# Sample Midterm 

## Read these instructions carefully

1. This is a closed book exam, but you are allowed one single-sided cheat sheet. No phones, calculators or other electronic equipment.
2. The exam consists of 10 questions. The first seven questions are multiple choice; the remaining three require written answers. Note: The actual midterm will have a similar format but may have different numbers of questions of the two types.
3. Approximate point totals for each question part are indicated in the margin. The maximum total number of points is 92 .
4. Multiple choice questions: Answer these by circling the correct answer. You should be able to answer all of these from memory, by inspection, or with a very small calculation. Incorrect answers will receive a negative score, so if you do not know the answer you should not guess. There is no partial credit for these.
5. Other questions: Write your answers to these in the spaces provided below them. None of these questions requires a long answer, so you should have enough space; if not, continue on the back of the page and state clearly that you have done so. Show your working.
6. The questions vary in difficulty: if you get stuck on some part of a question, leave it and go on to the next one.

## Your Name:

1. You are dealt a hand of five cards from a randomly shuffled deck.
(a) The probability that your hand contains no pair of cards with the same numerical value (there are 13 numerical values: ace, $2, \ldots$, king) is

$$
\left(\frac{12}{13}\right)^{4} \quad 1-\left(\frac{12}{13}\right)^{4} \quad \frac{48 \cdot 47 \cdot 46 \cdot 45}{51 \cdot 50 \cdot 49 \cdot 48} \quad \frac{48 \cdot 44 \cdot 40 \cdot 36}{51 \cdot 50 \cdot 49 \cdot 48} \quad \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48} \quad 4 \cdot \frac{12 \cdot 11 \cdot 10 \cdot 9}{51 \cdot 50 \cdot 49 \cdot 48}
$$

(b) The probability that the hand contains at least three cards of the same value is

$$
\frac{13\left(4 \cdot\binom{48}{2}+48\right)}{\binom{52}{5}} \quad \frac{13 \cdot 4 \cdot 48 \cdot 47}{\binom{52}{5}} \quad \frac{13 \cdot 48}{\binom{52}{5}} \quad\left(\frac{1}{13}\right)^{3} \quad 5 \cdot \frac{3 \cdot 2}{51 \cdot 50} \quad \frac{13 \cdot\binom{5}{3} \cdot\binom{4}{3}}{\binom{52}{5}}
$$

2. A coin with heads probability $p$ is tossed $n$ times independently. The random variable $X$ measures the number of heads observed minus the number of tails observed.
(a) The expectation of $X$ is
$0 \quad n p \quad n(p-1) \quad n(2 p-1) \quad n p(1-p)$
(b) The variance of $X$ is

$$
n p^{2} \quad n^{2} p^{2}
$$

$$
2 n p(1-p)
$$

$$
4 n p(1-p)
$$

3. We have $2 n$ bins and we throw $2 n$ balls into them in two phases as follows. In the first phase, the first $n$ balls are thrown into the $2 n$ bins, independently and uniformly at random. In the second phase, the remaining $n$ balls are thrown into only the first $n$ bins, independently and uniformly at random.
(a) After both phases, the expected number of balls in the first three bins is

| 1 | $\frac{3}{2}$ | 3 | $\frac{9}{2}$ | $\frac{n}{3}$ | $n$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

(b) After both phases, when $n$ is large the expected number of empty bins among the first three bins is about

3pts
$3 e^{-3 / 2}$
$e^{-3 / 2}$
$3 e^{-3}$
$e^{-3}$
$3 e^{-2}$
$e^{-2}$
4. Two fair six-sided dice are rolled. The random variables $X_{1}, X_{2}$ denote the score on the first die and the second die respectively, and $X=X_{1}+X_{2}$ is the total score on both dice.
(a) The conditional expectation $E\left[X \mid X_{1}=3\right]$ is
$3 \quad \frac{7}{2}$
$6 \quad \frac{13}{2}$
7
7 none of these
(b) The conditional expectation $E\left[E\left[X \mid X_{1}\right]\right]$ is
3
$\frac{7}{2}$
6
$\frac{13}{2}$
7
none of these
5. Recall the coupon-collecting problem, in which each cereal box contains one of $n$ different coupons, each coupon being equally likely. Here are two variants of the standard question.
(a) The expected number of boxes that need to be bought until $n / 2$ different coupons are obtained is on the order of

$$
\begin{array}{llllll}
\log n & n & n \log \log n & n \log n & n^{2} & 2^{n}
\end{array}
$$

(b) The expected number of boxes that need to be bought until the number of coupons of which no copy

3pts has been obtained is less than $\sqrt{n}$ is on the order of

$$
\begin{array}{llllll}
\log n & n & n \log \log n & n \log n & n^{2} & 2^{n}
\end{array}
$$

6. A fair six-sided die is rolled repeatedly until four different outcomes are observed. The expected number of 3pts times the die is tossed is
$\frac{6}{5} \quad \frac{11}{4}$
3
$\frac{33}{5}$
$\frac{57}{10}$
6
7. Let $X$ and $Y$ be independent random variables on the same probability space, with $E[X]=3, \operatorname{Var}[X]=3, \quad$ opts and $Y$ a 0-1 random variable with $E[Y]=\frac{2}{3}$. Circle those three of the following statements that must be true about $X$ and $Y$ :

$$
\begin{array}{lll}
\operatorname{Pr}[X \geq 6] \leq \frac{1}{3} & \operatorname{Pr}[X \geq Y]<1 & E\left[X^{2}\right]=12 \\
\operatorname{Cov}(X, Y)=\frac{2}{3} & \operatorname{Var}\left[Y^{2}\right]=\frac{2}{9} & \operatorname{Var}[X+3 Y]=\frac{11}{3}
\end{array}
$$

## 8. Sampling With and Without Replacement

A bag contains 10 green and 10 yellow balls. Two samples, of $n \leq 20$ balls each, are taken from the bag. The first sample is with replacement, and the second sample is without replacement. Let the random variables $X$ and $Y$ denote the number of green balls in the first and second sample respectively.
(a) What is $E[X]$ (as a function of $n$ )?
(b) What is $\operatorname{Var}[X]$ (as a function of $n$ )?
(c) Let us write $Y=\sum_{i=1}^{n} Y_{i}$, where $Y_{i}=1$ if the $i$ th ball in the sample without replacement is green, and $2 p t s$ $Y_{i}=0$ otherwise. Explain briefly why $Y_{i}$ has the same distribution as $Y_{1}$ for all $i$.
(d) Using part (c), compute $E[Y]$ (as a function of $n$ ).
(e) Compute $\operatorname{Var}[Y]$ (as a function of $n$ ). [HINT: Follow a similar path to your computation of $E[Y]$ in $6 p t s$ parts (c) and (d). You might want to check your answer by substituting in the special values $n=1$ and $n=20$.]
(f) Comment briefly on the difference between $\operatorname{Var}[X]$ and $\operatorname{Var}[Y]$.

## 9. Coloring a Graph

A 3-coloring of an undirected graph $G=(V, E)$ is an assignment of colors red, green or blue to every vertex in the graph. An edge is well-colored if its two endpoints are assigned different colors. In the problem MAX3COLOR, we are given an undirected graph $G=(V, E)$ and asked to find a 3-coloring with the maximum possible number of well-colored edges. MAX3COLOR is an NP-hard problem, so we do not expect to find an efficient algorithm that solves it exactly. Here is a very simple linear-time randomized algorithm that gives a pretty good approximation:
(1) Randomly and independently color each vertex $v \in V$ red, green or blue with probability $\frac{1}{3}$ each
(2) Output the resulting 3-coloring

Let the r.v. $X$ denote the number of well-colored edges in the 3-coloring output by the algorithm. In addition, for every edge $e \in E$, let $X_{e}$ be the indicator r.v. that assumes the value 1 if $e$ is well-colored and 0 otherwise.
(a) Write down the equation relating the random variable $X$ and the random variables $X_{e}$.
(b) Show that $E[X]=\frac{2}{3} m$ where $m=|E|$. Deduce that $E[X] \geq \frac{2}{3}$ OPT, where OPT is the maximum 4pts number of well-colored edges over all possible 3-colorings of $G$.
(c) Compute $E\left[X_{e} X_{e^{\prime}}\right]$ for any $e \neq e^{\prime} \in E$.
(d) Compute $\operatorname{Var}[X]$.
(e) Let $p$ denote the probability that the 3 -coloring output by the algorithm has at least $\frac{5}{9} \mathrm{OPT}$ well-colored 5 pts edges. By applying Chebyshev's inequality to the r.v. $X$, show that $p=1-O(1 / m)$.
(f) What is wrong with the following argument, which claims to give a better bound on $p$ :
$X$ is the sum of 0-1-r.v.'s. Applying the Chernoff bound to $X$, in the form $\operatorname{Pr}[X \leq(1-\delta) \mu] \leq$ $e^{-\delta^{2} \mu / 2}$, with $\mu=\frac{2 m}{3}$ and $\delta=\frac{1}{6}$, we may deduce that $\operatorname{Pr}\left[X \leq \frac{5}{9} \mathrm{OPT}\right] \leq e^{-\frac{1}{72} \frac{2 m}{3}}=2^{-\Omega(m)}$. Hence, $p=1-2^{-\Omega(m)}$.

## 10. Estimating a Parameter

Recall from class the following procedure for estimating the fraction $p$ of Republicans in a given city:
(1) Take a random sample of $t$ people (with replacement), and set $X_{i}=1$ if the $i$ th person is Republican, and 0 otherwise
(2) Output $X=\frac{1}{t} \sum_{i=1}^{t} X_{i}$

Our goal is to obtain an estimate that is within relative error $\epsilon$ with confidence $1-\delta$, i.e., we want to achieve

$$
\begin{equation*}
\operatorname{Pr}[|X-p| \geq \epsilon p] \leq \delta \tag{*}
\end{equation*}
$$

where $\epsilon$ and $\delta$ are parameters. (Again, we have seen this in class.)
(a) Use a Chernoff bound to show that, in order to achieve the goal in equation $(*)$, it is enough to take 5 pts $t=\frac{c \ln (2 / \delta)}{\epsilon^{2} p}$, for some constant $c$. [NOTE: We have seen this in class. Do not worry about the exact value of $c$.]
(b) We now look at a different mechanism for ensuring the goal in equation (*). This mechanism involves 2 pts a two-stage procedure:
(1) Run the above procedure $s$ times, with the number of trials $t$ on each run chosen to satisfy equation $(*)$ for the fixed value $\delta=1 / 4$
(2) Output the median of the $s$ values obtained

Show that the required value of $t$ in step (1) is at most $\frac{c^{\prime}}{\epsilon^{2} p}$, for some constant $c^{\prime}$. [Again, don't worry about the exact value of $c^{\prime}$.]
(c) Show that, in order to achieve the goal in equation $(*)$, it is enough to take $s=c^{\prime \prime} \ln (1 / \delta)$ for a $6 p t s$ constant $c^{\prime \prime}$. [HINT: Use a Chernoff bound applied to a coin with a suitable heads probability. Don't worry about the exact value of $c^{\prime \prime}$.]
(d) Deduce from parts (b) and (c) that the total number of samples needed in the new scheme is $c^{\prime \prime \prime} \frac{\ln (1 / \delta)}{\epsilon^{2} p} \quad 2 p t s$ for some constant $c^{\prime \prime \prime}$ (and thus of the same order of magnitude as proved for the original scheme in part (a)).

