
CS–174 Combinatorics & Discrete Probability, Spring 2023

Sample Midterm
7:00-9:00pm, 7 March

Read these instructions carefully

1. This is a closed book exam, but you are allowed one single-sided cheat sheet. No phones, calculators
or other electronic equipment.

2. The exam consists of 10 questions. The first seven questions are multiple choice; the remaining three
require written answers. Note: The actual midterm will have a similar format but may have different
numbers of questions of the two types.

3. Approximate point totals for each question part are indicated in the margin. The maximum total
number of points is 92.

4. Multiple choice questions: Answer these by circling the correct answer. You should be able to
answer all of these from memory, by inspection, or with a very small calculation. Incorrect answers
will receive a negative score, so if you do not know the answer you should not guess. There is no
partial credit for these.

5. Other questions: Write your answers to these in the spaces provided below them. None of these
questions requires a long answer, so you should have enough space; if not, continue on the back of
the page and state clearly that you have done so. Show your working.

6. The questions vary in difficulty: if you get stuck on some part of a question, leave it and go on to the
next one.

Your Name:

1. You are dealt a hand of five cards from a randomly shuffled deck.

(a) The probability that your hand contains no pair of cards with the same numerical value (there are 13 3pts
numerical values: ace, 2, . . ., king) is(
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(b) The probability that the hand contains at least three cards of the same value is 3pts
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2. A coin with heads probability p is tossed n times independently. The random variable X measures the
number of heads observed minus the number of tails observed.

(a) The expectation of X is 3pts

0 np n(p− 1) n(2p− 1) np(1− p)

(b) The variance of X is 3pts

np np2 n2p2 2np(1− p) 4np(1− p)

[continued overleaf]



3. We have 2n bins and we throw 2n balls into them in two phases as follows. In the first phase, the first n balls
are thrown into the 2n bins, independently and uniformly at random. In the second phase, the remaining n
balls are thrown into only the first n bins, independently and uniformly at random.

(a) After both phases, the expected number of balls in the first three bins is 3pts

1 3
2 3 9

2
n
3 n

(b) After both phases, when n is large the expected number of empty bins among the first three bins is about 3pts

3e−3/2 e−3/2 3e−3 e−3 3e−2 e−2

4. Two fair six-sided dice are rolled. The random variables X1, X2 denote the score on the first die and the
second die respectively, and X = X1 + X2 is the total score on both dice.

(a) The conditional expectation E[X|X1 = 3] is 3pts

3
7
2

6
13
2

7 none of these

(b) The conditional expectation E[E[X|X1]] is 3pts

3
7
2

6
13
2

7 none of these

5. Recall the coupon-collecting problem, in which each cereal box contains one of n different coupons, each
coupon being equally likely. Here are two variants of the standard question.

(a) The expected number of boxes that need to be bought until n/2 different coupons are obtained is on the 3pts
order of

log n n n log log n n log n n2 2n

(b) The expected number of boxes that need to be bought until the number of coupons of which no copy 3pts
has been obtained is less than

√
n is on the order of

log n n n log log n n log n n2 2n

6. A fair six-sided die is rolled repeatedly until four different outcomes are observed. The expected number of 3pts
times the die is tossed is

6
5

11
4

3
33
5

57
10

6

7. Let X and Y be independent random variables on the same probability space, with E[X] = 3, Var[X] = 3, 6pts
and Y a 0-1 random variable with E[Y ] = 2

3 . Circle those three of the following statements that must be
true about X and Y :

Pr[X ≥ 6] ≤ 1
3 Pr[X ≥ Y ] < 1 E[X2] = 12

Cov(X, Y ) = 2
3 Var[Y 2] = 2

9 Var[X + 3Y ] = 11
3

[continued overleaf]



8. Sampling With and Without Replacement

A bag contains 10 green and 10 yellow balls. Two samples, of n ≤ 20 balls each, are taken from the
bag. The first sample is with replacement, and the second sample is without replacement. Let the random
variables X and Y denote the number of green balls in the first and second sample respectively.

(a) What is E[X] (as a function of n)? 3pts

(b) What is Var[X] (as a function of n)? 3pts

(c) Let us write Y =
∑n

i=1 Yi, where Yi = 1 if the ith ball in the sample without replacement is green, and 2pts
Yi = 0 otherwise. Explain briefly why Yi has the same distribution as Y1 for all i.

(d) Using part (c), compute E[Y ] (as a function of n). 3pts

[continued overleaf]



(e) Compute Var[Y ] (as a function of n). [HINT: Follow a similar path to your computation of E[Y ] in 6pts
parts (c) and (d). You might want to check your answer by substituting in the special values n = 1 and
n = 20.]

(f) Comment briefly on the difference between Var[X] and Var[Y ]. 2pts

[continued overleaf]



9. Coloring a Graph

A 3-coloring of an undirected graph G = (V,E) is an assignment of colors red, green or blue to every
vertex in the graph. An edge is well-colored if its two endpoints are assigned different colors. In the
problem MAX3COLOR, we are given an undirected graph G = (V,E) and asked to find a 3-coloring with
the maximum possible number of well-colored edges. MAX3COLOR is an NP-hard problem, so we do not
expect to find an efficient algorithm that solves it exactly. Here is a very simple linear-time randomized
algorithm that gives a pretty good approximation:

(1) Randomly and independently color each vertex v ∈ V red, green or blue with probability 1
3 each

(2) Output the resulting 3-coloring

Let the r.v. X denote the number of well-colored edges in the 3-coloring output by the algorithm. In addition,
for every edge e ∈ E, let Xe be the indicator r.v. that assumes the value 1 if e is well-colored and 0 otherwise.

(a) Write down the equation relating the random variable X and the random variables Xe. 2pts

(b) Show that E[X] = 2
3m where m = |E|. Deduce that E[X] ≥ 2

3 OPT, where OPT is the maximum 4pts
number of well-colored edges over all possible 3-colorings of G.

(c) Compute E[XeXe′ ] for any e 6= e′ ∈ E. 3pts

[continued overleaf]



(d) Compute Var[X]. 3pts

(e) Let p denote the probability that the 3-coloring output by the algorithm has at least 5
9 OPT well-colored 5pts

edges. By applying Chebyshev’s inequality to the r.v. X , show that p = 1−O(1/m).

(f) What is wrong with the following argument, which claims to give a better bound on p: 2pts

X is the sum of 0-1-r.v.’s. Applying the Chernoff bound to X , in the form Pr[X ≤ (1 − δ)µ] ≤
e−δ2µ/2, with µ = 2m

3 and δ = 1
6 , we may deduce that Pr[X ≤ 5

9 OPT] ≤ e−
1
72

· 2m
3 = 2−Ω(m).

Hence, p = 1− 2−Ω(m).

[continued overleaf]



10. Estimating a Parameter

Recall from class the following procedure for estimating the fraction p of Republicans in a given city:

(1) Take a random sample of t people (with replacement), and set Xi = 1 if the ith person is Republican,
and 0 otherwise

(2) Output X = 1
t

∑t
i=1 Xi

Our goal is to obtain an estimate that is within relative error ε with confidence 1− δ, i.e., we want to achieve

Pr[|X − p| ≥ εp] ≤ δ. (∗)

where ε and δ are parameters. (Again, we have seen this in class.)

(a) Use a Chernoff bound to show that, in order to achieve the goal in equation (∗), it is enough to take 5pts
t = c ln(2/δ)

ε2p
, for some constant c. [NOTE: We have seen this in class. Do not worry about the exact value

of c.]

(b) We now look at a different mechanism for ensuring the goal in equation (∗). This mechanism involves 2pts
a two-stage procedure:

(1) Run the above procedure s times, with the number of trials t on each run chosen to satisfy equation (∗)
for the fixed value δ = 1/4

(2) Output the median of the s values obtained

Show that the required value of t in step (1) is at most c′

ε2p
, for some constant c′. [Again, don’t worry about

the exact value of c′.]
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(c) Show that, in order to achieve the goal in equation (∗), it is enough to take s = c′′ ln(1/δ) for a 6pts
constant c′′. [HINT: Use a Chernoff bound applied to a coin with a suitable heads probability. Don’t worry
about the exact value of c′′.]

(d) Deduce from parts (b) and (c) that the total number of samples needed in the new scheme is c′′′ ln(1/δ)
ε2p

2pts
for some constant c′′′ (and thus of the same order of magnitude as proved for the original scheme in part (a)).

[The End]


