CS 174: Combinatorics and Discrete Probability (Spring 2023), UC Berkeley

Section 13

1. (Martingales) (MU Exercise 13.9) Consider an n-cube with $N=2^{n}$ nodes. Let S be a nonempty set of vertices on the cube, and let x be a vertex chosen uniformly at random among all vertices of the cube. Let $D(x, S)$ be the minimum number of coordinates in which x and y differ over all points $y \in S$. Give a bound on:

$$
\begin{equation*}
P(|D(x, S)-\mathbb{E}[D(x, S)]|>\lambda) \tag{1}
\end{equation*}
$$

2. (Martingales) (MU Exercise 13.17) Given a bag with r red balls and g green balls, suppose that we uniformly sample n balls from the bin without replacement. Set up an appropriate martingale and use it to show that the number of red balls in the sample is tightly concentrated around $n r /(r+g)$.
3. (Martingales) (MU Exercise 13.19) Consider a random graph from $G_{n, N}$, where $N=c n$ for some constant $c>0$. Let X be the number of isolated vertices (vertices of degree 0).
(a) Determine $\mathbf{E}[X]$.
(b) Show that

$$
\begin{equation*}
P(|X-\mathbf{E}[X]| \geq 2 \lambda \sqrt{c n}) \leq 2 \exp \left(-\lambda^{2} / 2\right) \tag{2}
\end{equation*}
$$

(Hint: use a martingale that reveals the locations of the edges in the graph, one at a time.)

