CS 174: COMBINATORICS AND DISCRETE PROBABILITY (SPRING 2023), UC BERKELEY

Section 3

- 1. (Moments) (Book Exercise 3.12) Find an example of a random variable with finite expectation and unbounded variance. Give a clear argument showing that your choice has these properties.
- 2. (Tail Inequalities) (Book Exercise 3.16-3.17) Show that the Markov and Chebyshev inequalities are tight (find random variables such that the inequalities are true with equality)

3. (Tail Inequalities) (Book Exercise 3.21)

(a) Chebyshev's inequality uses the variance of a random variable to bound its deviation from its expectation. We can also use higher moments. Suppose that we have a random variable X and an even integer k for which $\mathbf{E}[(X - \mathbf{E}[X])^k]$ is finite. Show that

$$\mathbb{P}(|X - \mathbf{E}[X]| > t(\mathbf{E}[(X - \mathbf{E}[X])^k])^{1/k})) \le \frac{1}{t^k}$$

(b) Why is it difficult to derive a similar inequality when k is odd?

4. (Tail Inequalities) (Book Exercise 3.20)

(a) Let Y be a non-negative discrete random variable with positive expectation. Prove:

$$\frac{\mathbf{E}[Y]^2}{\mathbf{E}[Y^2]} \le \mathbb{P}(Y \neq 0)$$

Hint: Recall that $(a+b)^2 \ge 2ab$.

(b) Derive a lower bound on $\mathbb{P}(Y \neq 0)$ using Chebyshev's inequality. Compare this inequality to the inequality from part (a) and find a random variable where the bound from (a) is better. Hint: take $a = \mathbf{E}[Y]$ in Chebyshev's inequality.