
CS-174 Combinatorics & Discrete Probability, Spring 2023 Prof. Alistair Sinclair

Note 3: Primality Testing

1 Primality testing

There are many situations in which the primality of a given integer must be determined. For example,
fingerprinting requires a supply of prime numbers, as does the RSA cryptosystem (where the primes should
typically have hundreds or thousands of bits).

A theoretical breakthrough in 2002, due to Agrawal, Kayal and Saxena [AKS02], has given us a determin-
istic polynomial time algorithm for primality testing. However, in practice randomized algorithms are more
efficient and continue to be used. These algorithms date back to the 1970’s and caused a surge in the study
of applied number theory.

1.1 A simple deterministic algorithm

Given an odd integer n, we wish to determine whether n is prime or composite. Consider the following
deterministic algorithm:

for a = 2, 3, ..., b
√

nc do
if a|n then output “composite” and halt

output “prime”

This algorithm is obviously correct. However, because the for-loop has O(
√

n) iterations, the algorithm
does not have running time polynomial in the number of input bits (which is O(log n)). (Consider the case
where n is an integer with hundreds or even thousands of bits; then

√
n is an enormous number as well!)

Other, more sophisticated algorithms based on prime number sieves are a bit more efficient but still suffer
from the same drawback.

1.2 A simple randomized algorithm

The above trivial algorithm can be turned into a randomized, witness-searching algorithm by picking a at
random, but this has a potentially huge error probability since n will in general have only few divisors. We
need to be more intelligent in our definition of witnesses. In what follows, we use the notation Zn to denote
the additive group of integers mod n, and Z∗n the multiplicative group of integers in {1, . . . , n− 1} that are
coprime to n (i.e., with gcd(a, n) = 1). We recall also that, when p is prime, the integers mod p form a
field, usually called GF[p].

Our first randomized algorithm is based on the following classical theorem:

Theorem 1 (Fermat’s Little Theorem) If p is prime, then ap−1 = 1 mod p for all a ∈ {1, ..., p− 1}.

In particular, for a given integer n, if there exists an a ∈ {1, ..., n − 1} such that an−1 6= 1 mod n, then
surely n is composite. This fact suggests the following algorithm, known as “Fermat’s Test”:

pick a ∈ {1, ..., n− 1} uniformly at random
if gcd(a, n) 6= 1 then output “composite” and halt
else if an−1 6= 1 mod n then output “composite”
else output “prime”

Computing gcd(a, n) can be done in time O(log n) by Euclid’s algorithm, and an−1 can be computed in
O(log2 n) time by repeated squaring, so this algorithm runs in time polynomial in the input size (log n).

Error

Clearly the algorithm is always correct when n is prime. However, when n is composite it may make an
error if it fails to find a “witness,” i.e., a number a ∈ Z∗n such that an−1 6= 1 mod n. Unfortunately, there are
composite numbers, known as “Carmichael numbers,” that have no witnesses. The first three CN’s are 561,
1105, and 1729. (Exercise: Prove that 561 is a CN. Hint: 561 = 3 × 11 × 17; use the Chinese Remainder
Theorem.) These numbers are guaranteed to fool Fermat’s Test.

However, it turns out that CN’s are the only bad inputs for the algorithm, as we now show.

Theorem 2 If n is composite and not a Carmichael number, then Pr[Error in the Fermat test] ≤ 1
2 .

Proof: Let Sn = {a ∈ Z∗n : an−1 = 1 mod n}, i.e., the set of bad choices for a. Clearly Sn is a subgroup
of Z∗n (because it contains 1 and is closed under multiplication). Moreover, it is a proper subgroup since
n is not a CN and therefore there is at least one witness a /∈ Sn. By Lagrange’s Theorem, the size of any
subgroup must divide the size of the group so we may conclude that |Sn| ≤ 1

2 |Z
∗
n|.

Fortunately, CN’s are rare: there are only 255 of them less than 108, and only a little more than 20 million
of them less than 1021. For this reason, Fermat’s Test actually performs quite well in practice. Indeed, even
the simplified deterministic version which performs the test only with a = 2 is sometimes used to produce
“industrial grade” primes. This simplified version makes only 22 errors in the first 10,000 integers. It has
also been proved for this version that

lim
b→∞

Pr[Error on random b-bit number] → 0.

For values of b of 50 and 100, we get Pr[Error] ≤ 10−6 and Pr[Error] ≤ 10−13 respectively. However, it is
much more desirable to have an algorithm that does not have disastrous performance on any input (especially
if the numbers we are testing for primality are not random).

In the next section, we will develop a more sophisticated randomized algorithm of similar flavor that can
successfully handle all inputs (including Carmichael numbers).

2 A randomized algorithm for primality testing

The algorithm we present in this section is due independently to Miller and Rabin (see the notes at the end
of the section for details). It is based on the following simple observation. An integer x ∈ Z∗n is said to be
a square root of 1 mod n if x2 = 1 mod n. Obviously, for any n > 2, there are always at least two distinct
square roots of 1 mod n, namely ±1. We call these the trivial square roots of 1.

Claim 3 If p is prime, then 1 has no non-trivial square roots in Z∗p, i.e., the only square roots of 1 in Z∗p are
±1.

Proof: When p is prime, the integers mod p form a field GF[p]. The condition x2 = 1 mod p says that x is
a root of the degree-2 polynomial x2 − 1 over GF[p]. But any such polynomial can have at most two roots.

Note that, when n is composite, there may be non-trivial square roots of 1 mod n: for example, in Z∗35,
62 = 1.

The idea of the algorithm is to search for non-trivial square roots of 1. Specifically, assume that n is odd,
and not a prime power. (We can detect perfect powers in polynomial time and exclude them: Exercise!
HINT: Any perfect power is of the form mk with k ≤ log2 n.) Then n − 1 is even, and we can write
n − 1 = 2rR with R odd. We search by computing aR, a2R, a4R, · · · , a2rR = an−1 (all mod n). Each
term in this sequence is the square of the previous one, and the last term is 1 (otherwise we have failed the
Fermat test and n is composite). Thus if the first 1 in the sequence is preceded by a number other than −1,
we have found a non-trivial root and can declare that n is composite. More specifically the algorithm works
as follows:

if n > 2 is even or a perfect power then output “composite”
compute r, R s.t. n− 1 = 2r ·R [Note: R is odd]
pick a ∈ {1, ..., n− 1} uniformly at random
if gcd(a, n) 6= 1 then ouput “composite” and halt
compute bi = a2iR mod n, i = 0, 1, · · · r
if br[= an−1] 6= 1 mod n then output “composite” and halt
else if b0 = 1 mod n then output “prime” and halt
else let j = max{i : bi 6= 1}
if bj 6= −1 then output “composite”
else output “prime”

For example, for the Carmichael number n = 561, we have n − 1 = 560 = 24 × 35. If a = 2 then the
sequence computed by the algorithm is a35 mod 561 = 263, a70 mod 561 = 166, a140 mod 561 = 67,
a280 mod 561 = 1, a560 mod 561 = 1. So the algorithm finds that 67 is a non-trivial square root of 1 and
therefore concludes that 561 is not prime.

Notice that the output “composite” is always correct. However the algorithm may err when it outputs
“prime”. It remains to show that the error probability is bounded when n is composite; we will do this next.

The algorithm begins by testing to see if a randomly chosen a passes the test of Fermat’s little theorem. If
an−1 6= 1 mod n, then we know that n is composite, otherwise we continue by searching for a nontrivial
square root of 1. We examine the sequence of descending square roots beginning at an−1 = 1 until we reach
an odd power of a:

1 = an−1, a(n−1)/2, a(n−1)/4, . . . , aR

There are three cases to consider:

(a) The powers are all equal to 1.

(b) The first power (in descending order) that is not 1 is −1.

(c) The first power (in descending order) that is not 1 is a nontrivial root of 1.

In the first two cases we fail to find a witness for the compositeness of n, so we guess that n is prime. In
the third case we have found that some power of a is a nontrivial square root of 1, so a is a witness that n is
composite.

2.1 The likelihood of finding a witness

We now show that if n is composite, we are fairly likely to find a witness.

Claim 4 If n is odd, composite, and not a prime power, then Pr[a is a witness] ≥ 1
2 .

To prove this claim we will use the following definition and lemma.

Definition 5 Call s = 2iR a bad power if ∃x ∈ Z∗n such that xs = −1 mod n.

Lemma 6 For any bad power s, Sn = {x ∈ Z∗n : xs = ±1 mod n} is a proper subgroup of Z∗n.

We will first use the lemma to prove claim 4, and then finish by proving the lemma.

Proof of Claim 4: Let s∗ = 2i∗R be the largest bad power in the sequence R, 2R, 22R, . . . , 2rR. (We know
s∗ exists because R is odd, so (−1)R = −1 and hence R at least is bad.)

Let Sn be the proper subgroup corresponding to s∗, as given by Lemma 6. Consider any non-witness a. One
of the following cases must hold:

(i) aR = a2R = a4R = . . . = an−1 = 1 mod n;

(ii) a2iR = −1 mod n, a2i+1R = . . . = an−1 = 1 mod n (for some i).

In either case, we claim that a ∈ Sn. In case (i), as∗ = 1 mod n, so a ∈ Sn. In case (ii), we know that
2iR is a bad power, and since s∗ is the largest bad power then s∗ ≥ 2iR, implying as∗ = ±1 mod n and so
a ∈ Sn.

Therefore, all non-witnesses must be elements of the proper subgroup Sn. Using Lagrange’s Theorem just
as we did in the analysis of the Fermat Test, we see that

Pr[a is not a witness] ≤ |Sn|
|Z∗n|

≤ 1
2
.

We now go back and provide the missing proof of the lemma.

Proof of Lemma 6: Sn is clearly closed under multiplication and hence a subgroup, so we must only show
that it is proper, i.e., that there is some element in Z∗n but not in Sn. Since s is a bad power, we can fix an
x ∈ Z∗n such that xs = −1. Since n is odd, composite, and not a prime power, we can find n1 and n2 such
that n1 and n2 are odd, coprime, and n = n1 · n2.

Since n1 and n2 are coprime, the Chinese Remainder theorem implies that there exists a unique y ∈ Zn

such that

y = x mod n1;
y = 1 mod n2.

We claim that y ∈ Z∗n \ Sn.

Since y = x mod n1 and gcd(x, n) = 1, we know gcd(y, n1) = gcd(x, n1) = 1. Also, gcd(y, n2) = 1.
Together these give gcd(y, n) = 1. Therefore y ∈ Z∗n.

We also know that

ys = xs mod n1

= −1 mod n1 (∗)
ys = 1 mod n2 (∗∗)

Suppose y ∈ Sn. Then by definition, ys = ±1 mod n.

If ys = 1 mod n, then ys = 1 mod n1 which contradicts (∗).

If ys = −1 mod n, then ys = −1 mod n2 which contradicts (∗∗).

Therefore, y cannot be an element of Sn, so Sn must be a proper subgroup of Z∗n.

2.2 Notes and some background on primality testing

The above ideas are generally attributed to both Miller [M76] and Rabin [R76]. More accurately, the ran-
domized algorithm is due to Rabin, while Miller gave a deterministic version that runs in polynomial time
assuming the Extended Riemann Hypothesis (ERH): specifically, Miller proved under the ERH that a wit-
ness a of the type used in the algorithm is guaranteed to exist within the first O((log n)2) values of a. Of
course, proving the ERH would require a major breakthrough in Mathematics.

A tighter analysis of the above algorithm shows that the probability of finding a witness for a composite
number is at least 3

4 , which is asymptotically tight.

Another famous primality testing algorithm, with essentially the same high-level properties and relying
crucially on the subgroup trick but with a rather different type of witness, was developed by Solovay and
Strassen around the same time as the Miller/Rabin algorithm [SS77]. Both of these algorithms, and variants
on them, are used routinely today to certify massive primes having thousands of bits (required in applications
such as the RSA cryptosystem).

In 2002, Agrawal, Kayal, and Saxena made a theoretical breakthrough by giving a deterministic polynomial
time algorithm for primality testing [AKS02]. However, it is much less efficient in practice than the above
randomized algorithms. This algorithm was inspired by yet another randomized polynomial time algorithm
due to Agrawal and Biswas in 1999 [AB99], which uses a generalization of the Fermat test to polynomials.

The algorithm we have seen has a one-sided error: for prime n, the probability of error is 0, while for com-
posite n the probability of error is at most 1

2 . Adleman and Huang [AH87] came up with a polynomial time
randomized algorithm with one-sided error in the opposite direction, i.e., it is always correct on composites,
but may err on primes with probability at most 1

2 .1 Although the Adleman-Huang algorithm is not very effi-
cient in practice, it is of theoretical interest to note that it can be combined with the Miller-Rabin algorithm
above to create a stronger Las Vegas algorithm for primality testing:

repeat forever
run Miller-Rabin on n
if Miller-Rabin outputs “composite” then output “composite” and halt
run Adleman-Huang on n
if Adleman-Huang outputs “prime” then output “prime” and halt

If this algorithm ever terminates it must be correct since Miller-Rabin never makes an error when it outputs
“composite”, and likewise for Adleman-Huang and “prime”. Also, since the probability of error in each
component is at most 1

2 , the probability of iterating t times without terminating decreases exponentially
with t.

1More practically useful certificates of primality were developed by Goldwasser and Kilian [GK86]; to guarantee their existence
one needs to appeal to an unproven assumption.

References

[AH87] L.M. ADLEMAN and A.M.-D. HUANG, “Recognizing primes in random polynomial time,”
Proceedings of the 19th ACM STOC, 1987, pp. 462–469.

[AB99] M. AGRAWAL and S. BISWAS, “Primality and identity testing via Chinese remaindering,” Pro-
ceedings of IEEE FOCS 1999, pp. 202–209. Full version appeared in Journal of the ACM 50
(2003), pp. 429–443.

[AKS02] M. AGRAWAL, N. KAYAL and N. SAXENA, “PRIMES is in P,” Annals of Mathematics 160
(2004), pp. 781–793.

[BM77] R.S. BOYER and J.S. MOORE, “A fast string-searching algorithm,” Communications of the
ACM, 20(10):762–772, 1977.

[Fre77] R. FREIVALDS, “Probabilistic Machines Can Use Less Running Time,” IFIP Congress 1977,
pp. 839–842.

[GK86] S. GOLDWASSER and J. KILIAN, “Almost all primes can be quickly certified,” Proceedings of
the 18th ACM STOC, 1986, pp. 316–329.

[KR81] R. KARP and M. RABIN, Efficient randomized pattern-matching algorithms, Technical Report
TR-31-81, Aiken Computation Laboratory, Harvard University, 1981.

[KMP77] D. KNUTH, J. MORRIS and V. PRATT, “Fast pattern matching in strings,” SIAM Journal on
Computing, 6(2):323-350, 1977.

[M76] G.L. MILLER, “Riemann’s hypothesis and tests for primality,” Journal of Computer and Sys-
tems Sciences 13 (1976), pp. 300–317.

[R76] M.O. RABIN, “Probabilistic algorithms,” in J.F. Traub (ed.), Algorithms and Complexity, Re-
cent Results and New Directions, Academic Press, New York, 1976.

[SS77] R. SOLOVAY and V. STRASSEN, “A fast Monte Carlo test for primality,” SIAM Journal on
Computing 6 (1977), pp. 84–85. See also SIAM Journal on Computing 7 (1978), p. 118.

