal is to output in linear time a number \(d\) satisfying \(\alpha_{n/2-o(n)} < d < \alpha_{n/2}\). In particular, \(d\) is a “good” lower bound for the median. The algorithm we will analyze is as follows, parameterized by a constant \(\gamma \in (0.5, 0.9)\):

— Pick a random set \(R\) of size \(n^\gamma\) u.a.r. from \(S\) with replacement.

— Sort the set \(R\) and output \(d\), the \((1/2 n^\gamma - n^{2\gamma/2})\)th smallest element in \(R\).

We want to compute the probability that \(d\) lies between \(\alpha_{n/2-2n^{1-\gamma/2}}\) and \(\alpha_{n/2}\) (that is, \(d\) has rank between \(n/2 - 2n^{1-\gamma/2} = n/2 - o(n)\) and \(n/2\) in the list \(S\)). We do this by computing \(\Pr[d > \alpha_{n/2}]\) and \(\Pr[d < \alpha_{n/2-2n^{1-\gamma/2}}]\).

(a) Let \(X_1, \ldots, X_{n^\gamma}\) be independent 0-1 r.v.’s such that \(\Pr[X_1 = 1] = p\). Let \(Y = X_1 + \cdots + X_{n^\gamma}\), so \(Y\) is a binomial r.v. with mean \(pn^\gamma\). Using Chebyshev’s inequality, show that:

\[
\Pr\left[|Y - E[Y]| \geq n^{\gamma/2}\right] \leq \frac{1}{4}
\]

(b) Using (a), show that \(\Pr[d \geq \alpha_{n/2}] \leq \frac{1}{4}\).

[HINT: Consider the r.v. \(Y_1\) which is the number of elements in \(R\) less than \(\alpha_{n/2}\) and observe that \(\Pr[d \geq \alpha_{n/2}] = \Pr[Y_1 < \frac{n^\gamma}{2} - n^{\gamma/2}]\).]

(c) Using (a), show that \(\Pr[d < \alpha_{n/2-2n^{1-\gamma/2}}] \leq \frac{1}{4}\).

[HINT: Consider the r.v. \(Y_2\) which is the number of elements in \(R\) less than \(\alpha_{n/2-2n^{1-\gamma/2}}\) and observe that \(\Pr[d < \alpha_{n/2-2n^{1-\gamma/2}}] = \Pr[Y_2 \geq \frac{n^\gamma}{2} - n^{\gamma/2}]\). You will also need to show that \(E[Y_2] = \frac{1}{2} n^{\gamma} - 2n^{\gamma/2}\).]

(d) Show that with probability at least \(1/2\), the algorithm outputs a number between \(\alpha_{n/2-o(n)}\) and \(\alpha_{n/2}\).

(e) Show that the running time of the algorithm is \(O(n^\gamma \log n)\). (Assume we can do comparisons and sample an element from \(S\) in constant time.)

(f) Show how we may modify the algorithm to always output a number between \(\alpha_{n/2-o(n)}\) and \(\alpha_{n/2}\) in expected linear time.

Can we improve the analysis of the algorithm using Chernoff bound?

(g) Use the Chernoff bound to obtain an upper bound on \(\Pr[d > \alpha_{n/2}]\).

[TIP: The relevant variant of Chernoff bound is the one which says \(\Pr[X \geq (1 + \delta)\mu] \leq e^{-\mu\delta^2/3}\), where \(0 < \delta \leq 1\).]

(h) Suppose we modify the algorithm to output the \((1/2 n^{\gamma} - n^{2\gamma/3})\)th smallest element in \(R\) and call that number \(d'\). Now, use Chebyshev’s inequality and Chernoff bound to obtain upper bounds on \(\Pr[d' > \alpha_{n/2}]\).