
CS-174 Combinatorics & Discrete Probability, Spring 2023 Prof. Alistair Sinclair

Note 1: Chernoff/Hoeffding Bounds & Randomized Routing

In this note we see an example of a randomized algorithm whose analysis makes essential use of Chernoff
bounds.

1 Chernoff/Hoeffding bounds

We begin by recalling from class two forms of Chernoff/Hoeffding bounds that are most useful in practice.

Theorem 1. [Chernoff bound] Let X =
∑

i Xi, where the Xi are independent 0-1 random variables, and
let µ = E[X] =

∑
i E[Xi]. For the lower tail we have

Pr[X ≤ (1− δ)µ] ≤ exp(− δ2µ
2) 0 < δ < 1.

And for the upper tail we have

Pr[X ≥ (1 + δ)µ] ≤

{
exp(− δ2µ

2+δ) δ > 0;
exp(− δ2µ

3) 0 < δ ≤ 1.

Note that in the lower tail bound it makes no sense to consider δ > 1. And in the upper tail bound, the
second bound for δ < 1 follows immediately from the more general first bound for all δ > 0.

Theorem 2. [Hoeffding bound] Let X =
∑

i Xi, where the Xi are independent random variables taking
values in the ranges [ai, bi], respectively, and let µ = E[X] =

∑
i E[Xi]. Then

Pr[X ≤ µ− λ]
Pr[X ≥ µ + λ]

}
≤ exp

(
− 2λ2∑n

i=1(bi − ai)2

)
.

This bound is more general than that in Theorem 1 because the r.v.’s are not constrained to be 0-1 (but they
are required to be supported on bounded intervals). Note also that the deviation λ in Theorem 2 is absolute,
while in Theorem 1 the deviation is expressed as a multiple δ of the mean µ.

If we apply Theorem 2 to the special case of 0-1 random variables (so bi − ai = 1 ∀i), and set λ = δµ,
the tail bounds are of the form exp{−2δ2µ2

n }, which is never much better than Theorem 1 and can be much
worse (since µ could be much less than n). So we generally use Theorem 1 for 0-1 r.v.’s.

2 Randomized routing

Note: This is the same application as covered in Section 4.6.1 of MU, but with a slightly different analysis.

Consider the network defined by the n-dimensional hypercube: i.e, the vertices of the network are the strings
in {0, 1}n, and edges connect pairs of vertices that differ in exactly one bit. We shall think of each edge
as consisting of two links, one in each direction. Let N = 2n, the number of vertices. Now let π be any

1

π(i)

i

Figure 1: Routing in a hypercube.

permutation on the vertices of the cube. The goal is to send one packet from each i to its corresponding
π(i), for all i simultaneously.

This problem can be seen as a building block for more realistic routing applications. A strategy for routing
permutations on a graph can give useful inspiration for solving similar problems on real networks.

We will use a synchronous model, i.e., the routing occurs in discrete time steps, and in each time step, one
packet is allowed to travel along each (directed) edge. If more than one packet wishes to traverse a given
edge in the same time step, all but one of these packets are held in a queue at the edge. We assume any fair
queueing discipline (e.g., FIFO).

The goal is to minimize the total time before all packets have reached their destinations. A priori, a packet
only has to travel O(n) steps (the diameter of the cube). However, due to the potential for congestion on the
edges, it is possible that the process will take much longer than this as packets get delayed in the queues.

Definition 3. An oblivious strategy is one in which the route chosen for each packet does not depend on the
routes of the other packets. That is, the path from i to π(i) is a function of i and π(i) only.

An oblivious routing strategy is thus one in which there is no global synchronization, a realistic constraint
if we are interested in real-world problems.

Theorem 4. [KKT90] For any deterministic, oblivious routing strategy on the hypercube, there exists a
permutation that requires Ω(

√
N/n) = Ω(

√
2n/n) steps.

This is a very undesirable worst case. Fortunately, randomization can provide a dramatic improvement on
this lower bound.

Theorem 5. [VB81] There exists a randomized, oblivious routing strategy that, for any permutation π,
terminates in O(n) steps with very high probability.

We now describe this randomized strategy, which consists of two phases.

• In Phase 1, each packet i is routed to σ(i), where the destination σ(i) is chosen u.a.r.

• In Phase 2, each packet is routed from σ(i) to its desired final destination, π(i).

2

In both phases, we use “left-to-right bit-fixing” paths to route the packets. In the bit-fixing path from
vertex x to vertex y of the cube, we flip each bit x` to y` (if necessary) in left-to-right order. For example, a
bit-fixing path from x = 0011001 to y = 1110001 in the hypercube {0, 1}7 is x = 0011001 → 1011001 →
1111001 → 1110001 = y. Bit-fixing paths are always shortest paths.

Note that σ is not required to be a permutation (i.e., different packets may share the same intermediate
destination), so this strategy is oblivious.

This strategy breaks the symmetry in the problem by simply choosing a random intermediate destination
for each packet. This makes it impossible for an adversary with knowledge of the strategy to engineer a
bad permutation. In our analysis, we will see that each phase of this algorithm takes only O(n) steps with
high probability. In order to do this, we will take a union bound over all 2n packets, so we will need an
exponentially small probability of a single packet taking a long time. This is where Chernoff/Hoeffding
bounds will be required.

Phase 1 starts from a fixed source i and routes to a random destination σ(i). Phase 2 starts from a random
source σ(i) and routes to a fixed destination π(i). By symmetry, it suffices to prove that Phase 1 terminates
in O(n) steps w.h.p. We will then require that all packets wait the specified number of time steps for Phase 1
before starting Phase 2, which allows us to handle the two phases separately.

Let D(i) be the delay suffered by packet i in Phase 1; then the total time taken for Phase 1 is at most
n + maxi D(i). The key property we will establish below is the following:

Claim 6. For every packet i in Phase 1, we have

Pr[D(i) > 7
2n] ≤ e−2n. (1)

Claim 6 immediately implies our main result, Theorem 5, as follows:

Proof of Theorem 5: Applying Claim 6 together with a union bound over the 2n packets, we get

Pr[∃i : D(i) > 7
2n] ≤ 2ne−2n < 2−n.

This ensures that Phase 1 successfully terminates in n + 7
2n = 9

2n steps with very high probability. Since
Phase 2 is symmetrical with Phase 1, the entire protocol successfully routes the permutation π within 9n
steps w.h.p.

It remains only to prove Claim 6.

Proof of Claim 6: For a single packet traveling from i → σ(i), let Pi = (e1, e2, . . . , em) be the sequence
of edges on the path taken by packet i. Let Si = {j 6= i : Pj ∩ Pi 6= ∅}, the set of packets whose paths
intersect Pi. The proof of Claim 6 begins with the following important observation.

Lemma 7. D(i) ≤ |S(i)|.

Note that Lemma 7 says that each unit of delay of packet i can be charged to a distinct other packet j ∈ S(i).
We defer the proof, which is a slightly subtle and purely deterministic argument, to the end of this note.

Continuing the proof of Claim 6, define

Hij =
{

1 Pi ∩ Pj 6= ∅
0 otherwise

3

By Lemma 7, D(i) ≤
∑

j 6=i Hij . And since the Hij are independent we can use a Chernoff bound to bound
the tail probability of this sum. First, we need a small detour to bound the mean, µ = E[

∑
j 6=i Hij] (since

the expectations of the Hij are tricky to get hold of).

To do this, fix one particular edge e on Pi. Suppose this edge involves flipping the `th bit, so we can view it
as the transition from point (b1, b2, . . . , b`−1, a`, a`+1, . . . , an) to point (b1, b2, . . . , b`−1, b`, a`+1, . . . , an).
How many packets j could possibly use this edge e? Well, since e involves flipping the `th bit, we know
that none of the later bits have yet been changed, so j must be of the form (∗, ∗, . . . , ∗, a`, a`+1, . . . , an)
(where ∗ denotes an arbitrary bit). Thus there are only 2`−1 possible packets j that could use e. And for
each such packet j, what is the probability that j actually does use e? Well, in order for j to use e, the
intermediate target point σ(j) chosen by j must be of the form (b1, b2, . . . , b`−1, b`, ∗, . . . , ∗). And since
each bit of σ(j) is chosen independently, the probability that j uses e is 2−`. Putting these two observations
together, we see that the expected number of packets j that use edge e is 2`−1 × 2−` = 1

2 . Finally, summing
these expectations over all edges in Pi (of which there are at most n), we see that µ = E[

∑
j 6=i Hij] ≤ n

2 .

We can now apply the Chernoff bound (upper tail bound in Theorem 1):

Pr[
∑

j 6=i Hij ≥ (1 + δ)µ] ≤ exp
(
− δ2

2+δµ
)

. (2)

Plugging in our upper bound of n
2 for µ (we’ll justify this step below), we get

Pr[
∑

j 6=i Hij ≥ (1 + δ)n
2] ≤ exp(− δ2

2+δ
n
2). (3)

Choosing the smallest integer value of δ that makes δ2

2(2+δ) ≥ 2, namely δ = 6, we get

Pr[
∑

j 6=i Hij ≥ 7
2n] ≤ exp(−36

16n) = exp(−9
4n) ≤ exp(−2n).

Recalling from Lemma 7 that D(i) ≤
∑

j 6=i Hij , this completes the proof of Claim 6.

We actually skipped over an important point above: namely, in inequality (3) we just plugged in our upper
bound n

2 for µ in place of µ itself. Why is this justified in this situation? Well, note that what we want
from (3) is a bound on Pr[

∑
j 6=i Hij ≥ (1 + δ)n

2] (where in fact δ = 6). Let’s fix that upper tail: call it
A := 7n

2 . This means that in (2) we should set (1 + δ)µ = A, so that as µ varies we must change δ as well.
Specifically, we must set δ = A−µ

µ . Plugging in this value of δ to the Chernoff bound (2), we get

Pr[
∑

j 6=i Hij ≥ A] ≤ exp
(
− (A−µ)2

(A+µ)

)
.

Now it’s easy to see that the function (A−µ)2

(A+µ) in the exponent (with A fixed) is decreasing with µ, which
means that we get the weakest tail bound when µ is largest. This justifies using the upper bound n

2 in place
of µ in (3).

Finally, we conclude by providing the deferred proof of Lemma 7.

Proof of Lemma 7: First note that, in the hypercube, when two “bit-fixing” paths diverge they will not come
together again; i.e., routes which intersect will intersect only in one contiguous segment (see Figure 2). With
this observation, we can now charge each unit of delay for packet i to a distinct member of S(i).

Definition 8. Let j be a packet in S(i) ∪ {i}. The lag of packet j at the start of time step t is t − l, where
el is the next edge (on Pi) that packet j wants to traverse. (Recall that we label the edges of path Pi as
(e1, e2, . . . , em).)

4

e5
e1 e2

e3 e4

ek

Pj

Pi
i

j

σ(i)

Figure 2: Routes Pi and Pj in the hypercube.

Note that the lag of packet i proceeds through the sequence of values 0, 1, ..., D(i). Consider the time step t
when the lag goes from L to L + 1; suppose this happens when i is waiting to traverse edge el. Then i must
be held up in the queue at el (else its lag would not increase), so there exists at least one other packet at el

with lag L, and this packet actually moves at step t.

Now consider the last time at which there exists any packet with lag L: say this is time t′. Then some such
packet must leave path Pi (or reach its destination) at time t′, for at any step among all packets with a given
lag at a given edge, at least one must move (and it would retain the same lag if it remained on path Pi). So
we may charge this unit of delay to that packet. Each packet is charged at most once, because it is charged
only when it leaves Pi (which, by the observation at the start of the proof, happens only once).

References

[KKT90] C. KAKLAMANIS, D. KRIZANC and A. TSANTILAS, “Tight Bounds for Oblivious Routing in
the Hypercube,” Proceedings of the Symposium on Parallel Algorithms and Architecture, 1990,
pp. 31–36.

[VB81] L. G. VALIANT and G. J. BREBNER, “Universal schemes for parallel communication,” Pro-
ceedings of the 13th annual ACM Symposium on Theory of Computing, 1981, pp. 263–277.

5

