CS 174: Combinatorics and Discrete Probability (Spring 2023), UC Berkeley

Section 11

1. (KL Divergence) Throughout the chapter on coupling and mixing times, we have used the totalvariation distance between discrete probability distributions. Here we will show a motivation for the KL-divergence, another widely used way to quantify differences between probability distributions. The KL-divergence is defined for distributions P, Q on the same discrete space \mathcal{X} as:

$$
\begin{equation*}
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right) \tag{1}
\end{equation*}
$$

where $P(x), Q(x)$ calculates the probability mass of x under P, Q respectively. The KL-divergence is non-negative and only 0 if $P=Q$.
(a) What are some disadvantages of this quantity compared to the total-variation distance?
(b) Now, suppose we have an i.i.d. sample $\left(X_{1}, \ldots, X_{T}\right)$ over a finite probability space \mathcal{X}. The random variables X_{i} follow one of two distributions μ, ν, but we do not know which beforehand. We are interested in choosing which distribution is more plausible given these samples.
A reasonable approach is to compute the probability of the sample under each distribution and choose the distribution with higher probability. Show that this condition is equivalent to picking μ if and only if:

$$
\begin{equation*}
F=\frac{1}{T} \sum_{i=1}^{T} \log \frac{\mu\left(X_{i}\right)}{\nu\left(X_{i}\right)}>0 \tag{2}
\end{equation*}
$$

(c) What is $\mathbb{E}[F]$ in terms of KL-divergences?
(d) What is an advantage of KL-divergence compared to total-variation distance? (Hint: consider a setting where $P(x), Q(x)$ can be calculated efficiently but the sample space \mathcal{X} is very large.)
2. (Coupling) (MU Exercise 12.9) Consider a Markov chain on n points $[0, n-1]$ lying in order on a circle. At each step, the chain stays at the current point with probability $1 / 2$ or moves to the next point in the clockwise direction with probability $1 / 2$. Find the stationary distribution and show that, for any $\varepsilon>0$, the mixing time $\tau(\varepsilon)$ is $O\left(n^{2} \ln (1 / \varepsilon)\right)$.
3. (Coupling) (MU Theorem 12.8) Recall that in lecture, we considered a Markov chain approach to sample proper colorings of a graph uniformly. The Markov chain is to start with some proper coloring, then, at each step, pick a vertex and color at random, and change the vertex to that color if the coloring stays proper. Using a coupling argument, we derived a bound on the mixing time when we use a number of colors $c \geq 4 \Delta+1$, where Δ is the maximum degree of the graph. We will improve the coupling argument to reduce the requirement to $c \geq 2 \Delta+1$.
In the original proof, we defined the set D_{t} as the set of vertices with different colors in the two copies of the Markov chain at time t. We now additionally define A_{t} as the set of vertices with matching colors in the two copies of the Markov chain at time t. Also define $\left|D_{t}\right|=d_{t}$. Our coupling between the chains will differ depending on which set a sampled vertex is in.
(a) Define $d_{t}^{\prime}(v)$ to be the the number of vertices adjacent to v that are in the opposite set. Concretely, if $v \in D_{t}, d_{t}^{\prime}(v)$ counts the number of vertices adjacent to v that are in A_{t}, and vice versa if $v \in A_{t}$.
Denote $m=\sum_{v \in A_{t}} d_{t}^{\prime}(v)=\sum_{v \in D_{t}} d_{t}^{\prime}(v)$. Why are the two sums equal?
(b) Our improved coupling will still involve sampling a single random vertex v for both copies of the Markov chain. If $v \in D_{t}$, we will sample the same random color for both chains (the same coupling as before). Show the following bound, which is improved over the original proof:

$$
\begin{equation*}
P\left(d_{t+1}=d_{t}-1 \mid d_{t}>0\right) \geq \frac{1}{c n}\left((c-2 \Delta) d_{t}+m\right) \tag{3}
\end{equation*}
$$

(c) Now suppose $v \in A_{t}$. We will improve the coupling by changing the color correspondence between the two copies of the chain. Give a brief explanation of how this could help.
(d) Using an improved color correspondence, show that when we pick $v \in A_{t}$:

$$
\begin{equation*}
P\left(d_{t+1}=d_{t}+1 \mid d_{t}>0\right) \leq \frac{m}{c n} \tag{4}
\end{equation*}
$$

(e) Follow the same steps as in the original proof to conclude that the variation distance is at most ε after:

$$
\begin{equation*}
t=\left\lceil\frac{n c}{c-2 \Delta} \ln \left(\frac{n}{\varepsilon}\right)\right\rceil \tag{5}
\end{equation*}
$$

